
 

  

Abstract—This paper proposes a method for optimizing the 

Urban Rail Transit train timetable, that minimizes the total 

passenger waiting time and the total train operation cost by 

scheduling two types of trains with different capacities after 

considering the uncertain passenger demand in both directions 

of the Urban Rail Transit line. Combining the constraints of 

various types of train operation safety and passenger carrying 

tasks, we establish a mixed integer nonlinear programming 

model and improve the multi-objective heuristic algorithm to 

obtain the corresponding solutions. Finally, numerical example 

is constructed based on the Xi'an Metro Line 2 data to verify the 

effectiveness of proposed method. 

 
Index Terms—Train Timetable, Uncertain Passenger 

Demand, Multi-objective, Heuristic Algorithm 

 

I. INTRODUCTION 

o further improve the public's travel efficiency, many 

cities have solved the problem of urban traffic 

congestion by constructing Urban Rail Transit (URT) lines 

[1]. URT has played an essential role in the public 

transportation system of many large cities. However, due to 

various URT operators' different management and operation 

levels, the scientific nature of the train timetable developed 

by some URT lines is complex to guarantee. The 

phenomenon of insufficient or redundant capacity often 

occurs in its operational organization [1], which reduces the 

passengers' travel experience or the operating company's 

waste of investment. 

Therefore, we will discuss this problem in this study, that 
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is, under the premise of ensuring the operational safety of 

URT system, from the perspective of passengers and 

companies, comprehensively consider and then create a 

model and design an algorithm to solve it. Ultimately, we will 

get a highly efficient and scientific train timetable.  

The train schedule can visually reflect the train's operation 

information in the time and space dimensions, which contains 

several aspects [2], such as the train's stopping time, arrival 

time, and departure time at each station. After B. Szpigel et al. 

[3] studied the optimization of train schedules of a single-line 

railroad to minimize the total travel time, many scholars and 

engineers conducted in-depth studies on optimizing train 

departure timetables under the rail transit system. C. 

Liebchen [4]portrayed the train schedules of the Berlin 

subway using a periodic event scheduling model and solved 

the problem to obtain the results of the reduction of passenger 

travel time and saving the number of trains; L. Kroon L et al. 

[5] used a stochastic optimization model to improve the 

robustness of train timetables, and then used the cost of 

rolling stock usage and staffing costs as resource constraints 

to design a more profitable train schedule for the Dutch 

Railways [6]. B. R. Ke et al. [7] used a two-phase algorithm 

to solve inter- and intra-station conflicts for a single-line 

freight train schedule optimization; E. Barrena et al. [8] used 

a branch-and-bound algorithm to compute train timetables 

for multiple problem scenarios and achieved better results 

than conventional timetables. 

Combined with the passenger flow demand law to draw 

the train schedule, it can improve the coupling of trains and 

passenger flow demand. In the daily operating hours of URT 

lines, the number of passengers arriving at each station in 

different periods has a significant difference [9], which forms 

the phenomenon of the imbalance of URT passenger flow 

demand in time and space. The description of passenger 

demand in rail transit system is divided into two types: the 

first type is the use of mathematical theories and methods to 

study the distribution characteristics of rail transit passenger 

demand, L. X. Yang et al. [10] used triangular fuzzy vectors 

to portray the number of people boarding and alighting at 

each station along the train line; B. Serkan et al. [11] ,J. Liu et 

al. [12] used the dynamic passenger demand as a condition to 

optimize the train timetable; L. Meng et al. [13] developed a 

mixed-integer linear model to solve the train schedule and 

resource allocation plan by considering the dynamic choice 

behavior of passengers and their response to the train 

departure intervals; C. Gong et al. [14] found that the 

deterministic passenger flow is prone to the disadvantage of 

falling into a local optimal solution when solving the train 

schedule and speed profiles, and proved that a robust 
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optimization method with a stochastic dynamic demand can 

avoid this disadvantage through a solver example. Powerful 

optimization methods can effectively prevent this problem. 

The second type of representation of passenger demand in 

rail transit systems is time-varying demand, i.e., it is 

described using passenger trip origins and destinations (i.e., 

OD pairs). H. Niu et al. [15] developed a nonlinear 

optimization model by combining the passenger boarding 

and departure events for a detailed description of 

oversaturated passenger flow during peak hours. Then, they 

designed a generalized quadratic programming integer model 

for a given train hopping pattern [16]. Similarly, many 

researchers and technicians have directly used passenger OD 

to represent passenger demand ([17]-[20]). 

Although the primary task of URT systems is to serve 

passengers, it is also imperative for the operating companies 

to utilize their resources rationally to reduce the 

corresponding cost investment [21]. Therefore, it is 

worthwhile to consider the development of train timetables 

from the perspectives of passengers and operators ([22]-[24]), 

which has been proved by D. Canca et al. [25], in the 

time-varying characteristics of the passenger demand, the 

URT operators use a fixed departure interval mode of 

transportation organization, which will make part of the 

passengers on the URT line waiting time at the station is too 

long. is too long. 

With time, the related research based on this point of view 

has been deepened and expanded. J. E Cury et al. [26] 

improved the train schedule by analyzing the passenger flow 

demand of the north and south lines of the Sao Paulo metro 

company in Brazil and combining the existing resource 

allocation of the metro company. Based on bi-level 

programming, T. Albrecht [27] designed the optimal train 

timetable for a suburban railway after calculating the 

passenger demand and train capacity. H. J. Sun et al. [28] 

proposed a bi-objective optimization model to optimize the 

total waiting time of passengers and the energy consumption 

of train operations. The train timetable optimization model 

established by X. Yang et al. [29] considers improving the 

utilization of renewable energy while shortening the waiting 

time of passengers. P. Mo et al. [30] felt the imbalance of 

passenger flow demand. They optimized the train operation 

plan with the intention of minimizing the energy cost of train 

operation and passenger waiting time. In addition, due to the 

similarity of operation mode between URT and high-speed 

railway [31], many optimization theories and methods for 

high-speed railway train operation plans can provide a 

reference for our research. 

After we summarize the research content of the related 

literature, we can intuitively find that the established rail 

transit system train timetables have the following 

characteristics: (1) the existing literature mostly considers 

trains of a single formation type, and there is little literature 

that considers scheduling multiple formation types of trains 

when compiling the URT train timetables; (2) the existing 

literature mostly expresses the passenger demand as the total 

station-to-station and time-varying demand, and there are 

fewer related researches that portray the passenger flow 

demand as an uncertain variable. 

Compared with the established literature, our study 

provides the following innovations to the increasingly mature 

research work on URT train timetables: 

(1) In this paper, the formation type of operating trains is 

used as a decision variable, and two types of trains with 

different capacities are dispatched in the preparation of train 

timetables. 

(2) To reflect the stochastic nature of passenger demand, 

the number of people boarding and alighting from each train 

is portrayed using chance programming method. 

(3) A two-objective optimization model is established, and 

the variational operation of the NSGA-II algorithm is 

improved using an adaptive large-scale neighborhood search 

strategy for the solution. 

The content of this study is set up in the following order. 

