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Abstract— Medical reports and narratives especially present 

considerable challenges due to their complicated medical 

terminology, frequent use of abbreviations, and diversity of 

language structures. As a result of these complexities, it can be 

hard to extract and interpret meaningful information 

straightforwardly and consistently. It is essential for a 

comprehensive understanding of healthcare data in the 

medical domain to identify patterns, recognize subtle cues, and 

distill critical information from different sources. Natural 

language processing, machine learning, and semantic analysis 

play fundamental roles in overcoming these obstacles. These 

tools streamline the information retrieval process and enable 

the discovery of hidden correlations and trends within medical 

texts, as a result, more informed decision-making is enabled 

and healthcare insights are enhanced. This study analyzes a 

range of academic publications, including books, doctoral 

theses, and articles, and it conducts a comparative study of 

recent survey papers to address limitations in prior research. 

While previous surveys have focused on specific areas like 

named entity recognition (NER), relationship extraction, text 

vectorization, and classification methods, this research adopts 

a broader perspective by exploring various aspects of 

information extraction and medical document classification. 

The study highlights the critical purpose of ontologies, 

especially medical ones, in knowledge representation. These 

ontologies ensure semantic interpretation, reduce ambiguity, 

and enhance information sharing among researchers and 

healthcare professionals. Additionally, the research emphasizes 

the benefits of integrating multiple datasets and combining 

machine learning methods with ontologies to improve the 

accuracy and efficiency of medical text analysis providing 

better decision-making opportunities. 

 
Index Terms—Health informatics, Medical unstructured 

texts, Embedding, Machine Learning, Natural language 

processing, Ontology 

I. INTRODUCTION 

N the medical field, the significance of classification, 

clustering, and prediction as fundamental data mining 

parameters cannot be overstated. These techniques present a 

key in unraveling complex patterns, identifying behavioral 

trends, and predicting potential outcomes, thereby 

contributing crucial insights for effective diagnosis, 
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treatment, and intervention strategies in healthcare. 

Therefore, text mining and Natural Language Processing 

(NLP) are strongly involved in medicine, pharmacology, 

and the natural sciences. Nevertheless, analyzing medical 

documents using text mining is a complex domain that 

requires considerable time and effort. The storage, 

collection, and transmission of knowledge encoded in 

hospital reports, particularly chronic disease data, are 

controlled by textual knowledge management. Today’s 

medical environment uses data mining to predict various 

illnesses, assist in diagnosis, and advise physicians in 

clinical decision-making. Likewise, data mining has far 

greater potential to provide question-based answers, 

anomaly-based detection, more informed decision-making, 

probabilistic measurements, predictive models, and decision 

support. Moreover, many data sources such as symptoms, 

exams, patient history, procedures, treatments, and 

medications allow rapid exploration of diseases. Therefore, 

the analysis of medical texts requires knowledge in a variety 

of fields, including clinical-specific areas, data mining, text 

mining, statistics, medical texts, and clinical and hospital 

procedures. 

The definition of text-mining is the extraction of hidden 

and valuable information from unstructured texts. So only in 

1999, the author of this study [1] consider Text Data Mining 

(TDM) as a variant of Data Mining (DM), since these 

methods (as in data mining) allow extracting knowledge 

from the web. A text mining process can be defined as a 

knowledge-intensive activity in which analytical tools are 

used to identify and explore hidden patterns among 

documents. However, clinical texts written by clinicians 

describe the patients’ pathologies, the social and medical 

history, and the observations made during the interview or 

the care procedures. The term "clinical texts" covers the full 

range of narratives appearing in the medical patient record 

[2] or texts used to manage medical, financial, 

administrative, and legal aspects of a hospital [3]. In data 

mining, different methods are used to discover useful 

information. These include association, clustering, 

classification, prediction, and sequential patterns [4]. In fact, 

many text-mining techniques derive from data mining, 

including summarization and entity relations [5]. 

Developing classification models for clinical documents 

can be challenging as the medical texts’ structure is 

heterogeneous. In most cases, these documents consist of 

narrative text. Additionally, doctors use particular jargon 

such as abbreviations and disease codes, which requires 

additional tools for interpreting the designated terms and 

extracting semantic information. The text classification 
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consists of partitioning the data into pre-defined groups 

identified by their labels. For example, to predict the 

categorical label yi for data instance xi as that of learning a 

function f  [6]. Where, for the documents 

X = (x1, x2, …, xn) / i ∈ [1..n] and the classes 

Y = (y1, y2, …, ym) / j ∈ [1..m] :    f (xi)=yj 

The idea of the mind map method pioneered by Tony 

Buzan [7] is utilized in this study to enhance readers' 

comprehension of the content. To achieve this, each section 

is summarized with a figure. 

The structure of the paper is as follows: First, the paper 

presents the main challenges and future directions in the 

field of medical text classification, followed by a 

comparison of recent surveys on medical texts. Next, the 

paper reviews related works on information extraction. 

Moreover, an updated view of text representation methods, 

natural language pre-processing and machine learning 

techniques for extracting medication information are 

provided. In addition, given the importance of ontological 

semantic technology in handling natural language meaning, 

the use of ontologies to classify medical documents is 

examined. Furthermore, the methods for evaluating the 

model and estimating it are explained. Finally, the paper 

concludes with discussion and recommendations for future 

researches. 

II. CURRENT CHALLENGES AND FUTURE DIRECTIONS 

The major challenge for medical text classification is the 

structure of the medical text itself. The vocabulary used by 

physicians to write conclusions differs from that in other 

fields. Hence, using NLP tools to extract the meaning of a 

text and deduce the context is only sometimes obvious. This 

text can hold intricate vocabulary with medical terms, 

abbreviations, acronyms, local dialectal terms, mistakes, and 

misspellings (Fig. 1). Moreover, clinical narrative texts 

containing personal health knowledge require data privacy 

and special processing to keep the information secure. 

Another challenge is that minor clinical corpus size 

influences the inferred embedding quality. Indeed, 

embedding induced from a large corpus encode more 

information than those generated from a small corpus. In the 

clinical field, available corpora are small compared to 

general corpora. For example, the Google News Corpus 

consists of about 100 billion tokens, MIMIC clinical notes 

consist of just about 0.53 billion tokens and the PubMed 

corpus consists of around 4.35 billion tokens [8]. Models 

such as Word2Vec, GloVe, and FastText, among others, 

allocate a singular representation that overlooks the 

multifaceted nature of meanings, consequently diminishing 

the quality of the inferred embedding. For instance, aspirin 

is utilized in the treatment of both fever and cardiovascular 

diseases. Nevertheless, it is important to note that the 

representation of text significantly influences the efficacy of 

a model in subsequent tasks. On the other hand, extracting 

information from clinical textual data is a complex and 

challenging task in NLP. Temporal information and 

extraction of temporal relations [9] between clinical events 

play essential roles in clinical assessment and decision-

making. Therefore, extracting relationships from clinical 

textual data is challenging as it lies between medical NLP, 

temporal representation, and temporal reasoning. As 

highlighted by authors in the study [10], converting clinical 

text into causal knowledge (i.e., causal relationships) is the 

most difficult and complex challenge. Extracting clinical 

events as well as temporal knowledge is a challenging task. 

That is why existing systems frequently have numerous 

independent components based on a collection of norms or 

classical machine learning models [11]. 

The increasing medical vocabulary is a consequence of 

new diseases, symptoms, drugs, etc. Today, ontologies 

constitute an ineluctable design to reduce this ambiguity by 

providing a generic conceptualization of notions, especially 

in medicine. Therefore, using ontologies has become 

necessary to extract terms and their synonyms from the text 

to identify concepts and handle the nontrivial aspects of 

spatial-temporal reasoning based on semantic causal 

explanation and semantic analysis of relationships between 

events. Nevertheless, defining and using ontologies in the 

medical field presents a significant challenge. We highlight 

that combining machine learning technics and ontology 

should increase the efficiency of models for knowledge 

extraction in medical reports. 

III.  ONTOLOGY: SEMANTIC DISAMBIGUATION 

EXAMPLES 

Transforming these two example text1 and text2 (excerpt 

from the PubMed 200k-RCT dataset [12]) into numerical 

representations show the ontologies’ usefulness for word-

sense disambiguation purposes in medical reports. For text1 

and text2, we employed Word2Vec using the Skip-gram and 

Continuous Bag of Words (CBOW) methods. The objective 

is to retrieve words that are similar to the word pain. The 

word pain is a disease according to the European Federation, 

but it's also a sensory and emotional experience according to 

disease ontology. The main goal is to identify semantic 

relationships among various words and contexts, with vector 

dimension parameters adjusted across one, two, and three 

dimensions. 

The comparison of vectorization methods across the 

obtained results highlights how CBOW and Skip-gram 

models represent clinical vocabulary, emphasizing the need 

to distinguish between terms with different meanings in 

medical texts. While models capture semantic relationships, 

words like "pain" have specific meanings that differ from 

common terms such as "years," "as," "was," and "to the." 

These terms may appear in medical contexts but serve 

different roles, such as indicating time, comparison, or 

tense, rather than describing a medical condition like "pain". 

Despite the model chosen for vectorization, which reflects 

semantic structures, ontologies are essential to accurately 

interpret these distinctions. For example, "pain" refers to a 

physical or psychological condition, while "years" indicates 

duration, and "as" is a comparative term. Their meanings 

shift depending on context, but they do not alter the core 

meaning of terms like "pain." 

In TABLE I different word vectorization techniques 

(CBOW and Skip-gram with Bigrams and Trigrams) applied 

to text1 with specific vocabulary sizes (CBOW with v = 

108), Skip-gram Bigrams with (v = 110), and Skip-gram 

Trigrams with (v = 112). Each method produces a distinct 

set of vocabulary, which reflects its ability to capture 

different aspects of the clinical text. CBOW includes terms 
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like "therapy," "efficacy," and "hypertension," indicating a 

focus on general treatment and condition-related terms. In 

contrast, Skip-gram with Bigrams includes additional terms 

such as "randomly," "mg/day," and "receive," which suggest 

a deeper focus on treatment administration. Skip-gram with 

Trigrams extends this further, capturing terms like "taking," 

"diarrhea," and "monitoring," pointing toward patient 

symptoms and monitoring processes. These differences 

reveal that while CBOW provides a generalized semantic 

representation, the Skip-gram models, particularly with 

Trigrams, capture a richer and more detailed context by 

including terms related to dosing, patient demographics, and 

side effects. Thus, Skip-gram Trigrams may offer enhanced 

utility for applications requiring detailed clinical data 

extraction and precise interpretation of patient information 

in medical text analysis. 

Similarly, TABLE II compares the performance of 

different word vectorization methods (CBOW and Skip-

gram) applied to text2 from a specific vocabulary size, with 

CBOW at (v = 89) and Skip-gram at (v = 95). Each method 

yields distinct vocabularies, where CBOW does not include 

the word "pain," highlighting a potential limitation in 

capturing certain clinical terms relevant to pain 

management. The context words captured in each model 

further reveal the differences: CBOW generally includes 

words associated with clinical actions and contexts, such as 

"combinations," "postoperative," and "injected." In contrast, 

the Skip-gram approach, particularly with Bigrams and 

Trigrams, captures a wider range of clinical terms, including 

"analgesic" and "narcotics," which may provide a richer 

context for understanding patient treatments and outcomes. 

These Skip-gram representations suggest an improved 

ability to capture nuanced medical language, as they include 

more varied and specific terms related to pain and 

postoperative care. Overall, the table indicates that Skip-

gram models, especially those using bigrams and trigrams, 

may offer better semantic representations of complex 

clinical vocabulary compared to CBOW, enhancing the 

model's potential for accurately interpreting medical 

narratives. 

In summary, while Skip-gram models, especially with 

higher-order n-grams, perform better in capturing complex 

medical terms and context, careful attention must still be 

given to interpreting words that may have varied or 

ambiguous meanings. This highlights the importance of 

further development of vectorization methods, including 

their incorporation at domain-specific knowledge and 

ontologies level to enhance models accuracy while dealing 

with clinical texts. 

TABLE III presents the numerical representations 

(embeddings) of the word "pain" (using text1) and a set of 

semantically similar words across three dimensions, 

illustrating the relationships between terms within a vector 

space. Each dimension captures unique values for "pain" 

and its related terms, such as "therapy," "efficacy," and 

"blood," which help define their semantic proximity. In 

Dimension 1, "pain" has a value of [-0.08035642], while 

similar terms like "therapy" and "hypertension" show varied 

values, such as [-0.4403279] for "1-2" and [-0.7665176] for 

"efficacy," aligning with treatment-related terms. Dimension 

2, represented by a two-value vector, captures "pain" as [-

0.04514251, 0.4190363], with nearby terms like 

"abdominal" and "therapeutic" also positioned closely, 

reflecting descriptive or contextual features in medical 

language. In Dimension 3, "pain" is expressed as [-

0.248204, -0.2452565, -0.08156046], alongside terms like 

"blood" and "monitoring," which show similar vector 

patterns, potentially indicating associations with 

physiological or monitoring aspects. Altogether, these 

dimensions reveal how embedding techniques structure 

complex medical terminology, providing interpretable 

relationships that highlight semantic similarity and context 

in clinical narratives. 

TABLE IV provides numerical embeddings for the word 

"pain" (using text2) and related terms across three distinct 

dimensions, illustrating how embedding models capture 

word meanings based on contextual similarity. In dimension 

1, "pain" is represented by the vector [-0.37439027], with 

similar terms like "combinations," "postoperative," and 

"protocol" holding values such as [-0.02600246] [-

0.44625682], and [-0.76460844], suggesting associations 

with treatment procedures and medical protocols. 

Dimension 2 shows "pain" as [-0.40871736, -0.46739444], 

alongside terms like "combination" and "receiving" with 

vectors like [-0.20421192, -0.3823596], [-0.24343628, -

0.18285151], indicating connections to procedural efficacy 

and patient treatment contexts. In dimension 3, "pain" is 

represented by [0.18839891, -0.2540631, -0.12656955], 

with related terms such as "experienced," "preoperative," 

and "minutes" showing vectors like [0.10089256,-

0.22837418,-0.04392448], [0.07130048,-0.26479003,-

0.08826005], and [0.04674968,-0.0908818,-0.14382423], 

capturing temporal and procedural elements tied to patient 

experiences. Together, these dimensions reveal layered 

relationships between "pain" and similar terms, which aid in 

understanding clinical vocabulary in structured, context-

driven spaces (a valuable approach for precise language 

interpretation in medical narratives). 

Word vectorization depends on various factors: corpus, 

dimensions, and vectorization model to use (e.g. CBOW or 

Skip-gram). Vector representation's dimensionality affects 

how words are positioned within the semantic space. 

Furthermore, the choice of the corpus is crucial, where, a 

medical corpus, for example, will produce embeddings that 

are more specialized in healthcare terminology, while a 

general corpus might fail to capture domain-specific 

nuances such as those related to pain, treatments, and 

medical conditions. On top of these factors, the upcoming 

section covers the intrinsic limitations regarding word 

vectorization techniques. While they can capture semantic 

similarity between words, they may not fully account for the 

complex relationships and nuances present in clinical 

narratives, particularly when terms carry multiple meanings 

or depend heavily on the context. Hence, the addition of 

domain-specific knowledge (e.g., by linking the model 

representation with ontologies) could lead to a more 

accurate understanding and creation of medical language. 

Based on the results obtained, it is recommended to 

integrate medical ontologies to further refine the semantic 

understanding of medical terminology and improve the 

model's performance. The code for these examples is 

available at the GitHub link https://github.com/T-
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HAFIDA/Word2Vec. 

Text1: "We studied 58 patients with grade 1-2 essential 

hypertension ( 25 men and 33 women ) , 48.7 ( 11.9 ) years 

of age , randomly assigned to receive torasemide ( 5 mg/day 

) either upon awakening or at bedtime .  Blood pressure was 

measured by ambulatory monitoring for 48 consecutive 

hours before and after 6 weeks of therapy . Efficacy of 

torasemide was significantly higher with bedtime dosing ( 

11.2 and 8.0 mmHg reduction in the 24-hour mean of 

systolic and diastolic blood pressure , respectively ) as 

compared to the administration of the drug on awakening ( 

6.2 and 3.7 mmHg reduction in systolic and diastolic blood 

pressure ) . The percentage of patients with controlled 

ambulatory blood pressure after treatment was also higher 

after bedtime treatment ( 54 % versus 27 % ) . The time-

response curves indicate a full 24-hour therapeutic duration 

only when torasemide was administered before bedtime . 

With regard to the safety profile , 2 patients presented 

secondary effects ( abdominal pain , diarrhea ) in morning 

dose , and 4 patients taking the drug at bedtime reported 

nicturia . " 

Text2: "Fifty patients successfully completed the study 

protocol . Patients receiving combinations of morphine  , 

bupivacaine , and epinephrine or bupivacaine and 

epinephrine yielded lower pain scores and narcotics 

consumption than patients receiving epinephrine alone , 

which was statistically significant irrespective of the timing 

of injection ( P < .0001 ) . Patients receiving the study 

medication preoperatively had significantly lower pain 

scores at the first measurement ( t = 0 ) than those receiving 

the study medication postoperatively ( P = .0343 ) . There 

was no statistically significant effect of timing of the 

treatment medication administration at either 60 or 120 

minutes postoperatively . Comparison of fentanyl 

consumption between groups receiving the treatment 

medication preoperatively versus postoperatively showed no 

significant difference .The combination of morphine , 

bupivacaine , and epinephrine , as well as the combination 

of bupivacaine and epinephrine provide excellent 

postoperative pain control when used either preoperatively 

or postoperatively in knee arthroscop . There was a trend 

that patients receiving preoperative analgesic injections 

experienced superior pain control than did those injected 

postoperatively . " 

 

 
 

 

 

Fig. 1.  The Principal challenges of clinical text. 

TABLE I 
THE TEN MOST SIMILAR WORDS TO THE WORD PAIN: TEXT1 WITH THE MODELS CBOW, SKIP-GRAM (BIGRAMS AND TRIGRAMS) FOR ONE, 

TWO, AND THREE DIMENSIONS (DIM). "V" DENOTES THE SIZE OF THE VOCABULARY 

DIM 
CBOW 

v= 108 

Skip-gram (Bigrams) 

v = 110 (vocabulary) 

Skip-gram (Trigrams) 

v= 112 

1 

[’1-2’, ’grade’, ’therapy’, ’efficacy’, 

’25’, ’hypertension’, ’essential’ 

’years’, ’)’, ’nicturia’] 

[’randomly’, ’1-2’, ’nicturia’, 

’upon’, ’mg/day’, ’5’, ’receive’, ’2’, 

’grade’, ’33’] 

[’taking’, ’58’, ’morning’, ’33’, 

’5’,’men’,’4’, ’diarrhea’, ’therapy’,] 

’monitoring’ 

2 
[’morning’,’in’, ’for’, ’abdominal’,  
’therapeutic’, ’3.7’, ’studied’,’at’, 

’women’, ’presented’] 

[’effects’,’secondary’,’48’, 
’to the’, ’on’, ’2’, ’men’, ’years’, 

’patients’, ’assigned’] 

[’in’, ’treatment’, ’5’, 
’ and’,’,’, ’versus’, ’3.7’, 

’patients’, ’54’, ’age’] 

3 

[’men’, ’indicate’,  ’monitoring’, 

’hours’, ’to’,’blood’, ’curves’, 

’mmhg’, ’as’, ’weeks’] 

[’dosing’, ’randomly’, ’torasemide’, 

’we’, ’only’, ’respectively’, ’.’, ’33’, 

was’,’as’,’receive’] 

[’mean’, ’25’, ’as’, ’essential’,’54’, 

’monitoring’,’torasemide 

’hours’,’administration’,’.’] 
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TABLE II 

THE TEN MOST SIMILAR WORDS TO THE WORD PAIN: TEXT2 WITH THE MODELS CBOW, SKIP-GRAM (BIGRAMS AND TRIGRAMS) FOR ONE, TWO, AND 

THREE DIMENSIONS (DIM). "V" DENOTES THE SIZE OF THE VOCABULARY 

DIM 
CBOW 
v=89 

Skip-gram(Bigrams) 
v=95 

Skip-gram (Trigrams) 
v=95 

1 

[’combinations’, ’which’,’postoperative’, 

’arthroscop’, ’t’, ’protocol’, ’in’, ’alone’, 

’at’, ’injected’] 
The word ‘pain’ 

is not 

included 
in the 

vocabulary 

[’0’, ’narcotics’, ’trend’,, ’arthroscop’, ’used’, 

’postoperative’, ’significantly’, 

’analgesic’,’of’, ’combinations’] 

2 

[’120’, ’)’, ’successfully’, ’,’, ’receiving’, 

’combination’,’excellent’, ’between’,’or’, 

’treatment’ 

[’,’, ’combinations’, ’receiving’, 

’consumption’, ’did’,, ’medication’, 
’significant’, ’study’,’minutes’, ’and 

epinephrine’] 

3 

[’the’, ’experienced’, ’preoperative’, ’t’, 

’than’,’ and’, ’injected’, ’)’,’minutes’, 
’provide’] 

[’irrespective’, ’had’, ’arthroscop’, ’that’, 

’significantly’, ’experienced’, ’) .’, ’patients’, 
’injections’, ’study’] 

  
TABLE III 

NUMERICAL REPRESENTATION OF TEN MORE SIMILAR WORDS TO ’PAIN’ IN THE TEXT1, USING CBOW 

Numerical 

representation 

of the word: 
pain 

Similar words Numerical representation of similar words 

Dimension 1:   

[-0.08035642] 

[’1-2’, ’grade’, ’therapy’, 
’efficacy’, ’25’, ’hypertension’, 

’essential’, ’years’,’)’,’nicturia’] 

[[-0.4403279 ] [-0.8769923 ] [-0.48153663] [-0.3108462 ] 
[-0.7665176 ] [-0.02992293] [-0.00310332] [-0.41340765] 

[-0.05348039] [-0.5937165 ]] 

Dimension 2:    

[-0.04514251, 

0.4190363 ] 

[’morning’,’in’, 

’for’,’abdominal’, 

’therapeutic’, ’3.7’, 

’studied’, ’at’, 

’women’, ’presented’] 

[[-0.03414124,  0.38525942] [-0.04363778,  0.28883508] 

[-0.0430724,  0.27686176] [-0.00874919, 0.17324676] 

[-0.08426419,  0.3351643 ] [ 0.0070153,  0.15392697] 

[-0.04220278,  0.14129873] [-0.17484386,  0.47061527] 

[ 0.04652259, 0.3195849 ] [-0.15218966,  0.3950207 ]] 

Dimension 3:   

[-0.248204, 

-0.2452565 
-0.08156046] 

[’men’, ’indicate’ 
,’monitoring’, 

’hours’, ’to’, 

’blood’, ’curves’, 
’mmhg’, ’as’, 

’weeks’] 

[[-0.23371187, -0.30359426, -0.01094574] [-0.17208306, -0.23322713, 

-0.1610568 ] [-0.2975674, -0.2330507, 0.03119168] [-0.095222, -
0.20392987, -0.01255612] 

[-0.2942829,  -0.14061719, 0.00221788] [-0.24695018, -0.07242171, -

0.06219727] [-0.23660916, -0.25768462, -0.30295923] [-0.08901064, -
0.28964493, -0.02691508] 

[-0.19178434, -0.15672255, -0.24436885]  

[-0.19845465, -0.05969124, -0.14281404]] 