Section 2 presents a detailed description of the considered 

problem, passenger flow demand, and multiple-unit train 

operation mode. In Section 3, we establish a bi-objective 

optimization model for train timetables to ensure the safety of 

train operation and accomplish the passenger flow demand. 

Section 4 describes an improved algorithm based on 

NSGA-II with a variational strategy designed to improve the 

quality and speed of the solution. The results of numerical 

experiments are compared and analyzed in Section 5 to 

demonstrate the performance of the proposed method. 

Finally, this study concludes and discusses future research 

directions. 

II. PROBLEM STATEMENT AND THEORETICAL BASIS 

A. Problem statement 

This article aims to design train timetables on a 

bi-directional URT line. To facilitate the portrayal of 

passengers' travel directions and improve the convenience of 

calculation, we divide a station into two stations in both 

operation directions as shown in Fig. 1. In detail, Station 1 to 

Station |N| is the upstream direction and Station |N|+1 to 

Station 2|N| is the downstream direction. When there is no 

situation affecting the train operation, the stopping time of 

the train at each station is fixed. 

In this paper, our study focuses on the service area, in other 

words, we do not consider the articulation sequence of trains 

in the circulation area, and only improve its match with 

passenger demand by optimizing the sequence of trains in the 

service area. 

B. Passenger demand analysis 

Taking the departure passenger demand of the station u on 

the URT line as an example, when the station 

 , 1, 2, ,u v N  and the number u<v define the passenger 

demand density is ( ),u v t  from station u to station v on the 

timestamp t. 

Stipulate ( ), 0u v t = when  1,2, ,u N and

 1, 2, 2v N N N + + . In Fig. 2(a), the blue solid line 

represents ( ),u v t , and the red dashed line represents ( ),u v t . 

( ),u v t is passenger demand from station u to station v in the 

range of timestamp 0 to timestamp t, and its calculation 

method is shown in Equation (1):  

  , ,
0

( ) ( ) d ,  , 1,2, ,
t

u v u vt t t u v N =   (1) 
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Fig. 1 Schematic diagram of train operation process 

 

During the operating hours T of an URT line, there are one 

or more peaks and valleys in the passenger demand density 

curve at each station due to the differences in geographic 

locations and passenger carrying capacities [32]. As shown in 

Fig. 2(b), the whole day's operating hours T are divided into 

m peak hours, the time stamp of period Tm is in the range of 

[ , ]s e

m mt t , and the passenger demand of station u during Tm is 

expressed as 
,

,

s e
m mt t

u v
 
  . 

According to the distribution characteristics of passenger 

demand density in each period Tm, based on the AFC data 

provided by the URT operator, using the uncertain lognormal 

distribution function to fit with the actual passenger flow 

distribution curve, the location scalar and scale scalar of the 

passenger flow demand at the station u in the mth period are 

set to be 
,u m  and 

,u m  respectively, and the density of 

passenger demand ( ),u v t  at station u in the period Tm is: 

( )
( )

2

,

2

,

,

,

ln1
  exp [ , ]

2 2
u m

u m s e

u v m m

u m

t
t t t t

t




  

 −
 = − 
 
 

，  (2) 

According to Equation (2), the passenger demand 

,

,

s e
m mt t

u v
 
  of station u during Tm is calculated as follow: 

 
,

, , , ,
0 0

( ) d ( ) d ( ) d
e s es e
m m mm m

s
m

t t tt t

u v u v u v u v
t

t t t t t t   
 
  = − =    (3) 

To calculate the passenger demand during any period, it is 

defined 
 1 2,

,

t t

u v  to denote the passenger demand from station u 

to station v during [t1,t2] where 1 2,t t T  and t1<t2. In the 

calculation of 
 1 2,

,

t t

u v , the distribution of t1 and t2 needs to be 

considered. As shown in Fig. 2(c), the calculation method of 
 1 2,

,

t t

u v  is shown in Equation (4) when 1 2, mt t T : 

 

 

( )

2 1 2
1 2

1

2

2

1

,

,

, , , ,
0 0

2

,

,

( ) d ( ) d ( ) d

ln1
           exp  d

2 2
u m

t t tt t

u v u v u v u v
t

t u m

t
u m

t t t t t t

t
t

t

   



  

= − =

 −
 = −
 
 

  


 (4) 
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Fig. 2. Passenger demand in station u 
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Take 1 1 2,m mt T t T−   in Fig. 2(d) as an example when t1 

and t2 belonging to different peak periods. The calculation 

method of 
 1 2,

,

t t

u v  is shown in Equation (5): 

 

 

( )

( )

1 2
1 2

1

1

2

1

, 1

2

2

,

,

, , ,

2

, 1

, 1

2

,

,

( ) d ( ) d

ln1
  exp   d

2 2

ln1
  exp  d

2 2

e
m

b
m

e
m

u m

b
m

u m

t tt t

u v u v u v
t t

t u m

t
u m

t u m

t
u m

t t t t

t
t

t

t
t

t

  



  



  

−

−

−

−

−

= +

 −
 = −
 
 

 −
 + −
 
 

 





 (5) 

It should be noted that 
1

e

mt −
and b

mt are numerically equal 

due to the continuity between the period Tm-1 and Tm. Based 

on Equations (4) and (5), the cumulative passenger demand 
 1 2,t t

uQ  from station u during [t1,t2] is given by: 

 
     1 2 1 2, ,

,

1

,  , 1,2, ,

N
t t t t

u u v

v u

Q u v N
= +

=   (6) 

Similarly, the cumulative demand of passengers arriving at 

station v during [t1,t2] can be defined as 1 2[ , ]t t

vP and calculated 

as follow: 

    1 21 2

1
,[ , ]

,

1

,  , 1,2, ,
v

t tt t

v u v

u

P u v N
−

=

=   (7) 

C. Train operation strategy 

In the established research literature on train operation 

scheme, most only consider scheduling trains of a single 

capacity type. In our study, we consider operating two 

different capacity trains on an URT corridor. 

We first plot a single direction with four stations on an 

URT corridor and then design different train operation 

strategies to compare and analyze the total train operating 

costs of the strategies. In Fig. 3, we plot stations 1, 2, 3, and 4 

in the same direction, determine the timestamp range [0,10], 

and set the physical distance between each neighboring 

station to equal 10. The red line represents the spatial and 

temporal trajectory of A-type train, which has a capacity of 

100 and per unit length operation cost of 100. The green line 

represents the spatial and temporal trajectory of B-type train, 

a capacity of 150, per unit length operation cost of 200. The 

numbers in the white rectangles indicate the number of 

passengers on each train, and the numbers in the orange 

rectangles indicate the number of passengers who failed to 

board the train at each station. 

The passenger demand is denoted by OD pairs, 

specifically 100 passengers from station 1 to station 4, 50 

from station 2 to station 3, 100 from station 2 to station 4, and 

50 from station 3 to station 4. Taking Fig. 3(a) as an example, 

all departing trains are A-type trains, and the timestamps of 

each train leaving station 1 are [1,3,5] and arriving at station 

4 are [6,8,10], which means that the dwell time of each train 

is the same between adjacent stations and at each station, this 

means that each train has the same running time between 

neighboring stations and the same dwell time at each station, 

which is in line with the actual situation of the URT operation 

site. To fulfill the total passenger demand, it is necessary to 

organize the operation of three A-type trains, and the total 

operation cost F1 is as follow: 

 1 100 (10 10 10) 3 9000F =  + +  =  (8) 

In Fig. 3(a) after train 2 leaves station 2, the number of 

passengers in the cars reaches total capacity, but the number 

of unboarded passengers at station 2 is 50; similarly, when 

train 2 leaves station 3, also because the train is in total 

capacity resulting in the presence of unboarded passengers at 

station 3, to solve the phenomenon of stranding of passengers 

at stations 2 and 3, train 3 is operated to carry the unboarded 

passengers at stations 2 and 3.In Fig. 3(b), all B-type trains 

are dispatched to fulfill the pre-determined passenger travel 

demand, and the total operation cost 2F  is calculated as 

follows: 

 2 200 (10 10 10) 2 12000F =  + +  =  (9) 

Although the number of trains operate is reduced, the 

operation cost of the B-train car is higher than that of the 

A-type train, resulting in F2 is higher than F1. We want to 

reduce the total operation cost while reducing the number of 

trains under the premise of fulfilling the passenger demand, 

so in Fig. 3(c), we organize the operation of A-type train as 

train 1 and B-type train as train 2. This operation strategy can 

also fulfill the task of carrying passengers, and the total 

operation cost F3 is calculated as follow: 

 3 100 (10 10 10) 200 (10 10 10) 9000F =  + + +  + + = (10) 

Compared to the operation strategy in Fig. 3(a), Fig. 3(c) 

does not increase the total operation cost but reduces the 

number of trains used and compared to Fig. 3(b), Fig. 3(c) 

reduces the total operation cost. Therefore, it is reasonable to 

use different types of trains to accomplish the task of carrying 

passengers, and next we will discover a mathematical model 

to optimize the train timetable, which in turn reduces the 

waiting time of passengers and total operation cost.  

III. MATHEMATICAL DEVELOPMENT 

In this section, we use a modeling approach to specify the 

target problem into a mathematical model and optimize it. 

Due to the large number of factors affecting the optimization 

problem in the URT system, the following assumptions are 

made to highlight the focus of the problem considered in this 

paper: 

Assumption 1: The operation time before the departure of 

the train at the originating station is not considered, the 

departure moment of the train at the originating station is 

regarded as the beginning of the train operation time. 

Assumption 2: The interval distance between each station 

of the URT line is short, and the train running speed is lower, 

but the train start acceleration process is fast. We do not 

consider the additional time of the train starting and stopping 

at the station. 

Assumption 3: On the URT line, the platforms of each 

station can meet the stopping conditions of different types of 

trains, and the different lengths of trains do not affect the 

process of boarding and alighting passengers. 

Assumption 4: The stopping plan of the train is set as 

station stop mode, and the running time between each station 

and the dwell time at the station of each train are given in 

advance. 
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Fig. 3 Train operation modes with different capacities 

 

A. Sets, Indexes and Parameters 

To be able to visualize the mathematical model, Table. 1 

lists the set, index and parameters used in Equations. 

B. Variables 

The objective of this study is to obtain a train timetable that 

minimizes total waiting time of passengers and total 

operating cost of the trains, but the fact that different trains 

have the same operation time tn-1,n between the same stations 

and the same dwell time at the same station makes the 

problem essentially transformed into determining the 

timestamp of departure of different types of trains at the 

originating station. Therefore, we design the decision 

variables xi,k and yi,k to denote the types of trains departing 

from the originating station in the upstream and downstream 

directions, respectively. For visualization, the variables in the 

model are listed and annotated in Table. 2. 

 
Table. 1 Notations and definitions in the model 

Notations Definitions 

Set  

T Operation timestamp set of URT line 

N Stations set of URT line 

N  Set of upstream stations of URT line 

N  Set of downstream stations of URT line 

K  Set of train types 

I  Set of upstream trains in T 

J  Set of downstream trains in T 

Index  

t,t1,t2 Index of timestamp,  1 2, , 0,t t t T  

k Index of train type, k K  

u,v,n Index of station, , ,u v n N  

i,j Index of train, ,  i I j J   

Parameters  

Ak Capacity of k-type train 

ck unit operation cost of k-type train 

, ,,d d

i n j nt t  dwell time at station n of upstream train i and downstream 

train j 

tn-1,n operation time of trains between station n-1 and station n 

te,tl timestamps for the start and end of T, ,e lt t T  

hmax,hmin 
maximum and minimum departure time between adjacent 

trains 

 
Table. 2 Variables in the model 

Auxiliary variables 

( ),u v t  passenger demand density from station u to station v at t 

, ( )u v t  passenger demand from station u to station v at t 

 1 2,

,

t t

u v  
passenger demand from station u to station v in time range 

[t1,t2] 

 1 2,t t

nQ  
passenger demand departing from station n in time range 

[t1,t2] 
 1 2,t t

vP  passenger demand arriving at station v in time range [t1,t2] 

, ,,i n j n   confidence level of the number of passengers boarding 

train i and train j 

, ,,i n j n   confidence level of the number of passengers leaving 

train i and train j 

, ,,i n j nW W  number of passengers waiting train i and train j at station 

n 

, ,,i n j nB B  number of passengers boarding train i and train j at station 
n 

, ,,i n j nG G  number of passengers leaving train i and train j at station 
n 

, ,,i n j nD D  number of stranded passengers of train i and train j 

leaving station n 

, ,,i n j nC C  number of passengers in the trains after train i and train j 

leave station n 

, ,,i n j nTW TW  total waiting time of passengers at station n waiting for 

train i and train j 

,T T

i jL L  total operation distance of train i and train j in T 

Decision variables 

xi,k 

0-1 binary variable; if train i chooses to use k -type train 

then xi,k=1; otherwise xi,k=0 

yi,k 
0-1 binary variable; if train j chooses to use k -type train 

then yi,k=1; otherwise yi,k=0 

, ,,i n j nTA TA  timestamp when train i and train j arrive at station n 

, ,,i n j nTD TD  timestamp when train i and train j depart station n 

 

C. Systemic constraints 

In this section, we describe the constraints related to the 

safe realization of passenger operations of trains in URT 
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system, mainly from the aspects of safe train operation and 

passenger carrying capacity. 

C. 1. Departure timestamp constraints: 

,1iTD and
, 1j N

TD
+

at which trains in different operation 

directions leave the originating station should be within the 

time range of the service provided by the URT line. 

,1iTD and
, 1j N

TD
+

should be taken to satisfy Equations (11) 

and (12): 

 
,1 ,  e i lt TD t i I    (11) 

 
, 1

,  e lj N
t TD t j J

+
    (12) 

Typically, te and tl of URT line are announced to 

passengers. The constraints in Equations (11) and (12) ensure 

that passengers arrive at the URT line in T then receive train 

service to fulfill their travel demand. 

C. 2. Operation time constraints: 

The above constraints only state the departure timestamp 

that need to be observed by trains leave the originating station 

and do not express the arrival and departure timestamp of 

trains at stations other than the originating station in detail. 