 

TABLE IV 
NUMERICAL REPRESENTATION OF TEN MORE SIMILAR WORDS TO ’PAIN’ IN THE TEXT2, USING CBOW VECTORIZATION 

Numerical representation 

of the word pain 
Similar words Numerical representation of similar words 

Dimension 1:           
[-0.37439027] 

[’combinations’, 
’which’,’postoperat 

ive’, ’arthroscop’ 

’t’, ’protocol’, ’in’, 
’alone’,’at’, ’injected’] 

[[-0.02600246] [-0.8715803 ] [-0.44625682] [-0.41450462] 

[-0.815236 ] [-0.76460844] [-0.35509628] [-0.43826872] 

[-0.19329406] [-0.47433007]] 

Dimension 2:            

[-0.40871736, 

-0.46739444] 

[’120’, ’)’, 

’successfully’, ’,’, 

’receiving’,’combi 
nation’, ’excellent’, 

’between’, ’or’, 

’treatment’ ] 

[[-0.22952682, -0.25210172] [-0.11299069, -0.09376078] 
[-0.44509122, -0.351733 ] [-0.46091023, -0.35077196] 

[-0.24343628, -0.18285151 ] [-0.20421192, -0.3823596 ] 

[-0.14129485, -0.30785048] [-0.18319613, -0.43615544] 
[-0.3731453, -0.19463071] [-0.43532884, -0.21746512]] 

Dimension 3:             

[ 0.18839891, 

-0.2540631, 
-0.12656955] 

[’the’, 

’experienced’, 

’preoperative’, ’t’, 
’than’,’and’, 

’injected’, 

’)’,’minutes’, 

’provide’] 

[[ 0.2950617, -0.31452298, -0.23044617] [ 0.10089256, -

0.22837418, -0.04392448] [ 0.07130048, -0.26479003, -0.08826005] 
[ 0.2594061, -0.31887758, -0.00474538] 

[ 0.26621985, -0.20084439,  0.00535775] [ 0.20968314, -

0.11466264, -0.02830276] [ 0.2506244, -0.12669171, -0.01810657]  
[ 0.14730744, -0.13950509,  0.0308135 ] 

[ 0.04674968, -0.0908818, -0.14382423]  

[ 0.25347137, -0.2860597,  0.11112635]] 
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IV.  COMPARISON WITH EARLIER SURVEYS 

TABLE V summarizes articles in medical text 

processing type surveys, from 2015 to 2023. In [13] 

automated de-identification of medical free text by 

applying LSTM methods is discussed. More than half of 

the approaches to automatically de-identify free text data 

rely on either rule-based systems or hybrid models 

combining machine learning with rules In this study, we 

found that LSTM based model outperformed Conditional 

Random Fields (CRF) and Rule-based systems. The results 

for hybrids and ensembles of LSTMs were even poorer 

compared to the LSTM-only models.  

To improve understanding of the literature regarding the 

use of NLP for classifying incident reports and analyzing 

adverse events, the researchers conducted a systematic 

review and   synthesis in [14]. Their specific objectives 

were to understand, the techniques employed, and to 

highlight areas of future research in this field. 

Complementing this study, [15] described the different 

types of clinical reports that were classified automatically 

using text classification and NLP. In addition, they 

conducted a comprehensive review of the datasets that 

have been employed for the purpose of clinical report 

classification. Furthermore, they identified various pre-

processing and data sampling techniques, analyzing the 

different feature sets, feature representation, and feature 

reduction. Likewise, [16] presents a comprehensive 

analysis of methodologies, obstacles, and tools utilized in 

text mining as it pertains to medical documentation, 

decision-making assistance, health administration, and 

classification frameworks. 

A key aspect of medical text processing is the 

International Classification of Diseases (ICD) coding task, 

which [17] emphasizes as critical. The authors reviewed 

recent research in this area, translating the problem into a 

learnable study, and highlighted two essential tasks: 

document representation learning for diagnostic 

information and ICD code classification. Additionally, 

[18] discusses the application of patient safety ontologies 

for document classification, detailing methods for model 

evaluation. Furthermore, [19] reviewed the methodologies 

of clinical concept extraction, cataloging development 

processes, available methods and tools, and specific 

considerations when developing clinical concept 

extraction applications. This review discusses the critical 

steps of clinical concept extraction application 

development, the trends and associations of clinical 

concept extraction research over different approaches, and 

the main problems in this field. This study shows that the 

method adopted for a specific task can be impacted by five 

factors: data and resource availability, domain adaptation, 

model interpretability, system customizability, and 

practical implementation. Supporting this, [20] examines 

the current state of NER and Relational Extraction (RE) 

techniques, identifying the F1-score as the most common 

metric. The study confirms that other metrics, such as 

sensitivity, specificity, Receiver Operating 

Characteristic (ROC), and Area Under the Curve 

(AUC), may also be useful for evaluating NER and RE in 

future research. Building on temporal aspects, [21] 

explores time modeling in the clinical domain, with a 

focus on ontology-based representations and temporal 

reasoning. This study highlights the management of 

temporal information within standardized clinical models. 

Likewise, [22] summarizes research on event and event 

relation extraction, outlining these tasks in medical text 

analysis. 

Furthermore, [9] surveys existing temporal relation 

(TLINK) extraction methods in English clinical text 

noting, the main challenges in TLINK extraction. 

Furthering the conversation on evaluation, it is described 

in [23] how NLP algorithms can be used to map clinical 

text ontology concepts to the heterogeneity of 

methodologies. Moreover, [24] investigates global NLP 

applications in healthcare, focusing on clinical corpora 

development across languages and demonstrating the 

relevance of multilingual corpora for unstructured clinical 

text extraction. 

Following this theme, [25] reviews how unstructured 

text from Electronic Health Record (EHR) data is used in 

developing and validating the models. In parallel, [26] 

examines EMR text-based case detection for specific 

clinical conditions, detailing information extraction 

methods and the added benefits of using text data over 

structured data alone. Additionally, [27] presents EMR 

data preprocessing, with applications in medical decision 

support, risk prediction, mobile health, network medical 

treatment, and drug reaction detection. Complementary to 

this, [28] defines techniques and applications of text 

mining in fields such as digital libraries, social media, and 

business intelligence. 

Biomedical text summarization is the focus of [29], 

which reviews recent biomedical text summarization 

applications in literature and EHR documents, examining 

techniques, applications, and evaluation methods. Finally, 

the study [30] investigates the representation of textual 

semantics via the utilization of word embedding. 

This comprehensive overview captures significant 

advancements and methodologies in medical text 

processing, as documented in recent survey articles. The 

field is marked by varied approaches, particularly in 

automating de-identification, classification, and clinical 

information extraction. Studies reveal that LSTM-based 

approaches for de-identification outperform traditional 

CRF and rule-based models. However, hybrid models are 

sometimes less effective due to potential overfitting issues, 

especially with datasets like MIMIC. Further findings 

from systematic reviews indicate that the scope of NLP in 

healthcare has expanded to tasks such as incident report 

classification, adverse event analysis, and clinical report 

classification. The reviews emphasize a variety of 
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preprocessing and sampling techniques, feature 

representation, and reduction strategies. Notably, 

standardized metrics (such as F1-score, sensitivity, 

specificity, and AUC) are emerging as essential 

benchmarks in clinical entity and RE, though the reviews 

recommend future studies apply these metrics more 

consistently. The ICD coding task is identified as critical 

for clinical text processing, where accurate document 

representation learning and effective classification are 

essential. Ontologies, such as those related to patient 

safety, have shown utility in document classification, 

underscoring the importance of model interpretability and 

customizability. Temporal reasoning and event relation 

extraction are also noted as growing fields, aiming to map 

temporal information within clinical narratives effectively. 

Additionally, multilingual corpora development is 

highlighted as a crucial area for extending NLP's cross-

linguistic applicability in healthcare.  

Overall, while NLP in medical text processing has made 

significant strides, key challenges remain. Notably, hybrid 

model optimization is necessary to prevent overfitting in 

specialized datasets. Standardizing evaluation metrics 

across studies will further strengthen NLP applications by 

enabling consistent comparisons. Multilingual corpora 

with standardized labeling protocols could broaden NLP’s 

clinical research utility, making it applicable across 

languages and regions. There is also a recognized need for 

continued refinement in document representation learning, 

especially for ICD coding and TLINK extraction, to 

enhance diagnostic tools, decision-making, and clinical 

timeline analysis. Although healthcare NLP has advanced 

considerably, optimizing hybrid models, advancing 

TLINK extraction, and promoting global corpus 

development remain essential to achieving scalable, 

effective NLP solutions for clinical applications.

 

 

TABLE V 
DISTRIBUTION OF SURVEY’S TOPICS BY YEARS 

Survey Topics 2015 2016 2018 2019 2020 2021 2022 2023 Total 

Machine Learning Models [16] [21], [26] [27] [2], [14], [15]   [9], [13], [22], [23] [17]-[19], [23], [29]   16 

Classification Performance [16] [26] [27] [14], [15] [9], [13], [23] [20], [24]   10 

Preprocessing Techniques    [15] [9]    2 

Feature Extraction    [15]     1 

Feature Representation    [30]     1 

Use of ontologies  [21]  [15]  [24] [18] [23] 5 

Methods Development ontologies       [18]  1 

ICD coding [16]     [17]   2 

Temporal Information  [21]   [9] [23]   3 

NER Extraction      [18]-20]   3 

Relation Extraction      [20] [25]  2 

Event Extraction     [22], [23] [20]   3 

Causal Relation     [22]    1 

Temporal Relation     [22], [23] [31]   3 

Evaluation Methods      [24]  [23] 2 

Text Summarization      [29]   1 

The Total in the last column reflects the total number of survey articles identified for each topic across the specified years. For instance, in 

the realm of machine learning models, 18 survey articles were identified, spanning the years 2015 to 2023. This table provides a 

comprehensive overview of the evolution of survey articles, offering insights into the trends and focus areas within the field of medical text 

processing over the examined period. Researchers and practitioners can utilize this information to navigate the wealth of knowledge 

generated in the literature. 

 
Fig. 2.  Graphical Representation of Linear-Chain HMM, MEMM, and CRF (redrawing based on [32]). 
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V. INFORMATION EXTRACTION (IE) 

The primary facets of information extraction include 

NER, events, and relation extraction. The rule-based 

approach, exemplified by the REgenstrief EXtraction 

(REX) tool [33], relies on "if-then" rules to match 

conditions in the text and extract entities. Studies such as 

[34], and [35] have successfully employed the REX model 

for NER. Beyond rule-based approaches, statistical 

methods, including Hidden Markov Models (HMMs), 

have found application in various domains, especially,   

part-of-speech tagger [36]. For identifying Protected 

Health Information [37] utilized a non-parametric 

Bayesian and Hidden Markov Model, showcasing its 

efficacy in capturing subtle variations in data 

 Additionally, Maximum Entropy Markov Models 

(MEMMs), proposed by [38], amalgamate the strengths of 

HMMs and maximum entropy models, exhibiting superior 

performance. In conclusion,  CRF is highly successful for 

information retrieval and closely related to direction. 

Linear-chain conditional random fields, as used by [39], 

and [40], simplify predictions by considering only 

immediately neighboring tags, showcasing their utility in 

Named Entity Recognition, especially when combined 

with models like BiLSTM-CRF [41].  

Fig. 2 delineates the variations among linear sequences 

of hidden Markov models, maximum entropy Markov 

maximum entropy Markov models. CRFs, being 

undirected graphical patterns, can handle dependencies in 

any models, and conditional random fields. This 

emphasizes the distinct attributes and utilizations of each 

methodology. Furthermore, alternative algorithms are 

utilized, as depicted in Fig. 5.  