Combined with the premise of assumption 2, which disregard 

the additional time of train starting and stopping, Equations 

(13) and (14) are given to represent the arrival and departure 

timestamp of a train at each station, taking an upstream train 

as an example: 

 , 1 , , 1, ,  1  i u i u u uTA TD t i I u N+ += +     (13) 

 , 1 , 1 , 1 ,  ,  1   d

i u i u i uTD TA t i I u N+ + += +     (14) 

From Equation (13), it can be seen that the departure 

timestamp of train i from station u is added to the operation 

time tu,u+1, and the result is when train i arrives at station u+1. 

Equation (14) describes the departure timestamp of train i 

from station u+1 with dwelling , 1

d

i ut +  after arriving there. 

Similarly, Equations (15) and (16) express the operation 

constraints of the downstream trains: 

 , 1 , , 1,  ,  1 2j u j u u uTA TD t j J N u N+ += +  +    (15) 

 , 1 , 1 , 1,  ,  1 2d

j u j u j uTD TA t j J N u N+ + += +  +    (16) 

C. 3. Departure interval constraints: 

Since the dwell time of different trains at the same station 

and the operation time between stations are specified in 

advance, the most direct way to adjust train operation is to 

change the departure timestamp of trains from the originating 

station. Regardless of the upstream or downstream direction, 

adjacent trains in the same direction need to meet specific 

time intervals when leaving the originating station. The 

constraints on the departure time of adjacent trains from the 

originating station are as follows: 

 min 1,1 ,1 max ,  i ih TD TD h i I+ −    (17) 

 min max1, 1 , 1
,  

j N j N
h TD TD h j J

+ + +
 −    (18) 

The operating company adjusts the departure intervals 

according to the passenger flow in different periods[13], but 

the departure intervals are within the specified values. 

Equations (17) and (18) based on hmax and hmin ensure that a 

safe operation distance is left between trains departing from 

the originating station. 

C. 4. Train type constraints: 

 
, 1,  i k

k K

x i I


=   (19) 

 
, 1,  j k

k K

y j J


=   (20) 

As shown in Equations (19) and (20), only one type of 

train could be used by train i or train j to provide service to 

passengers. 

C. 5. Train capacity constraints: 

URT operators stipulate that the number of passengers in 

the train when the train leaves stations does not exceed its 

authorized capacity, Equations (21) and (22) should be 

satisfied: 

 , , ,  ,  i u k i k

k K

C A x i I u N


     (21) 

 
, , ,  ,  j u k j k

k K

C A x j J u N


     (22) 

Ci,u and Cj,u are calculated according to the type of 

departing station u, divided into the originating station and 

the station other than the originating station. For example, in 

the upstream direction, the time interval [TDi-1,u,TDi,u] 

between the departure of train i-1 and train i from station 1 is 

shown as the area shaded in green in Fig. 4. Passengers 

arriving at station 1 within the time interval [TDi-1,u,TDi,u] can 

successfully board the train i. Without stranded passengers 

are at station1 after train i leaves, as shown in Fig. 4. 

Therefore, the number of passengers in the train after the 

train leaves the originating station is the number of 

passengers waiting at the station before the train arrives at the 

originating station, as shown in Equations (23) and (24): 

 
, , , , 1i u i uC W i I u=  =  (23) 

 , , ,  ,  1j u j uC W j J u N=  = +  (24) 

 

S
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T
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TDi-1,n TDi,n

track of train i-1
track of train i
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S
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TDi,nTDi-1,n

 
Fig. 4. Without stranded passengers 

 

The differences in the travel purposes of passengers at 

each station on the URT line in T make the passenger demand 

random and fluctuating. The uncertainty of passenger 

demand is characterized by portraying the number of 

passengers waiting for trains at each station as an uncertain 

variable, and the uncertainty distribution function is used to 

express it. To ensure that the train schedule has strong 

robustness, the number of passengers waiting for trains at 

each station is expressed as the chance of being  
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satisfied at a specific confidence level using the idea of 

opportunity constraint. The confidence level constraints of 

Wi,u,Wj,u in Equations (23) and (24) are expressed as follows: 

  1, .[ , ]

, , ,  ,  i u i uTD TD

i u u i uM W Q i I u N−     (25) 

  1, ,[ , ]

, , ,  ,  j u j uTD TD

j u u j uM W Q j J u N−     (26) 

( ), ,, 0,1i u j u    in Equations (23) and (24), 

1, ,[ , ]i u i uTD TD

uQ − and 1, ,[ , ]j u j uTD TD

uQ − are calculated in Equation (6) in 

Section II. B. 

Passenger boarding and alighting occurs upon arrival 

when a train travels between stations other than the 

originating station. When the train arrives at station u (u≠1 

and u≠N+1), passengers traveling to station u get off at this 

station, and passengers waiting for the train at the station can 

partially or fully board the train. The number of passengers in 

the train after the train departs from station u for different 

directions of operation is shown below: 

 , , 1 , , ,  , 1<i u i u i u i uC C G B i I u N−= − +    (27) 

 , , 1 , , ,  , +1< 2j u j u j u j uC C G B j J N u N−= − +    (28) 

Equations (27) and (28) above denote the number of 

passengers who get off the train at station u after trains of 

different operation directions arrive, respectively. Similar to 

Wi,u and Wj,u, the confidence level constraints are modeled 

using the chance programming method where 

( ), ,, 0,1i u j u   , as follows: 

  , 1,[ , ]

, , ,  ,  i u i uTA TA

i u u i uM G P i I u N+      (29) 

  , 1,[ , ]

, , ,  ,  j u j uTA TA

j u u j uM G P j J u N+     (30) 

 

In Equations (27) and (28), Bi,u and Bj,u are calculated as 

follows: 

 
, , , 1 , ,  , 1<i u k i k i u i u

k K

B A x C G i I u N−



=  − +    (30) 

, , , 1 , ,  , 1< 2j u k j k j u j u

k K

B A x C G j J N u N−



=  − +  +  (31) 
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Fig. 5. Stranded passengers at stations n 

It should not be overlooked that after the train has left 

station u, there may be stranded passengers at station u, as 

shown in Fig. 5, and some of the passengers who have not 

been able to board the train will continue to wait at station u 

for train i+1 or train j+1. The number of stranded passengers 

are calculated as follows: 

 
, , , , , 1<i u i u i uD W B i I u N= −    (32) 

 
, , , , , 1< 2j u j u j uD W B j J N u N= −  +   (33) 

C. 6. Limitation of transportation capacity: 

The transportation capacity provided by the trains operated 

by the URT operator shall meet the passenger flow demand 

of all stations on the line within T: 

 
 0,

, , ,  
T

k i k k j k n

i I j J n N

A x A y Q k K
  

 +       (34) 

D. Objective function 

In this study, the optimization of train timetable on the 

URT line is considered from the perspectives of total waiting 

time (denoted by Z1) and total operation cost (denoted by Z2). 

The two optimization objectives (Z1, Z2) are described in the 

section. 

D. 1. Total waiting time 

Combining the operation of trains on the URT corridor 

with safety constraints, the total passenger waiting time for 

the entire line is calculated as follow: 

 1 , ,i n j n

i I j J n Nn N

Z TW TW
  

= +   (35) 

The calculation of the total passenger waiting time on URT 

line is a summation of the passenger waiting times at each 

station in different operation directions. The optimal policy 

from the literature [33] is used to compute Equations (36): 

 
( )

( )

1, , , ,

,

1, , ,

0.5 ,  when  = 0,
 ,  

0.5 , otherwise,

i n i n i n i n

i n del

i n i n i n n

TD TA W D
TW i I n N

TD TA W t

+

+

  − 
=  

 −  +

(36) 

 
( )

( )

1, , , ,

,

1, , ,

0.5 ,  when  = 0,
 ,  

0.5 , otherwise,

j n j n j n i n

j n del

i n i n i n n

TD TA W D
TW i I n N

TD TA W t

+

+

  − 
=  

 −  +

(37) 

When calculating del

nt , take the passengers waiting for the 

upstream train i at station n as an example: when the 

phenomenon of passengers stranded occurs, the stranded 

passengers will continue to wait for the subsequent trains in 

the same direction to arrive at station n. Due to the passenger 

stranded phenomenon, there is a transfer effect, considering 

the same direction adjacent trains have standstill passengers, 

the calculation process of del

nt  is as follow: 

 

( )

( )

( )

( )

1, 1, ,

, 1, ,

1, 1, ,

, 1, ,

0.5

,  ,  

0.5

,  ,  

i n i n i n

i n i n i n

del

n

j n j n j n

j n j n j n

D TD TA

D TD TA i I n N

t

D TD TA

D TD TA j J n N

+ +

+

+ +

+

 −

 + −  


= 


−


+ −  

 (38) 

D.2. Total operation cost 

The total operation cost at the end of T depends on the total 

distance operated by all trains during T. In this study, the 

operation cost of different types of trains for the same 

distance are different, Z2 is calculated by considering both 

type of trains and distance of operation: 
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2 , ,

T T

k i i k j j k

i I k K j J k K

Z c L x L y
   

 
= + 

 
   (39) 

E. Mathematical Model 

According to the above constraints and objective functions, 

the optimization model of URT train timetable based on 

uncertain passenger flow is constructed as follows: 

 
1 2(min ,  min )

(model)
. . constraints(11)~(33) 

z Z Z

s t

=



 (40) 

The above optimization model (41) is an uncertainty 

optimization model in which the confidence level constraints 

(Equations (25), (26), (29) and (30)) portray the chance that 

Wi,u and Gi,u can be satisfied by a certain confidence level. 

Although chance programming method can reflect the 

uncertainty of passenger demand, it increases the difficulty of 

model solving and computational analysis, so the confidence 

level constraint is replaced by a linear constraint combined 

with theorem 4.9 in the literature [34]. Since 
    ( )1 2 1 2, ,

, ,
t t t t

u uQ P u N t T   are uncertain variables obeying 

continuous distribution function, the uncertainty distribution 

function is  , 1 2( ), ,u v t t t t  , and the deterministic equivalent 

form of Equations (25), (26), (29) and (30) are as follows: 

 [ , ]1, ., ,( ),  ,  TD TDi u i u
u

i u i uQ
W f i I u N

−
    (41) 

 [ , ]1, ,, ,( ),  ,  TD TDj u j u
u

j u j uQ
W f j J u N

−
    (42) 

 ( )[ , ], 1,, , ,  ,  TA TAi u i u
u

i u i uP
G f i I u N

+
    (43) 

 ( )[ , ], 1,, , ,  ,  TA TAj u j u
u

j u j uP
G f j J u N

+
    (44) 

In the above Equations, 

[ , ] [ , ]1, . 1, .

1

, ,( ) ( )TD TD TD TDi u i u i u i u
u u

i u i uQ Q
f   

− −

−= ,

[ , ] [ , ]1, . 1, .

1

, ,( ) ( )TD TD TD TDj u j u j u j u
u u

j u j uQ Q
f   

− −

−= ,  (i I  ,  )j J u N   

are the inverse uncertainty distributions function 

of 1, .[ , ]i u i uTD TD

uQ − , 1, ,[ , ]j u j uTD TD

uQ − ,  (i I , j J , )u N . Similarly, 

the inverse uncertainty distribution function of 
1, .[ , ]i u i uTD TD

uP − , 1, ,[ , ]j u j uTD TD

uP − ( ,  ,  )i I j J u N   are 

[ , ] [ , ]1, . 1, .

1

, ,( ) ( )TD TD TD TDi u i u i u i u
u u

i u i uP P
f   

− −

−= ,

[ , ] [ , ]1, . 1, .

1

, ,( ) ( )TD TD TD TDj u j u j u j u
u u

j u j uP P
f   

− −

−= , (i I , ,  )j J u N  . 

After the above analysis, the model (46) is reconstructed 

based on (42)-(45) to transform the uncertainty optimization 

model into a deterministic optimization model: 

 

1 2(min ,  min )

(model) . . constraints(11)~(22),(25),(26)

                      (29)~(33),(39)~(42) 

z Z Z

s t

=





 (45) 

IV.  SOLUTION APPROACH 

The calculation results of the above deterministic 

optimization model, which involves the departure moments 

of the trains at the originating station and considers the type 

of trains departed, is essentially a combination optimization 

problem, which can be solved using genetic algorithms (GA) 

[15]. Moreover, the spatial dimensions of each optimization 

objective of the established model are different, and it is 

necessary to consider using a multi-objective evolutionary 

algorithm to compute the nondominated solution of the 

model according to the constraints of each objective. 

NSGA-II has the advantages of fast operation speed and 

better convergence in solving the nondominated solution [36], 

is used as a baseline for the solving and is improved by 

combining with the Adaptive Large Neighborhood Search 

(ALNS) strategy. 

A.  Chromosome coding 

The operating hours of URT line are discretized in minutes. 

A chromosome of length |T| is designed, where each gene 

segment of the chromosome corresponds to the train 

departure type of the timestamp t. The corresponding codes 

take the values of 0,1 and 2, which indicate that no train, a 

low-capacity train, and a high-capacity train will be departed 

from originating station at timestamp t, respectively. As 

shown in Fig. 6, vector UT of a chromosome indicates the 

departure scheme at the upstream direction originating 

station; specifically, timestamp 1 runs a high-capacity train, 

and timestamp T runs a low-capacity train, and similarly in 

the vector UT of the chromosome, it indicates the departure 

scheme at the downstream direction originating station. The 

timestamp intervals of all adjacent trains from the originating 

station must be satisfied hmin and hmax, each chromosome 

represents a feasible solution that satisfies all the constraints 

of the model (46). 

 

2gene encodes

timestamp 1 2 3  

0 0 ... 10 0 1 0 0 ... 20 0

UT DT

TT-1T-2 1 2 3  TT-1T-2

Fig. 6. Chromosome encoding design. 
 