VI.  TEXT VECTORIZATION METHODS 

Manipulating textual data using data mining models 

requires transforming text into a digital format. Among the 

first methods is the One-hot–encoding representation (i.e.; 

representing the word by a single vector). In this instance, 

the vectors are expressed independently of the words’ 

contexts. For vocabulary with V size, for each i
th

 word wi, 

the word wi is represented by a vector where 1 is assigned 

to the i
th 

element, and 0 is assigned to the rest of the 

elements of the vector [42]. 

The authors in [43] explored region embedding via one-

hot representation. The concatenation of a one-hot vector 

gives us Bag of Words (BOW), where the major 

disadvantage is the length of its characteristic vector [44]. 

Term-Frequency Inverse Document Frequency (TF-IDF) 

is an extension of the Term Frequency model and the 

Inverse Document Frequency model [30]. Authors in [45] 

and [46] highlighted that word embedding outperform 

topic modeling and TF-IDF. 

 
Number of times   appear 

TF
Total number of words  

i
i

w
w   (1) 

 
 

IDF   log
DF    

i

i

N
w

w
  (2) 

𝑁 represents the total number of documents, while  

DF(wi) represents the number of documents containing the 

term 𝑤𝑖 . TF-IDF presented in (3) is calculated from (1) 

and (2), as follows: 

     TF IDF  TF      IDF  i i iw w w     (3) 

Moreover, word embedding has become an integral 

component of many NLP tasks due to its widespread 

application to functions such as machine translation, 

chatbots, image legend generation, and language 

modeling. This technique gives a semantic representation 

of characteristics unlike other existing techniques. Models 

for learning word vectors fall into two categories: models 

based on global matrix factoring or models based on the 

local context window. Latent Semantic Analysis (LSA) 

[47], skip-gram and CBOW are other prediction 

algorithms based on global matrix factoring. LSA is an 

analysis technique that maps words in documents to 

concept, or a method of representing words in a document. 

For example, the Word2Vec method combines words 

which appear in similar ”contexts” and distances terms in 

different contexts by adjusting numbers in the vector. 

Authors in [27] used Word2Vec and the Chinese word 

segmentation with java implementation (Ansj) word 

segmentation tool. However, this method achieved an 

accuracy rate of 25%, presenting a meagre result. As for 

the thesis, [48] applied Word2Vec encoding to multiple 

datasets; in his study, the author obtained 0.9342 as the 

best result for COVID-19 data sets and 0.3164 as the worst 

result for Drugs.com data sets. Unlike the One-hot, BOW 

or word co-occurrence matrix, the Word2Vec 

representation vector's size is not dependent on vocabulary 

size [42]. Skip-gram, where exploiting the context, is the 

goal of this algorithm to predict a word’s neighboring. The 

objective of the Skip-gram model is to minimize the log 

probability error function [48], as follows:  

( )

1 , 0

( | )
T m

t j t

t j m j

logP w w

  

   (4) 

Where, T represents the number of words in the 

sequence (w1,w2,w3,...,wT)  and m the size of the context.  

1 1

1

log ( | , , , , , ) 
T

t t m t t t m

t

P w w w w w   



   (5) 

Likewise, the CBOW approach permits a word’s 

prediction from neighboring words. CBOW approach has 

been used in many studies; for example, authors in [49] 

used CBOW and Skip-gram in gene and protein synonym 

recognition tasks. While authors in [50] rely on CBOW, 

Word2Vec methods, and the full MIMIC-III dataset to 

pre-train word embedding. To address the issue of 
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polysemy in word vectors by generating distinct word 

vectors for different meanings and providing pre-trained 

models on extensive corpora, a continuous bag-of-words 

approach is used to pre-train word embeddings on the 

entire training dataset [6]. While in [51] the authors used 

Adaptive Skip-gram (AdaGram) model introduced by 

[52]. Conversely, Paragraph2vector, commonly referred to 

as Doc2Vec [8], constitutes an advancement of Word2Vec 

as proposed by [53]. Doc2vec functions as an 

unsupervised model adept at depicting textual data of 

varying lengths, including sentences, paragraphs, and full 

documents. This research [54] proposed the Global 

Vectors (GloVe) model. This model based on global 

matrix factoring effectively exploits the global corpus’ 

statistics (e.g., the co-occurrence of words in global 

scope). To automate the assignment of higher-level codes 

from the ICD version 9 (ICD-9) using clinical records in 

human and veterinary databases, the GloVe model is 

employed as a vector representation in the research 

presented in [39]. Another model of text vectorization 

used by [43] is region embedding or the tv-embedding 

model (two-view embedding). Unlike word embedding, 

which embeds text words into vectors with fixed 

dimensions,  an embedding is referred to as a two-view 

embedding if it retains the information necessary to predict 

one view (word or region) from another perspective 

(context word or region). Among the recent methodologies 

for vectorization BERT [55] employs transformer 

architecture, characterized by an attention mechanism that 

discerns contextual interrelations among lexical units (or 

sub-lexical units) within a text. The transformer is 

composed of two discrete elements: an encoder, which 

processes the text input, and a decoder, which generates 

predictions for the task. BERT generates vector 

representations for a token depending on its context. The 

biLSTM layers capture various types of semantic 

information about words in context, and utilizing all layers 

enhances overall task performance. In contrast, BERT’s 

representations are jointly conditioned on the left and the 

right context across all layers. Moreover, SciBERT [56] is 

a pre-trained BERT-based language model for performing 

scientific tasks, BlueBERT [57] is a pre-trained model for 

the medical field, and BioBERT [58] is a pre-trained 

language model for the biological domain. On the other 

hand, Embeddings from Language Models (ELMo) [59] 

uses the left-to-the-right and the right-to-the-left LSTM 

concatenation. ELMo considers the entire phrase when 

assigning an embedding to each word, capturing both the 

context before and after the word to generate more 

dynamic and context-aware representations. 

Meta-embedding learning is an embedding-based model 

that combines several existing embedding sets [60]. This 

method comes with two benefits. The first one enhances 

performance as it leverages multiple word embedding sets, 

the second enhances vocabulary coverage results from 

using various word embedding sets (CW [61], Huang [62], 

Glove, HLBL [63], and Word2Vec). In [45], authors used 

topic embedding to allow the representation of any 

document by a set of topics. Fig. 4 summarizes the different 

text vectorization approaches. 

 

 
Fig. 3.  NLP and used Tools in Medical Field.  
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VII. NATURAL LANGUAGE PREPROCESSING  

The text underscores the pivotal role of data 

preprocessing in enhancing data quality and mining results, 

with distinct approaches based on data types. For structured 

data, preprocessing involves cleaning, integration, 

transformation, and reduction. In contrast, for semi-

structured or unstructured data, tokenization, stop-word 

removal, stemming, and vectorization methods are essential 

(Fig. 3). The sensitivity and complexity of preprocessing are 

magnified in the medical field, as elucidated by [2], due to 

factors like abbreviations, negations, spelling errors, and 

medical codes. Notably, medical record spelling mistakes 

are reported at a substantial rate of approximately 10% [2]. 

According to [64], medical text preprocessing includes 

unifying terms and acronyms using regular expressions and 

 
Fig. 4.  The Key Types of Text Vectorization. 

 

Fig. 5.  The Main Algorithms  used for Knowledge Extraction and NER extraction from Medical Text. 
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procedural methods. Vectorization methods are then applied 

to EHR. The information extraction tasks in medical texts, 

particularly NER and relationship extraction are crucial for 

feature detection. Works such as Specialist [65], 

LEXTOOL, and UMLS-based spelling correction tools [66] 

introduced linguistic analysis, morphological analysis, and 

spelling correction. Negation detection, highlighted by 

NegExpander [67], gains significance in medical texts, and 

temporal analysis, as proposed by [68], involves complex 

temporal models. Other studies, such as [69] and [70], 

propose modular architectures integrating NLP techniques 

and knowledge bases for processing temporal information in 

clinical narrative documents. The text also emphasizes the 

effectiveness of data augmentation for small datasets and 

advocates dimension reduction, employing machine learning 

approaches and methods like PCA, LSA, and Latent 

Dirichlet Allocation (LDA) [6]. 

VIII. MACHINE LEARNING ALGORITHMS 

This section offers an overview of various approaches 

used in medical document classification, covering four 

primary categories of machine learning algorithms: 

supervised, semi-supervised, unsupervised, and 

reinforcement learning. Within each category, diverse 

models are utilized based on the nature of the data and the 

learning objectives. Text classification methods incorporate 

decision trees (DT), rules-based approaches, Support Vector 

Machines (SVM), k-nearest neighbors (K-NN), neural 

networks, and Bayesian models. These methods are 

sometimes optimized using meta-boosting algorithms like 

AdaBoost or BoosTexter. Notable machine learning 

algorithms in this context include Linear Regression (LR) 

for both regression and classification problems [71], SVM 

specifically for classification problems [72], DT [73], and 

Random Forest (RF) [74]. These algorithms represent a 

diverse set of tools that cater to different characteristics of 

medical data and learning goals, providing a comprehensive 

toolkit for document classification in the medical domain. 

A. Support Vector Machines (SVM) 

A groundbreaking machine learning approach specifically 

designed to tackle classification problems. SVM operates on 

two fundamental principles: firstly, the maximization of the 

margin, allowing for errors in the training sets by 

determining the distance between the decision boundary and 

the nearest observations, commonly referred to as support 

vectors. Secondly, SVM facilitates an expansion into a new 

space, potentially of infinite dimensions, where linear 

separation becomes feasible. The primary objective of 

SVM's algorithm is the selection of planes defining decision 

boundaries between different classes of samples. 

Researchers have conducted extensive testing and 

comparisons, as noted in studies such as [44], [46], [75], and 

[76]. The authors in [45] have pitted SVM against other 

algorithms like Multilayer Perceptron Neural Networks 

(MLPNN), Random Forest, and Convolutional Neural 

Networks (CNN) using i2b2 2006 datasets. According to the 

collective findings of these authors, SVM consistently 

emerges as one of the models delivering superior 

performance and achieving commendable results compared 

to its algorithmic counterparts. 

B. K-Nearest Neighbors (K-NN) 

The K-NN algorithm operates by memorizing all samples 

in the training set and subsequently comparing them to a test 

sample, often referred to as memory-based learning or 

instance-based learning. While constructing the K-NN 

model is computationally inexpensive, as it involves storing 

the training data, classifying unknown samples can be 

relatively costly this is because it necessitates computing the 

K-nearest neighbors of the testing sample to assign a label, 

which involves calculating distances between the new 

sample and all objects in the training set. This computational 

demand can become significant, especially with large 

training sets, highlighting the need for careful consideration 

when determining the number of neighbors and selecting 

distance methods. 

In the context of heart disease prediction, the authors in 

[77] employed various classification algorithms, including 

Naïve Bayes, Decision Trees, Support Vector Machines, and 

K-NN. Their experimental findings revealed that combining 

the K-means algorithm and decision tree improves the 

accuracy and underscores the potential efficacy of hybrid 

approaches in enhancing predictive models for heart disease. 

C. Naïve Bayes (NB) 

It is the first algorithm designed for text classification. It 

works based on the Bayes probability theorem and is used to 

solve problems associated with text and web classification 

[78]. For training dataset S = {S1, S2, …, Sm} (m samples) 

where every sample Si, is represented as an digital vector 

{x1, x2, …, xn}, and k classes {C1, C2, …, Ck}, every sample 

belongs to one of these classes. Given that each sample 

belongs to one of these classes, for a data sample X (with an 

unknown class), it is possible to predict the class of X by 

using the conditional probability P(Ci|X) where i∈[1..k]. 

This is the fundamental concept behind a naïve Bayesian 

classifier, where probabilities are calculated using Bayes' 

theorem, presented in (6). 
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P(X|Ci) presented in (6) is very complex to calculate. 

Based on the (naïve) assumption of total independence of 

the variables, proposed in a 1997 article by [79] the formula 

is as follows: 
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Where, xt in (7) values for attributes in the sample X. 