B. Crossover 

Two chromosomes P1 and P2 are randomly selected in the 

population with crossover probability Pc. Two new 

chromosomes C1 and C2 are generated after crossover. The 

process of developing vector UT in chromosomes C1 and C2 

is as follows: 

Step 1: Before the crossover operation, vector UT in 

chromosomes P1 and P2 are randomly divided into d+1 

segments according to the number of segmentation 

points  ( 1)d d  ; 

Step 2: Select the odd or even segments of vector UT in 

chromosomes P1 and P2 exchange them in equal parts to 

generate vector UT in chromosomes C1 and C2. The above 

crossover steps also apply to vector DT in chromosomes P1 

and P2.  

Fig. 7 shows the crossover process for selected 

chromosomes P1 and P2. when d=1 and even segments are 

exchanged equitably. Vector UT of chromosome P1 is 

{1,0,0,0,2,…,0,1}, randomly divided into segments {1,0,0,0} 

and{2,…,0,1}. Vector UT of chromosome P2 is also 

randomly divided into two segments, {2,0,0,0} and {1,0,0,1}. 

After crossover, vector UT in chromosome C1 is 

{1,0,0,0,1,…,0,1}, and vector UT in chromosome C2 is 

{2,0,0,0,2,…,0,1}; similarly, vector DT in chromosomes P1 

and P2 form vector DT of chromosomes C1 and C2 after 

crossover. After the crossover operation, only the offspring 
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chromosomes that satisfy all constraints of model (46) are 

retained in the new population. 

 

1 ... 21 0 0 ...0 2

UT DT

0001 0 20

2 ... 11 0 0 ...0 1

UT DT

0002 0 20

2 ... 21 0 0 ...0 1

UT DT

0001 0 20

1 ... 11 0 0 ...0 2

UT DT
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P1

P2

C1

C2

 
Fig. 7. Schematic diagram of the crossover process 

 

C. Mutation 

The process of generating a new chromosome by changing 

some of the gene values of a chromosome to other gene 

values with a certain probability is called mutation. Unlike 

paired chromosomes that undergo crossover operations to 

generate new offspring chromosomes, a single chromosome 

can generate a new chromosome by mutation. We combine 

ALNS strategy to design the mutation operator. Specifically, 

the process of chromosome mutation is divided into destroy 

and repair operation. 

C. 1. Chromosome destroy operation 

The objectives of the chromosome destroy operation are to 

increase the train full load rate, reduce the redundancy and 

total operation cost. These objectives can be achieved by 

reducing the number of trains operating or replacing 

high-capacity train with low-capacity train. Here, we design 

two different destroy strategies, and the detailed steps of the 

first destroy strategy are as follows: 

Step 1: In the vector UT of chromosome, randomly select a 

timestamp t. 

Step 2: Calculate the intervals between the departure 

timestamps of all adjacent trains (TDi+1,1-TDi,1) after 

timestamp t. 

Step 3: Locate the minimal adjacent trains departure 

interval min (TDi+1,1-TDi,1) and reduce the gene value 

corresponding to the train departure timestamp TDi,1 by one. 

At the same time, the same steps are performed in vector DT 

of chromosome, and the strategy is set to be executed a times 

in the destroy operation. The operation procedure of the first 

destroy strategy is shown in Fig. 8. 

 

...
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UT DT

TT-1
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...
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0 0 1 1... 0 1 ... 0 0 00 ...

UT DT

TT-1

2

t t+1  t+2 1  TT-1t t+1  t+2

2

train i train j

 
Fig. 8. Operation process of the first destroy strategy. 

 

The detailed steps of the second destroy strategy are as 

follows: 

Step 1: In vector UT of chromosome, choose a timestamp t 

randomly. 

Step 2: Calculate the full load rate  of all trains after 

timestamp t where ,

1

/

N

i u

u

C N
=

=  . 

Step 3: Reduce the gene value by one corresponding to the 

departure timestamp TDi,1 of the train with the smallest full 

load rate. At the same time, the same steps are performed in 

vector DT of chromosome, setting the strategy to be executed 

a times in the destroy operation. 

C. 2. Chromosome repair operation 

The goal of chromosome undergoing repair operation is to 

reduce total waiting time. This objective can be achieved by 

increasing the number of trains operating or replacing 

low-capacity train with high-capacity train. Here, we also 

design two different strategies for repair operation, the 

detailed steps of the first repair strategy are as follows: 

Step 1: In vector UT of chromosome, choose a timestamp t 

randomly. 

Step 2: Calculate the intervals between the departure 

timestamps of all adjacent trains (TDi+1,1-TDi,1) after 

timestamp t. 

Step 3: Locate the maximum adjacent trains departure 

interval max (TDi+1,1-TDi,1) and add a high-capacity train 

between the departure timestamps of train i and train i+1. At 

the same time, the same steps are performed in vector DT of 

chromosome, and the strategy is set to be executed b times in 

the repair operation. 

The detailed steps of the second repair strategy are as 

follows: 

Step 1: In vector UT of chromosome, choose a timestamp t 

randomly. 

Step 2: Calculate the full load rate  of all trains after 

timestamp t. 

Step 3: Locate departure timestamp TDi,1 of the train i with 

the largest full load rate, and search backward for departure 

timestamp TDi+1,1 of adjacent train i+1. Perform the following 

judgment after calculating TDi+1,1-TDi,1: 

if TDi+1,1-TDi,1>2Imin, add a high-capacity train between 

TDi,1 and TDi+1,1. 

else, add a low-capacity train between TDi,1 and TDi+1,1. 

During the chromosome mutation, the number of a and b 

for the execution of the destroy and repair operation 

strategies are decided according to the value of s. The 

calculations are shown in Equations (47) and (48): 

 1s = −  (46) 

 
 0,

, , / ( ),  
T

n i k i j k j

n N i I j J

Q A x A y k K
  

= +     (47) 

In the above Equations,   represents the average full load 

rate of all trains. The smaller positive number s0 is then taken 

for comparison with s: 

If s>s0,    is lower, the number of chromosome destroy 

operation needs to be increased to reduce the train capacity 

redundancy; Else,    is higher, the number of chromosome 

repair operation needs to be improved to reduce total waiting 

time. 
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D. Selection process 

We copied the viable offspring chromosomes generated by 

crossover and mutation into a new population, performed fast 

non-dominated sorting simultaneously with the parent 

chromosomes, and used an elite retention strategy to obtain 

an optimized population. 

V. NUMERICAL EXPERIMENTS 

This section examines a real operational case study, which 

in turn evaluates the effectiveness of the developed model 

and the improved algorithm. The algorithms were coded in C. 

All numerical experiments were conducted on a computer 

with an Intel(R) Core (TM) i7-8750H @ 2.20 GHz CPU and 

8.00 GB of RAM, with Microsoft Windows 10 (64-bit) as the 

operating system. 

A. Set-up 

Xi'an Metro Line 2 is a north-south URT corridor with a 

total length of 26.13 kms and 42 stations, the layout of which 

is shown in Fig. 9. The direction from Station 1 to Station 21 

is defined as the upstream direction (Beiku-Weiquanan), and 

the direction from Station 22 to Station 42 is defined as the 

downstream direction (Weiquanan-Beiku). 

 

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1817 19 20 21

42

41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 2526 24 23 22

Downstream direction

Uptream direction

 
Fig. 9. Layout of the Xi’an metro line 2 

 

Appendix A (Table. 8 and 9) gives primary data on train 

dwells and operates in both directions. hmax and hmin are 

10min and 3min respectively, and the minimum turnaround 

time at both end turnback stations is 258 seconds. 

Low-capacity trains have a capacity of A1=896, and 

high-capacity trains have a capacity of A2=1376. The cost of 

operation for a low-capacity train is c1=100CNY/km, and the 

cost of operation for a high-capacity train is c2=200CNY/km. 

B. Parameter selection 

Setting reasonable parameters for the evolutionary 

algorithm used in the study directly affects its computational 

efficiency and reliability of the solution results[37], so we 

conducted experiments with different parameters under the 

numerical conditions in Table. 3. Under the needs of varying 

crossover probability (Pc∈{0.6,0.8}), mutation probability 

(Pm∈ {0.2,0.4}), population size(Np ∈ {100,200}), and 

maximum number of iterations(Im∈{100,200}), the extreme 

and average values of each objective obtained are shown in 

Table. 4. When Pc=0.8, Pm=0.1, Np=200 and Im=200, the 

Pareto solution set obtained by solving contains the optimal 

values of each objective, so the above parameters are taken as 

fixed values. Meanwhile, using the simulation method in the 

literature [38], it is determined that αi,u=0.975, αj,u=0.964, 

βi,u=0.971, βj,u=0.967. 

 
Table. 3 Selected pre-set parameters 

s0=0.15, d=5 

s>s0 

a=random (30,50), b=random (20,30) 
s≤s0 

b=random (30,50), a=random (20,30),  

 

C. Comparison of results 

In this section, we verify the practicality of the proposed 

method after analyzing the results. The AFC data of a 

particular day is extracted with a ime granularity of 30 minute. 

The passenger demand in different directions are shown in 

Fig. 10. To analyze the optimized train timetables, we 

introduce the actual train timetable on the corresponding 

dates of the passenger flow data for parameter comparison 

and then select the period with the most significant number of 

commuters and the most apparent congestion to the example, 

as shown in Fig. 11. 

 

 
10(a) Upstream direction 

 
10(b) Downstream direction 

Fig. 10. Schematic diagram of passenger demand 
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Fig. 11. Practical strategy from 6:10am to 7:55am 

 

Specifically, 10-minute interval is observed between 

adjacent trains departing from station1 and station22 during 

6:10am to 7:55am. With the further increase of passenger 

flow, the interval between adjacent trains departing from the 

originating station in the same direction is adjusted to 5 

minutes after 7:15am.  
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Table. 4 Comparison of objective value with different parameters 

Pc Pm Np Im 

min Z1/minute min Z2/minute 

Z1 1Z  Z2 2Z  

0.6 0.1 100 100 1,759,284 2,637,254 1,418,638 1,592,929 

0.6 0.1 100 200 1,703,661 2,431,497 1,406,078 1,591,985 

0.6 0.1 200 100 1,742,349 2,524,134 1,519,884 1,601,223 

0.6 0.1 200 200 1,713,583 2,327,825 1,401,919 1,596,753 

0.6 0.05 100 100 1,844,219 2,839,648 1,572,570 1,600,632 

0.6 0.05 100 200 1,793,182 2,782,152 1,528,942 1,596,464 

0.6 0.05 200 100 1,697,867 2,386,429 1,576,696 1,587,791 

0.6 0.05 200 200 1,671,879 2,274,147 1,469,011 1,492,348 

0.8 0.1 100 100 1,729,239 2,347,213 1,477,946 1,635,157 

0.8 0.1 100 200 1,724,467 2,317,439 1,467,226 1,611,281 

0.8 0.1 200 100 1,671,584 2,217,214 1,475,373 1,643,893 

0.8 0.1 200 200 1,652,987 2,157,897 1,398,124 1,513,345 

0.8 0.05 100 100 1,783,271 2,345,914 1,427,309 1,522,010 

0.8 0.05 100 200 1,693,737 2,276,341 1,416,182 1,491,328 

0.8 0.05 200 100 1,723,548 2,571,848 1,434,270 1,592,762 

0.8 0.05 200 200 1,672,145 2,431,297 1,426,826 1,609,998 

 

The frequency of departures from upstream and 

downstream originating stations is 14 during 6:10am to 

7:55am. Only a single high-capacity train is considered for 

scheduling during T. The departure frequency of both 

upstream and downstream directions is 146, Z1=2321965min 

and Z2=1525992CNY. Trains are organized in pairs during T. 

Implementing this type of operation plan is low, but 

achieving a high degree of coupling between trains and 

passenger demand is difficult. 

To improve the coupling between trains and passenger 

flows, we use an improved algorithm to solve the designed 

model and obtain the Parete solution set. The black dots in 

Fig. 12 represent any of any Pareto solutions. After analyzing 

any of the Pareto solutions, the corresponding train timetable 

can be obtained. We choose three Pareto solutions (Pareto 

solutions 1,2, and 3 in Fig. 12) to evaluate the related train 

timetables after parsing them, where Pareto solution1 and 2 

are two extreme solutions, and Pareto solution3 is non-polar 

solution. 
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Fig. 12. Spatial distribution of Pareto solutions 

 

After we parsed Pareto solutions 1,2 and 3, the results are 

shown in Table. 5. Pareto solution1 indicates that the total  

number of trains departures from originating station is 333 in 

T. Among them, there are 292 high-capacity trains and 41 

low-capacity trains (the numbers in parentheses denote the 

number of low-capacity trains), which is comparable with the 

practical strategy; the total number of train timetables and Z2 

increased by 12.3% and 7.03% respectively, but Z1 decreased 

by 28.8%. From the results, the train operating strategy 

corresponding to the Pareto solution1 effectively reduces the 

total passenger waiting time. However, it increases the 

number of trains and operation cost. 

 
Table. 5 Comparison of results for different solution 

Pareto 

solution 

Number of trains in T 
Z1(min) Z2(CNY) 

Upstream Downstream 

1 177(41) 156(0) 1,652,987 1,633,322 
2 136(13) 138(0) 3,682,157 1,398,124 

3 160(36) 145(0) 2,040,737 1,500,043 

 

It should be noted that adjusting the train departure interval 

from a fixed interval to a non-fixed interval is the reason for 

increasing the number of trains in Pareto solution1. As shown 

in Fig. 13, the train timetable corresponding to Pareto 

solution 1 has 43 trains in all directions during 6:10am to 

8:40am, and the departure intervals between adjacent trains 

are not limited to 5min and 10min. Therefore, expanding to T, 

adjusting the train departure interval to a non-fixed mode, it 

can increase the number of trains then improve the quality of 

passenger travel service. 
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Fig. 13. Optimized solution 1 from 6:10am to 8:40am 

 

After analyzing pareto solution2, we find that the total 

number of train departures is 274 during T, of which 261 are 
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high-capacity trains, and 13 are low-capacity trains, which 

reduces the number of high-capacity train by 10.6% 

compared to the practical strategy. In combination with using 

low-capacity trains to fulfill passengers demand, Z2 reduces 

by 8.4%, but Z1 increases by 58.6%.  