Although NB model is used sparingly in the medical field 

[80], however, similar to SVM, the NB model achieved 

significant results. 

D. Decision Trees (DT) 

Automatic Interaction Detection (AID) methods were 

abandoned by statisticians. Nevertheless, they were revived 

by the work of [73]. DT model allows the prediction of 

quantitative (regression trees) or qualitative (decision, 

classification, and segmentation trees). The general purpose 

of a decision tree is to explain a value from a series of 
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discrete or continuous variables. Among the methodologies 

designed for the analysis of continuous variables, the chi-

squared Automatic Interaction Detector (CHAID) algorithm 

[81] employs the evaluation of the χ
2
 statistic to assess 

deviations from independence, alongside Tschuprow’s 

measure [82]. The Classification and Regression Tree 

(CART) [78] methodology and the C4.5 [83] algorithm, 

which represents an advancement over the Iterative 

Dichotomiser 3 (ID3) algorithms, fundamentally rely on the 

principles of the Gini index and entropy, respectively. 

Regarding the adjustment of the tree size, there is post-

pruning to CART and C4.5: that makes the tree pruned with 

all the segmentation; then, the model uses a criterion for 

comparing trees of different sizes. But CHAID proceeds by 

pre-pruning and setting a stopping rule to stop the 

construction. According to Shannon, for two possible 

outcomes with probabilities, p and (1−p), the entropy H, is 

defined as follows [84]: 

     2

1

n

i i

i

H X p x log p x

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For X discrete random variable, the entropy H(X) of X, 

that can assume values from a set of features{x1, x2, …, xn} 

is presented in (8). The idea of generating a decision tree is 

not only to divide the original heterogeneous set into more 

homogeneous subsets but also to keep their size as small as 

possible in terms of the number of nodes. In addition, the 

Gini index function indicates the purity of the leaf nodes (a 

mixture of training data associated with each node) [85]. 
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Equation (9) indicates that G is the Gini index for all 

classes, and pk is the percentage of training instances. All 

classes of the same type (perfect class purity) have G=0. 

Researchers referenced in [86] explored a range of 

artificial intelligence techniques, including DT, NB, K-NN, 

Logistic Regression, SVM, and neural networks like GRU 

and LSTM. These methods allowed them to evaluate model 

performance using various classification metrics. The results 

showed that the Symbiotic Gated Recurrent Unit (SGRU) 

outperformed the other models, achieving an F1-score of 

0.69, compared to the DT’s lower score of 0.52. To 

automatically code accident descriptions, specifically the US 

OSHA accident database, the investigation carried out by 

[87] assessed six distinct machine learning algorithms, 

including decision tree, NB, RF, linear regression, k-NN, 

and SVM. Those studies highlight that the SVM algorithm 

produced the best performance. 

E. Random Forest (RF) 

RF is used for regression or classification; it consists of 

constructing an ensemble of DT, generally trained via the 

bagging method or pasting. Moreover, it consists of making 

several independent DT to avoid ending up with equal trees; 

it gives each tree a piecemeal view of the problem, both on 

the input observations and the variables used. This double 

sampling is randomly pulled. 

Thus, RF = tree bagging + feature sampling. Where: 

 Tree bagging: random pull with a replacement on the 

lines (the observations). 

 Feature sampling: random pull on the columns (the 

variables). 

The prediction for new data is an average (in regression) 

or a vote (in classification). In [80], the authors used five 

classifiers: RF, SVM, decision tree, Naïve Bayes, and K-

nearest neighbor for sentiment analysis of medical drug 

reviews. The SVM classifier outperforms the other 

classifiers. For example, to predict acute appendicitis in 

patients with undifferentiated abdominal pain in the 

emergency department, the authors in [88] utilized RF and 

binary logistic regression models, drawing on datasets from 

the United States National Hospital Ambulatory Medical 

Care Survey (NHAMCS). They concluded that the RF 

model demonstrated superior accuracy compared to the 

logistic regression model. 

F. Rule-based Approach 

Rule-based classifiers are widely used for text 

classification, especially medical text classification. The 

experiences of [89] demonstrate the performance of the 

Recurrent Neural Network (RNN) model and the 

combination of the rules-based engine generated by Pool-

based Simulated Annealing (PSA). The authors in [45] 

developed a rules-based NLP algorithm and applied it to 

unlabeled clinical text to automatically generate weak 

labels. Authors in [90] proposed an NLP algorithm based on 

automated rules to extract cancer stage statements from 

narrative EHR data. Recently, the authors in [91] used 

BioBERT to classify entity to one of these labels (violence 

presence, perpetrator, victim, domestic, physical, and 

sexual) using the rules-based model. 

G. Artificial Neural Networks (ANN) 

An artificial neuron, known as a perceptron, is a 

mathematical model designed to mimic the functioning of 

the human brain. It receives input from neighboring 

neurons, each scaled by the corresponding connection 

weights. Then the inputs are summed, and an activation 

function transforms this sum into an output, which is passed 

to the neurons in the next layer for further processing. 

Among the neural networks, the most used are RNN, 

LSTM, CNN, GRU, etc. Where, neural network with 

multiple hidden layers is referred to as a multilayer 

perceptron (MLP), which is classified as deep learning [92]. 

  
 

Fig. 6.  Artificial Neuron (redrawing based on [93]). 
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Fig. 6 describes the structure of an artificial neuron. The 

input X, X∈R
n
, passes through successive layers of neural 

units. The outputs of each layer are sent to the neurons of 

the following layers. The weight  l

ijw  corresponds to the 

weight connection between the i
th

 neuron in layer l and the 

j
th

 neuron in layer (l+1). Furthermore, each neuron unit i in a 

specific layer l is connected by a bias b
l
, the predicted output 

y for the input vector x. When the label of the data is y, and 

y takes continuous values, the neural network learns the 

weights and biases by minimizing the prediction error

 
2

  y ŷ . The estimated W is calculated as follows: 

  2ˆ ˆ  l l

i

W W y y   

Fig. 5 illustrates the machine learning algorithms that are 

thoroughly examined in our paper. Recent studies in text 

classification within healthcare have explored diverse 

models and methods to automate processes and enhance 

accuracy. [41] Addressed the assignment of ICD-9 codes to 

clinical records using RNNs networks with LSTM. Their 

study involved human (MIMIC-III) and veterinary 

(Veterinary medical hospital at Colorado State University) 

datasets, employing RF and DT for model evaluation. 

Notably, LSTM outperformed DT and RF models, 

emphasizing the impact of using MetaMap (a tool for 

recognizing medical concepts in text) on accuracy. The 

proposed model FastTag was implemented for clinical text 

categorization, covering various medical domains. Another 

innovative model, CLUB-DRF [94], leveraged RF and 

clustering, demonstrating improved precision through the 

grouping of similar trees. [35] Introduced a bidirectional 

LSTM-CRF model with multitask attention for clinical 

NER. This model exhibited superior performance compared 

to traditional rules-based systems like MedLEE and 

MetaMap. This study [95] proposed the BART model 

(Bidirectional and Auto-Regressive Transformers) 

combining BERT and GPT in deep learning for text 

reconstruction. In the domain of biomedical event 

extraction, hybrid deep neural networks using CNN and 

RNN were employed by authors [130], emphasizing end-to-

end learning. Efforts to automate the ICD coding process 

were made by [50], introducing an automatic model with an 

embedding layer, bidirectional LSTM layer, label attention 

layer, and output layer. For automated diagnostic coding 

[44], SVM models (flat and hierarchical) were utilized, with 

a fusion strategy to enhance performance. Additionally, a 

new model for extracting medical relationships, treating 

forests as latent variables, was proposed by [96]. 

Exploring ensemble techniques, [48] employed Majority 

Classifier Committee (MCC) aggregation, combining 

classifiers like KNN, Complement Naive Bayes (CNB), DT, 

RF, AdaBoost, XGBoost, and SVM through "Hard voting". 

Evolutionary neural network models for time-evolving text 

classification were introduced by [97], extending baseline 

models TextCNN [98], RCNN [99] and HAN [100] with 

temporal frameworks to predict cancer stage statements 

from HER. In the realm of probabilistic modeling, this study 

[101] presented a CRFs framework, overcoming the 

limitations of MEMMs and HMMs. [76] for detecting illicit 

drugs and recent studies have delved into Graph Neural 

Networks (GNN) for text classification, exemplified by the 

novel framework InducT-GCN [102], tested on medical-

related datasets like Ohsumed. These studies collectively 

showcase the diverse approaches and models employed to 

advance text classification within the healthcare domain. 

[103] Introduces a NER method for Chinese Electronic 

Medical Records (EMRs) utilizing LSTM networks 

combined with CRF and Word2Vec embedding. This 

approach achieves high precision, recall, and F1-scores for 

body parts and treatment entities with scores exceeding 

90%. However, it encounters challenges with symptoms, 

signs, and disease entities, showing lower performance with 

an accuracy of 66.9% and recall of 61.7% for diseases and 

diagnoses, and an F1-score of 80.0% for symptoms and 

signs. These limitations suggest that while the model is 

effective in certain areas, it struggles with the variability and 

complexity of other medical entities. In contrast [104] 

presents a novel NER approach using BERT-BiGRU-Att-

CRF, which integrates the BERT model with Multi-Head 

Attention and Bi-directional Gated Recurrent Units 

(BiGRU). This model addresses challenges such as 

unannotated data and complex syntax in EMR texts, 

achieving an improved F1-score of 86.97% on the 

CCKS2019 dataset. The success of this model highlights 

how advanced techniques, such as attention mechanisms and 

pre-trained models, can enhance the accuracy of NER. 

Similarly, the study [105] focuses on improving healthcare 

documentation through text data mining using the KH Coder 

software. By analyzing nursing care records and identifying 

frequent terms like "toilet" and "wheelchair," this study 

emphasizes the potential for enhancing nursing care 

efficiency and documentation through semi-automated 

systems. This approach parallels the improvements in data 

handling seen in paper [104], demonstrating the broader 

applicability of advanced data processing techniques in 

healthcare settings.  

Paper [106] introduces the PSI (Patient Similarity 

Identification) framework, which utilizes a medical 

knowledge graph to improve patient similarity assessments. 

This framework employs graph representation learning to 

generate embedding for medical entities and assesses patient 

similarity using a Siamese CNN with Spatial Pyramid 

Pooling (SPP). The framework's success in handling sparse 

data and representing complex relationships reflects the 

potential of ontologies to enhance data interpretation and 

integration, similar to the benefits observed in [104]. 

Building on the integration of data types, [107] presents the 

DiseaseNet model, which combines structured and 

unstructured EMR data using the BART model for 

summarization and BERT for data integration. The 

framework’s use of Bidirectional Long Short-Term Memory 

(BiLSTM) and Convolutional Neural Networks improves 

diagnostic accuracy, demonstrating how comprehensive data 

integration can lead to better outcomes. This approach 

resonates with the use of ontologies in [106], highlighting 

the importance of integrating diverse data sources to 

enhance diagnostic capabilities. This study [108] utilizes a 

lexicon-based sentiment analysis approach with VADER to 

evaluate patient feedback on healthcare services. By 

classifying sentiments and verifying accuracy, this study 

underscores the importance of understanding patient 

opinions for improving healthcare quality. This focus on 
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patient feedback complements the data-driven 

improvements demonstrating how sentiment analysis can 

enhance decision-making and service quality. Finally, [109] 

introduces a template-based Natural Language Generation 

(NLG) approach for summarizing hematological 

examination results. The system generates clear and 

coherent reports by mapping non-linguistic data to 

predefined templates, improving accessibility and usability. 

This method of structured report generation links to the 

broader theme of improving data interpretation and 

communication seen throughout the studies, including the 

uses of ontologies for managing and relating complex data. 

IX. ONTOLOGIES AND MACHINE LEARNING 

The use of machine learning technologies for digital 

health applications holds great promise, and the need for 

extensive, hand-labeled datasets for training poses a 

significant challenge to their broad deployment [110]. 

Automated disambiguation processing of clinical documents 

demands meticulous annotation of abbreviations, 

contributing to the imbalance of labeled training data and 

hindering machine learning deployment across clinical and 

research workflows. Knowledge management in digital 

health, crucial for human well-being, faces challenges 

related to semantic misinterpretation, which may lead to 

medical errors adversely affecting patient health. As 

highlighted by authors in [111]–[115], ontology emerges as 

a necessity to recognize entities, detect implicit knowledge, 

and extract semantics from clinical narratives, addressing 

these challenges effectively ontologies, surpassing the 

limitations of thesauri and taxonomies, offer a formal 

representation of conceptual meanings, facilitating 

reasoning and knowledge generation. Through explicit 

specifications of shared conceptualizations, ontologies 

enable advanced mapping between domains like anatomy, 

disease, phenotype, and laboratory investigation [116]. 

Ambiguities inherent in word meanings, such as the term 

"mole," highlight the challenges of context-dependent 

meanings, reinforcing the importance of ontology mappings 

[117], and [118]. Medical ontologies, including SNOMED-

CT, HPO [119], Open Biomedical Ontologies (OBO), 

Unified Medical Language System (UMLS), and MeSH, 

contribute significantly to structured medical terminologies, 

improving vector space representations and supporting 

relation extraction models [117]. Recent studies showcase 

the synergies between machine learning and ontological 

approaches, notably in solving abbreviation disambiguation 

problems. Combining machine learning with ontological 

approaches, as demonstrated in the Finley database [120] 

and CASI dataset, signifies a promising advancement, 

yielding a 3% improvement in results [117]. The integration 

of ontologies in medical terminologies and knowledge 

representation, exemplified by the GALEN project, 

contributes to structured archiving and consolidation of 

simulation databases [111]. 

Ontologies continue to find applications in various 

domains (Fig. 7), such as dependency extraction using 

active learning [121], building pedagogical models in 

intelligent tutoring systems [122], and discovering 

gene/protein synonyms for applications like Twitter analysis 

[39]. Semantically rich biomedical ontologies, like the 

Cardiovascular Disease Ontology (CVDO), enhance word 

embedding and enable the development of NER 

architectures in healthcare domains [39] and [49]. 

Additionally, utilizing ontologies, relying on UMLS, 

facilitates semantic annotation of biomedical documents 

[77] or for semantic relations as seen in the study [114], 

focusing on the treatment of breast cancer. However, 

ontologies, which provide structured frameworks for 

representing knowledge, play a crucial role in these 

advancements. By creating well-defined models of medical 

concepts and relationships, ontologies facilitate more 

accurate data interpretation and integration. The PSI 

framework’s [106] use of a medical knowledge graph and 

DiseaseNet’s integration of structured and unstructured data 

rely on ontological principles to represent and relate medical 

entities. Ontologies enable the development of more 

sophisticated models that can handle diverse data types and 

complex relationships, leading to improved diagnostic 

accuracy, better patient care, and more efficient healthcare 

documentation and analysis. Furthermore, in [123], the 

authors generated Word2Vec embedding using a publicly 

available de-identified Electronic Health Records dataset. 

Then this embedding was augmented using three different 

algorithms, each employing a unique approach to integrating 

ontology information. The performance of these enhanced 

vectors was evaluated based on their correlation with 

human-annotated lists using Spearman's correlation 

coefficient and their effectiveness in NER tasks. Both 

quantitative metrics and empirical evaluations were used to 

evaluate the strengths and weaknesses of each approach. 

Where Word2Vec vectors enhanced with UMLS ontology 

information demonstrated the highest correlation with 

human-annotated evaluation lists, achieving a Spearman's 

correlation of 0.733 with the mini-Mayo clinical annotation. 

On the other hand, Bio + Clinical BERT outperformed the 

Word2Vec vectors in the NER task, achieving an F1-score 

of 0.87 on the i2b2 2010 dataset and 0.811 on the i2b2 2012 

dataset, highlighting its superiority in this specific 

application. Clinically adapted Word2Vec vectors 

effectively capture lexical and clinical relationships such as 

synonymy, antonymy, and to a lesser extent hierarchical 

relationships like hyponymy and hypernymy. However, Bio 

+ Clinical BERT proves to be more effective in NER tasks 

and in handling out-of-vocabulary words, demonstrating its 

robustness in clinical NLP applications. In addition, 

UmlsBERT proposed by [124] is a contextual embedding 

model aimed at improving biomedical natural language 

processing by incorporating structured domain knowledge 

during pre-training. Unlike models such as BioBERT and 

Bio_ClinicalBERT which focus exclusively on domain-

specific corpora, UmlsBERT integrates expert knowledge 

from the UMLS. It achieves this by connecting words with 

the same underlying UMLS concept and utilizing UMLS 

semantic type information to create more meaningful input 

embedding. This methodology enables UmlsBERT to 

surpass existing models in tasks like NER and clinical 

natural language inference. Where, UmlsBERT achieved the 

highest F1-scores on the i2b2 2006, 2010, and 2012 tasks 

(93.6%, 88.6%, and 79.4%, respectively) and the best 

accuracy on the MedNLI task (83.0%). Although it did not 

surpass BERT on the i2b2 2014 task, this is likely due to 
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differences in how Protected Health Information (PHI) is 

masked in the training data, affecting sentence structure. 

Despite this, UmlsBERT still outperformed other 

biomedical BERT models on i2b2 2014, confirming the 

benefit of integrating domain-specific biomedical 

knowledge into contextual embedding. An ablation test 

further demonstrated that UmlsBERT's performance 

improved when semantic type embedding was included, 

reinforcing the positive impact of this embedding on the 

model's effectiveness across different datasets. As 

demonstrated in recent studies the integration of ontologies 

and semantic information into medical text processing is 

essential for improving the effectiveness of NLP models in 

the biomedical field. Ontologies, such as those provided by 

the UMLS, offer a structured framework that captures 

intricate relationships between medical concepts, including 

synonymy, antonymy, and hierarchical associations. By 

embedding this domain-specific knowledge into NLP 

models, these systems can better understand and process 

complex medical language, leading to more accurate and 

meaningful interpretations. Models that incorporate UMLS 

concepts and semantic type information are able to create 

richer and more contextually relevant word embedding, 

enhancing their ability to handle tasks like NER and clinical 

natural language inference. This approach highlights the 

critical role of structured domain knowledge in advancing 

the capabilities of clinical NLP applications. 

In conclusion, the integration of ontologies in healthcare 

and biomedical domains plays a pivotal role in addressing 

challenges related to data semantics, knowledge 

representation, and interoperability. These ontologies, 

coupled with machine learning approaches, contribute 

significantly to advancements in automated processing, 

decision support, and information extraction from clinical 

narratives. As demonstrated by the referenced studies, the 

synergy between machine learning and ontological 

methodologies continues to propel innovation in the digital 

health landscape. 

X. EVALUATION METHODS AND MODEL ESTIMATION 

In this section the most used evaluation methods and 

model estimation to evaluate models are presented, as 

shown in Fig. 8. In the resubstitution methodology, both the 

train and the test dataset are the same. This approach is 

infrequently employed in practical data mining applications 

in the real world.  Authors in [94] used the Holdout method, 

where they used half or two-thirds of the datasets for 

training the model and the remaining data for testing. The 

training and test sets are independent. It appears helpful to 

do a different partitioning and then repeat the process to 

improve model estimation with other randomly selected 

training and testing sets. Authors in [125] used the Leave-

one-out method, which consists of using (n-1) samples 

for training and testing the remaining sample and 

repeating n times with different training sets (n-1). The 

authors in [91], [94]–[97], [102], [111]–[115], [121], 

[122], and [125]–[130], employed the rotation method (n-

fold cross-validation), which represents an amalgamation 

of the holdout and leave-one-out methodologies. It partitions 

the dataset into P mutually exclusive subsets, which is 

widely regarded as the most prevalent approach in empirical 

applications. The Bootstrap method is defined by [4] as 

creating new samples from the initial dataset to generate 

several fake data. Empirical findings indicated that 

bootstrap estimations have the potential to surpass the 

performance of cross-validation estimations. This method 

is beneficial in cases of small datasets such as this study 

[51]. Evaluating the performance of the models, accuracy 

and recall measures used by the majority of authors as: 

[48], [51], [94], [121], [130], and [131]–[136].  

TP TN

TP TN FP FN
Accuracy




  
 (10) 

Formula (10) delineates the metric of accuracy, defined as 

the proportion of accurate forecasts. Where, TP=True 

Positive; FP=False Positive; TN=True Negative; 

FN=False Negative. 

TP
Precision

TP FP



 (11) 

TP
Recall

TP FN



 (12) 

1 2
Accuracy Recall

F score
Accuracy Recall


  


 (13) 

Equation (11) represents the positive prediction 

accuracy. Equation (12)  presents the proportion of 

instances that are accurately identified by the classifier. 

Furthermore, (13) articulates the weighted parameters of 

precision and recall. Supplementary evaluation metrics 

utilized by [94], including Mean Absolute Error (MAE) 

delineated in (14), Mean Squared Error (MSE) articulated in 

(15), and Root Mean Squared Error (RMSE) referenced in 

(16), are crucial for the evaluation of model performance. 

1

1
MAE 

n

i

i

e
n 

   (14) 

Where, ei = actual output- predicted value =  ˆ  i iy y  
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1
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n

i

i

e

n




 (16) 

The authors in this study [122] consider the Laplace 

Accuracy (17) metric as an important measure to evaluate 

the performance of algorithms for the exploration of 

predictive association rules. 

1
Laplace Accuracy     c

tot

m

m k





 (17) 

Knowing, k represent the number of classes, mtot is the 

total number of examples satisfying the body of the rule, 

where mc examples belong to the class c. Various metrics 

such as macro and micro-averaged F1-score and AUC are 

used by authors in [50]. The ROC curve plots the false 

positive rate as a function of the true positive rate. [49], 

[51], [135]–[137], and [138]–[140]. 
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In summary, these metrics collectively address various 

aspects of model effectiveness, from classification 

accuracy to error magnitude, offering a holistic 

evaluation model that ensures both predictive reliability 

and balanced performance across different dimensions of 

the task. 

XI. DISCUSSION AND ANALYSIS 

TABLE VI provides an overview of studies that have 

employed a variety of text representation methods and tools 

for medical text processing and classification tasks. 

Traditional methods like TF-IDF, n-grams, and Word2Vec 

are commonly used across many studies, demonstrating 

their foundational role in text analytics. More recent studies 

have used advanced techniques such as BERT, ELMo, and 

FastText, which provide a deeper contextual understanding 

of the text, especially in the domain of medical narratives. 

Several studies, such as those using Word2Vec (e.g., [36], 

[44], [50]), highlight the importance of vector-based models 

that capture semantic relationships between words. 

Techniques like CBOW and Skip-gram are specifically 

noted for their performance in medical tasks, including gene 

and protein synonym recognition. TF-IDF remains widely 

 
Fig. 7.  The main Medical Ontologies and Tools, which significantly improve the organization, accessibility, and analysis of medical information, and  

contributing to better patient care and more efficient healthcare delivery. 

 
Fig. 8.  The main Evaluation Methods and Model Estimation Techniques, for validating the effectiveness of machine learning models in medical 

narrative analysis, ensuring that they provide accurate, reliable, and clinically useful insights. 
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used in text classification tasks, as seen in studies like [45], 

[46], and [102], but these methods are increasingly being 

supplemented or replaced by deep learning models like 

BERT and BioBERT, which are capable of learning from 

complex linguistic patterns. Python emerges as the dominant 

programming language across studies, reflecting its 

versatility and the availability of libraries like scikit-learn, 

Gensim, and PyTorch. TensorFlow is also commonly used 

for deep learning tasks, and specific tools like MetaMap are 

employed for domain-specific tasks in the medical field, 

such as semantic and negation detection. FastText and 

GloVe are used in several studies for their efficiency in 

producing word embeddings, particularly when speed and 

scalability are crucial. As the field progresses, newer studies 

lean toward advanced contextualized embeddings like 

BERT and ELMo, which allow for a more nuanced 

understanding of the medical text. BERT models, including 

BioBERT and UmlsBERT, are particularly prominent in 

more recent research due to their effectiveness in capturing 

domain-specific terminology and complex relationships in 

clinical narratives. While the table demonstrates a diverse 

range of methodologies and tools used in medical text 

analysis, the evolution from traditional approaches (such as 

TF-IDF and n-grams) to deep learning-based models (such 

as BERT and ELMo) marks a significant shift in the field. 

However, there remains an opportunity to develop more 

unified frameworks that combine these traditional and 

modern approaches. For instance, hybrid models that 

integrate TF-IDF or n-grams with deep contextual 

embeddings like BERT could offer a balance between 

computational efficiency and nuanced text understanding.  

TABLE VII offers a comprehensive examination of 

various studies dedicated to medical text processing, 

detailing their objectives, methodologies, utilized 

ontologies, and designated models. This compilation spans 

multiple years, reflecting the continuous evolution of 

methodologies and technologies within the field. 

Noteworthy studies, such as those by [36] and [39], focus on 

NER extraction, employing sophisticated approaches like 

BiLSTM-CRF and LSTM-CRF, frequently in conjunction 

with the UMLS ontology. The pervasive use of deep 

learning architectures marks a transformative shift towards 

more intricate interpretations of medical narratives. 

For instance, research conducted by [37] illustrates the 

effectiveness of non-parametric Bayesian methods and 

HMM in NER, showcasing the methodological flexibility 

available for extracting critical medical information. In the 

classification domain, studies such as [44] and [76] utilize 

SVM alongside advanced deep learning architectures, 

including CNNs and BiLSTM-CRF. The integration of both 

hierarchical and flat SVM techniques in [44] highlights the 

essential requirement for precise coding in alignment with 

the ICD. The diversity of classifiers explored -ranging from 

RF to NB and DT in [80] illustrates the multifaceted 

strategies that researchers are deploying to address the 

complexities of classification tasks effectively. Feature 

extraction also emerges as a critical component, with studies 

like [97] leveraging neural network architectures to enhance 

classification performance. The adoption of GNN in [102] 

signifies a novel trajectory in modeling relationships among 

data points, facilitating deeper insights into medical texts. 

Furthermore, the rise of models that incorporate attention 

mechanisms, as evidenced in [104], indicates a growing 

trend towards employing advanced architectures to refine 

NER extraction processes. This aligns with the broader 

movement toward sophisticated models like BERT, as 

highlighted in studies such as [124], which excel in 

capturing the intricate semantic relationships inherent in 

clinical narratives. MetaMap integrates semantic and 

negation detection in clinical narrative text, the model 

proposed by [41] handles 17 categories of diseases. On the 

other hand, the approach suggested by [45] for clinical text 

classification aims to reduce the need for human-labeled 

training data and extensive feature engineering by 

leveraging weak supervision and deep representation. 

However, their model still required domain experts to 

formulate specific rules. The research additionally revealed 

that the nature of classification multi-class versus binary- 

has a significant impact on the efficacy of CNN models. For 

instance, precision results include 0.93 for Mayo Clinic 

Smoking Status classification, 0.97 for Proximal Femur 

(Hip) Fracture classification, and 0.76 for the i2b2 2006 

smoking status classification, indicating that dataset choice 

influences model precision. 

In the model proposed by [43], two approaches were 

combined: one using tv-embeddings, LSTM, and max 

pooling, and another using tv-embeddings, CNN, and max 

pooling. This hybrid model performed better than either the 

model (CNN or LSTM) alone.  In contrast, the study by [94] 

did not compare their model with others to validate its 

performance but focused on examining how the pruned 

number of DT impacted outcomes. In another study, [90] 

demonstrated that cancer stages could be effectively 

extracted from narrative text in most electronic health record 

samples, achieving high accuracy. Additionally, the research 

by [40] revealed that text vectorization using ELMo 

(Clinical) outperformed ELMo (General), Word2Vec, and 

GloVe, though it was limited to extracting medical tests, 

problems, and treatment concepts. The ensemble model 

exhibited values of F1-score, precision, and recall metrics of 

88.78, 89.11, and 88.46, respectively. In comparison to the 

previously established optimal solution, "ELMo (Clinical) 

and BiLSTM–CRF," as delineated by [141], the ensemble 

model demonstrated marginal enhancements in F1-score 

(+0.18%) and recall (+0.59%), although it experienced a 

slight decrement in precision (-0.23%). We emphasize that 

despite the accuracy parameter allowing the evaluation of 

any model, most authors use only a few vital parameters, 

such as model time learning and time prediction. We 

concluded that TextCNN outperforms SVM in all metrics 

(Precision, Recall, and F1-score), but the SVM-based 

method takes less than 1 hour, and the TextCNN process 

takes 11 hours for training. Both methods take less than 0.05 

seconds for prediction, which is the most important. They 

used 10-fold cross-validation procedures to evaluate the 

accuracy of both the SVM and CNN-based methods. 

This study concludes that the accuracy of the models 

depends on several parameters. The most crucial factor is 

the choice of a dataset in terms of content and size. A 

dataset directly affects the model’s accuracy, where models 

constructed (trained and tested) from a large corpus are 

better than models built from a small corpus. Thus, 
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researchers should combine several datasets. In addition, a 

training text indexing model, and using several methods 

allows better classification. For the Assignment of medical 

imaging procedure protocols, in this article [46] authors 

made a comparative study between the models by changing 

the classification methods without changing the text 

vectorization for a better and more accurate comparison. 

The best system proposed is SVM, where the results 

obtained using the Computed Tomography (CT) dataset got 

92% accuracy and 76% F1-score, for 87% accuracy and 

76% F1-score for the Magnetic Resonance Imaging (MRI) 

dataset. In the majority of studies, the incorporation of 

ontologies improved the results obtained by the models 

proposed. The methodological diversity presented in the 

table underscores the rapid advancements in medical text 

processing. While traditional techniques, such as rule-based 

systems and SVMs, continue to hold significance, there is a 

clear shift towards more advanced methodologies, including 

deep learning and attention-based models. This evolution 

reflects the increasing complexity of medical data and 

underscores the pressing need for more accurate, context-

aware processing methods. As the field of medical text 

analytics continues to evolve, several key propositions 

emerge that could significantly enhance research and 

application in this domain, the propositions are as follows:  

 There is a valuable opportunity to develop hybrid 

models that integrate traditional machine learning 

techniques, such as SVM, with modern deep learning 

architectures. As a result of this combination, 

classification and extraction tasks may perform better. 

 Future research should focus on creating standardized 

ontologies and frameworks for consistent application 

across studies. This approach would improve the 

comparability of results and encourage collaboration 

among researchers, advancing the field of medical text 

analytics. 

 Investigating transfer learning techniques, particularly 

with models like BERT, could open new avenues for 

improving NER tasks. Fine-tuning pre-trained models 

on specific medical datasets could enhance performance 

while minimizing the need for extensive training data. 

 Social Media and Public Health Data: Using social 

media platforms (e.g., Twitter, Google+) indicates an 

increasing interest in public health monitoring through 

user-generated content. These data sources provide 

insights into health trends, patient opinions, and 

behaviors in real-time, offering complementary 

information to traditional clinical datasets. 

  

TABLE VI 

TEXT VECTORIZATION: OVERVIEW OF THE PREDOMINANT TECHNIQUES EMPLOYED IN THE PROCESS OF TEXT DIGITIZATION 

Related 

Studies 
Text Vectorisation Methods Tools 

[36] FastText, Word2Vec, Skip-Gram Gensim Library, Python 

[37] Not used Python 2.7, Numpy, Scipy 

[39] Word2Vec, GloVe, pyysalo, Chiu, ChenPM, 

Aueb 

/ 

[40] ELMo Pytorch library, Python 3.7 

[41] GloVe 
 

Python(2.7),Tensor-Flow(1.9),scikit-learn library(0.19.2)   
https://github.com/rivas-lab/FasTag, MetaMap 

[44] Word2Vec (CBOW), BOW / 

[45] 

 

TF-IDF, Word2Vec, topic modeling [142] http://creativecommons.org/publicdomain/zero/1.0/  

[46] TF-IDF  / 

[50] CBOW, Word2Vec Python, PyTorch 

[64] Document Term Matrix scikit-learn 

[75] n-grams Weka toolkit 

[74] TF-IDF, Word2Vec Python, SVM Based Method TextCNN 

[80] FastText based on TF-IDF Python, Keras. 

[89] Word2Vec / 

[88] BioBERT / 

[90] n-grams R software, Microsoft Access 2013, RODBC [143] iGraph 

[97] Word2Vec github.com/RingBDStack/Time-evolving-Classification 

[102] TF-IDF https://github.com/usydnlp/InductTGCN 

[131] TF-IDF, unigrams, bigrams, trigrams NLTK library  

[144] TF-IDF / 

[145] skip-gram Python, Tensorflow 

[146] TF-IDF MetaMap, PSO 

[103] Word2Vec Jieba word segmentation 

[104] BERT Python 3.7, Pytorch 1.7.0 

[106] HKGE (Heterogeneous Knowledge Graph 
Embedding ) 

TensorFlow  

[107] BERT BART 

[124] UmlsBERT / 
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TABLE VII 

STUDIES DESCRIPTION, THIS TABLE PROVIDES A COMPREHENSIVE OVERVIEW OF VARIOUS STUDIES BY DETAILING KEY ASPECTS OF 

THEIR RESEARCH. IT INCLUDES THE YEAR OF PUBLICATION, THE PRIMARY OBJECTIVES EACH STUDY AIMED TO ACHIEVE, AND THE 

METHODOLOGIES UTILIZED TO ADDRESS THEIR RESEARCH QUESTIONS. THE TABLE ALSO HIGHLIGHTS THE ONTOLOGIES EMPLOYED 

FOR SEMANTIC ANALYSIS INDICATING HOW DOMAIN-SPECIFIC KNOWLEDGE WAS INTEGRATED INTO THE STUDIES. ADDITIONALLY, IT 

LISTS THE MODELS OR ALGORITHMS USED, RANGING FROM ADVANCED NEURAL NETWORK ARCHITECTURES LIKE LSTM, CNN, AND 

RNN TO TRADITIONAL APPROACHES SUCH AS NAÏVE BAYES, DECISION TREES, AND KNN. THIS TABLE ILLUSTRATES THE DIVERSE 

APPROACHES APPLIED IN THE ANALYSIS OF MEDICAL REPORTS, UNDERSCORING THE ONGOING RELEVANCE OF BOTH MODERN AND 

CLASSICAL TECHNIQUES IN HANDLING UNSTRUCTURED DATA 

Studies Year Objective Methods Ontology 
Model 

Designation 

[36] 2019 Classification BiLSTM-CRF, BiGRU-CRF, 
BiLSTM-S, BiGRU-S 

/ / 

[37] 2015 NER extraction Non-parametric Bayesian HMM and 

Dirichlet Process (DP),HMM-DP 
with CRF 

/ HMM-DP 

HMM-DP+ 
CRF 

[39] 2019 NER extraction LSTM–CRF, BiLSTM-CRF UMLS / 

[40] 2019 NER extraction BiLSTM–CRF UMLS / 

[41] 2020 NER extraction LSTM, RF, DT UMLS FastTag  

[44] 2017 Automatic coding, 
Classification 

Flat SVM, hierarchical SVM ICD9CM [147]  
ICD9 

 

[45] 2019 Classification Rules-based, SVM, RF, MLPNN 

and CNN 

/ / 

[46] 2021 Classification SVM, RF, CNN, 

BILSTM, BETO [148]. 

 

/ 

 

/ 

[50] 2018 Classification (multi-
label) 

Bidirectional LSTM / LAAT 
JointLAAT 

[64] 2018 Clusrting t-SNE, PCA /  

[75] 2015 Feature extraction  SVM SNOMED CT / 

Classification     

[76] 2022 Classification, SVM, CNN /  TextCNN 

 BiLSTM-CRF        

[80] 2020 Classification SVM, Decision Tree, / / 

   RF, Naive Bayes, and K-NN   

[89] 2020 NER extraction Rules-based, Pool-based   

   (Simulated Annealing)   

[88] 2022 Classification 

Feature selection 

Rules-based / / 

[90] 2016 Classification Rules-based / / 

[94] 2020 Regression RF and K-means / CLUB-DRF 

[97] 2018 Feature extraction 

Classification 

Neural networks 

(TextCNN, RCNN and HAN) 

/ / 

[102] 2022 Classification GNN / InducT-GCN 

[131] 2020 Classification RF, SVMlinear, SVMrbf / / 

[144] 2020 Classification  SVM, NB, RNN, and ANN / / 

[146] 2019 Feature Selection 
Classification 

KNN, DT, SVM, 
NB, LR 

UMLS / 

[103] 2023 NER extraction LSTM+CRF / / 

[104] 2024 NER extraction BiGRU+ Multi-Head Attention 

+CRF  

 BERT-BiGRU-Att-

CRF 

[106] 2021 Patient Similarity 

Identification 

Siamese CNN [149], with Spatial 

Pyramid Pooling 

ICD-9 PSI  

[107] 2022 Classification BiLSTM+CNN / DiseaseNet 

[124] 2021 Text vectorization BERT UMLS UmlsBERT 

[150] 2018 NER extraction, 
Classification 

CRF, BiLSTM+CRF, BiGRU, 
BiGRU+CRF 

/ / 

[151] 2019 NER extraction, 

Classification 

SVM,  Dimensionality Reduction, 

SVM+ SESARF 

UMLS SESARF 

[152] 2015 NER extraction, 

Classification 

SVM, MCS [153], SVM+MCS, 

(WUP  [154])  

 / 
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TABLE VIII 

MAIN DATASETS USED, THIS TABLE SERVES AS A COMPREHENSIVE RESOURCE TO UNDERSTAND THE INTERCONNECTION BETWEEN 

DATASETS, STUDIES, AND THE TEXTUAL OR DATA COMPONENTS CRUCIAL TO THE RESEARCH PROCESS  

Studies Corpus Designation 

[36] BioScop Consists of 3 textual sources different: reports of radiological abstracts and 
Bioinformatics articles 

[36] ESSAI French biomedical texts of clinical trial protocols 

[36] SemClinBr Consisting of clinical texts that have been provided by three Brazilian hospitals linked 

to several specialties 
[36] CAS French biomedical texts, 200 clinical cases.(2018) 

[37],[124],[150] i2b2/2014 UTHealth de-identification challenge 

[39] Twitter This data was collected by Twitter between 12 July 2018 and 12 July 2019 using the 
search terms "healthcare" 

[40], [146], [124] i2b2/VA 2010 Datasets utilized to extract medical concepts 

[39] CSU Veterinary medical hospital at Colorado State University 

[39] MIMIC-III + CSU  

[44],[50],[106] 

[41],[107] 

MIMIC-III Medical Information Mart for Intensive Care III 

[45], [124] i2b2 2006  Fracture classification in the Mayo Clinic: Proximal Femur (Hip) 

[46] MRI Magnetic Resonance Imaging 

[46] CT Computed Tomography 

[50] MIMIC-III-50 
MIMIC-II-full 

MIMIC-III Medical Information Mart for Intensive Care II subset of the 50 most 
frequent codes 

[64] Russian EHR EHR of cardiovascular patients at the Alamazov Center 

[69] Discharge summaries Columbia University Medical Center (CUMC) 

[75] Death certificate Data from Cancer Institute New South Wales 

[76] Google+,Flickr Tumblr Dataset collected from Google+, Flickr and Tumblr 

[89] China’s dataset Online 

medical 

Consultation platform 

[88] CRIS Clinical Record Interactive Search mental HR 

[90] VCR (Vanderbilt Cancer Registry) Vanderbilt University 

[97] NYTimes Articles published in the New York Times Manualy labelled newswire collection of 
Reuters 

[97] RCV1 Produced from RCV1, with 12 subtrees, for each 

[97] RCV1-org category contain half of the concepts 

[97] RCV1-noise Present RCV1-org by adding pseudo-random noise 

[97] RCV1-drift From RCV1-org with half of concepts as new concepts 

[102] Ohsumed Produced by the MEDLINE database,23 diseases abstracts 

[80], [144] Drugs.com https://archive.ics.uci.edu/datasets 

[131] SU-ADE Swedish Health Data Research Bank (Stockholm University) 

[145] NMLEC Medical Licensing Examination in China 

[103] Chinese EMRs Entity recognition task 

[104] CCKS2019  Chinese Electronic Medical Records  

[106] DrugBank https://go.drugbank.com/ 

[124] MedNLi Medical history dataset annotated by doctors performing a natural language inference 

task 
[150] CRTT-MED  French  medical corpus, https://quaerofrenchmed.limsi.fr/ 

[150] QUAERO http://perso.univ-lyon2.fr/~maniezf/Corpus/Corpus_medical_FR_CRTT.htm 

[151] TREC CDS Text Retrieval Conference Clinical Decision Support 

[152] SemEval-2014 task 7 http://alt.qcri.org/semeval2014/task7/ 
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 Global Representation: Datasets from non-English-

speaking countries, such as SemClinBr (Brazil) [36], 

Chinese EMRs in [103], the Swedish Health Data 

Research Bank in [131], the French corpora CRTT-

MED and QUAERO [149], highlight the global efforts 

in medical NLP. They underscore the need for 

multilingual and culturally diverse data, which are 

crucial for creating models applicable in international 

healthcare contexts.  

In order to improve the performance of the models, we 

suggest the following strategies: 

 Integration of Diverse Datasets: Using datasets from 

varied sources (e.g., clinical records, medical 

publications, and social media) the models to generalize 

across contexts. For example, hybrid models that 

incorporate the structured nature of clinical texts with 

the flexibility of social media data could improve 

performance in both medical concept extraction and 

public health surveillance. 

 Standardization across Corpora: There is a need for 

standardized frameworks to make comparisons between 

studies more consistent. Creating benchmark datasets 

that span multiple languages and medical systems 

would enhance the reproducibility of research and 

facilitate collaboration. By aligning datasets from 

different sources under a unified ontology, such as 

UMLS, researchers could streamline the integration of 

knowledge and improve model interpretability. 

 Leveraging Transfer Learning for Niche Domains: 

Transfer learning techniques could be further explored 

to apply models trained on large datasets (e.g., MIMIC-

III or i2b2) to niche domains like veterinary medicine 

(e.g., CSU in [41]) or mental health records (e.g., CRIS 

in [88]). Fine-tuning pre-trained models on these 

specialized datasets can improve performance while 

reducing the need for extensive, domain-specific 

training data. 

 Enhancing Multilingual Capabilities: Given the 

increasing use of datasets in languages other than 

English (e.g., SemClinBr, Chinese EMRs), there is an 

opportunity to develop more multilingual NLP models. 

These models should not only translate medical 

concepts accurately but also capture the cultural 

nuances and medical terminologies unique to each 

language. 

Finally, the range of corpora highlighted in this study 

offers underscores the importance of dataset diversity in 

advancing medical NLP. By integrating diverse data 

sources, standardizing frameworks, and leveraging transfer 

learning, the field can continue to evolve and address 

complex healthcare challenges more effectively. 

In conclusion of this section, in the field of biomedical 

natural language processing, the performance of predictive 

models is heavily influenced by the intricate interplay 

between vectorization methods, machine learning models, 

datasets, and the tools employed particularly ontologies. 

Vectorization methods, such as word embeddings, serve as 

the foundational layer by transforming textual data into 

numerical representations that models can process. The 

choice of vectorization method can significantly impact the 

model’s ability to capture semantic nuances, especially in 

complex and specialized domains like healthcare. Machine 

learning models, whether they are traditional algorithms like 

NB and DT or advanced neural networks like CNNs and 

LSTMs, rely on these vectors to learn patterns and make 

predictions. The effectiveness of these models is further 

augmented by the quality and diversity of datasets used for 

training and evaluation. Datasets that are representative of 

the domain and cover a wide range of scenarios ensure that 

the models generalize well to real-world applications. Model 

semantics are enhanced by ontologies, in fact those offered 

by the UMLS. Integrating structured domain knowledge 

(ontologies) helps refine vectorization processes, ensuring 

that the generated embeddings are not only syntactically, but 

also semantically meaningful. 

XII. CONCLUSION AND FUTURE WORKS 

This survey provides an in-depth review of studies on text 

mining techniques applied to healthcare, focusing on the 

extraction of knowledge from unstructured data in medical 

reports. We explore foundational concepts and key 

techniques, including various NER methods, widely-used 

classification algorithms, diverse preprocessing processes, 

and the role of ontologies in enhancing medical text 

analysis. We emphasize that text mining can significantly 

streamline patient diagnosis and treatment 

recommendations, potentially leading to more efficient 

healthcare delivery. 

While evaluating and comparing machine learning 

models typically involves using a single dataset, our survey 

advocates for the use of multiple datasets to better validate 

and confirm model performance. We highlight the need for 

standardized evaluation criteria in text mining to ensure 

consistent and reliable results. The challenges of varying 

medical vocabulary comprising complex terms, 

abbreviations, acronyms, and errors present significant 

difficulties for clinical text classification. 

Medical texts can be more efficiently analyzed with 

ontologies and machine learning. Additionally, we address 

the importance of preprocessing in optimizing model 

performance. Our study includes various applications of text 

mining in medical documents, such as drug classification, 

disease-based patient categorization, and document 

classification according to different medical conditions. 

In future works, we propose: 

1) Enhanced Ontology Integration: Future research should 

aim to further integrate ontologies with advanced 

machine learning models. This involves creating more 

detailed and domain-specific ontologies that capture the 

subtleties of medical language more effectively, thereby 

enhancing the accuracy of entity recognition and 

relationship extraction. 

2) Multi-Dataset Validation: To verify the effectiveness of 

text mining techniques, future studies ought to employ 

multiple datasets for validation. This approach will 

ensure that the models are robust and generalizable 

across various medical contexts and data sources. 

3) Addressing Vocabulary Challenges: Future work had 

better focus on innovative strategies to overcome 

challenges related to medical vocabulary. This includes 

developing techniques to manage domain-specific 

terminology, abbreviations, acronyms, and errors in 
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medical texts, which will improve the performance of 

text-mining models. 

4) Advanced Preprocessing Techniques: Further research is 

needed into advanced preprocessing methods to better 

handle and normalize medical text data. This should 

include refining techniques for error correction, 

addressing dialectal variations, and standardizing 

medical terminology. 

5) Application of Multimodal Data: Integrating text mining 

with multimodal data sources, such as imaging and 

genetic information, could offer a more holistic 

understanding of patient conditions and enhance 

diagnostic accuracy. 

6) Real-World Implementation: Upcoming research should 

focus on implementing text mining techniques in 

practical healthcare settings. This includes developing 

tools and systems that leverage advanced text mining and 

ontology-based methods to support clinical decision-

making and improve patient care. 

By addressing these future directions, researchers can 

further enhance the capabilities of text-mining techniques 

and ontologies in healthcare, leading to more effective 

knowledge extraction and ultimately better healthcare 

outcomes. 
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