Taking Fig. 14 as an example, the total number of trains 

scheduled in all directions only increased by three trains 

during 6:10am to 8:40am. Passenger demand showed a 

significant upstream trend after 6:50am, but four 

low-capacity trains are used after the moment. In the absence 

of a substantial increase in the total number of trains, the use 

of low-capacity trains reduces Z2, but it results in a decrease 

in the ability of the trains to serve passengers. As a result, 

total number of train departures in all directions decreases by 

6.16%, and 4.74% of high-capacity trains are replaced by 

low-capacity trains during T, thus leads to a significant 

increase of Z1. 
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Fig. 14. Optimized solution 2 from 6:10am to 8:40am 

 

After analyzing the Pareto solution3, we find that total 

number of train departures increased by 4.45% during T 

compared to the practical strategy, Z1and Z2 decrease by 

12.1% and 1.7%, respectively. The number of low-capacity 

trains scheduled is 36 during T, it accounts for 11.8% of the 

total number of train departures. 

As shown in Fig. 15, the number of low-capacity trains 

account for 24.4% of the total number of trains, and the total 

number of train departures in this period increased by 46.4% 

compared with Fig. 11. The number of train departures can be 

increased by adjusting the departure interval pattern of trains 

during T. Based on this, scheduling multiple types of trains 

can benefit traveling passengers and operators more than 

scheduling a single type of train. 
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Fig. 15. Optimized solution 3 from 6:10am to 8:40am 

From the above analysis, we draw the following 

conclusions: 

(1) There is a conflict between the optimization objectives 

of the train timetable in this study, especially from the two 

extreme value solutions of Pareto solution1 and Pareto 

solution2; the solution that makes each objective optimal 

simultaneously does not exist. 

(2) The decision maker can choose the train operation 

scheme according to the preference of different objectives. In 

Pareto solution2, although Z2 is slightly reduced compared 

with the practical strategy, Z1 is significantly increased. 

Therefore, the decision maker must make appropriate 

compromises between different optimization objectives 

when choosing the train operation scheme to avoid selecting 

the inferior solution under some criteria. 

D. Algorithm effectiveness analysis 

In this subsection, we use the parameter combinations 

(Pc=0.1, Pm=0.1, Np=200, Im=200) in section 5.2 to compare 

our improved algorithm with the standard NSGA-II 

algorithm regarding the quality of the solution set and 

computational speed. In section 4.3, we design two 

chromosome destroy and repair strategies, and it should be 

noted that the destroy and repair strategies are proposed to 

be interdependent, e.g., the first destroy strategy is used 

together with the first repair strategy, and the second destroy 

strategy is used together with the second repair strategy. For 

the convenience of presentation, as shown in Table 6, we 

name the algorithms according to the different destroy and 

repair strategies. 

 
Table. 6 Nomenclature of algorithm under different mutation operations 

Algorithm Disruption Strategy Repair strategy 

NSGA-II -- -- 

NSGA-II+B 1 1 
NSGA-II+C 2 2 

NSGA-II+D 1+2 1+2 

 

Table. 7. shows the various types of metrics after solving 

the model (46) under different mutation conditions. We find 

that the quality and speed of the solutions of NSGA-II+B and 

NSGA-II+C are improved, which proves that the designed 

destroy and repair strategies are effective. The improvement 

is most apparent when all the destroy and repair strategies are 

used in NSGA-II+D at the same time. 

 
Table. 7 Performance comparison of different algorithms 

Algorithm minZ1 minZ2 computational time(s) 

NSGA-II 1,714,976 1,450,555 106.1 

NSGA-II+B 1,694,829 1,433,515 101.4 
NSGA-II+C 1,673,133 1,415,164 97.2 

NSGA-II+D 1,652,987 1,398,124 91.7 

 

VI. CONCLUSION 

In this study, a bi-objective timetable optimization model 

considering scheduling different types of trains is developed 

under the condition of uncertain passenger demand in 

different directions of a subway line to reduce the total 

waiting time of passengers and the total operation cost of 

trains. We designed different ALNS strategies to obtain 

high-quality solutions during the chromosome mutation 

process. Subsequently, we implemented a numerical example 

with Xi'an Line 2 and verified the model's performance with 
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the improved algorithm by comparative analysis of the 

obtained solutions. 

Our future research will focus on the following aspects. (1) 

In this paper, the uncertainty during train operation is not 

considered. Therefore, in our subsequent study, we extend 

the model to a robust optimization model based on 

considering the uncertainty of train running time. (2) In this 

study, the model was solved using a multi-objective heuristic 

algorithm, which easily falls into the dilemma of finding the 

optimal solution locally, so we will further explore the use of 

exact algorithms in this class of problems. 
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APPENDIX I 

Table. 8 Train dwell time of Xi’an metro line 2 

Station 
Dwelling Time(s) 

Upstream Downstream 

Beike 140 140 
Beiyuan 30 32 

Sports Park 30 32 
Xingzheng Center 32 30 

Fengcheng 5thRoad 35 32 

City Library 35 32 
Damingong West 34 30 

Longshou Yuan 35 35 
Anyuan Door 32 35 

North Street 50 50 

Bell Tower 50 50 
Yongning  32 30 

Nanshao Door 34 32 
TV Tower 50 50 

Sanyao  32 32 

Fengqi Yuan 34 30 
Space City 34 30 

Weiqu South 210 210 
City Stadium 34 32 

Xiaozhai 50 50 

Weiyi Street 34 30 

 

Table. 9 Train operation time of xi’an metro line 2 

Segment Running time(s) 

Beike-Beiyuan 122 
Beiyuan-Sports Park 94 

Sports Park-Xingzheng Center 100 

Xingzheng Center-Fengcheng 5thRoad 100 
Xingzheng Center-City Library 107 

City Library-Damingong West 110 
Damingong West-Longshou Yuan 111 

LongshouYuan-Anyuan Door 98 

Anyuan Door-North Street 111 
North Street-Bell Tower 85 

Bell Tower-Yongning 128 
Yongning-Nanshao Door 82 

Nanshao Door-City Stadium 79 

City Stadium-Xiaozhai 86 
Xiaozhai-Weiyi Street 95 

Weiyi Street-TV Tower 120 
TV Tower-Sanyao 136 

Sanyao-Fengqi Yuan 122 

Fengqi Yuan-Space City 100 
Space City-Weiqu South 144 

Weiqu South-Space City 142 
Space City-Fengqi Yuan 98 

Fengqi Yuan-Sanyao 120 

Sanyao-TV Tower 140 
TV Tower-Weiyi Street 115 

Weiyi Street- Xiaozhai 98 
Xiaozhai City-Stadium 90 

City Stadium-Nanshao Door 75 

Nanshao Door-Yongning 85 
Yongning-Bell Tower 130 

Bell Tower-North Street 85 

North Street-Anyuan Door 110 

Anyuan Door-LongshouYuan 103 

Longshou Yuan-Damingong West 108 
Damingong West-City Library 105 

City Library- Fengcheng 5thRoad 112 
Fengcheng5thRoad-XingzhengCenter 100 

Xingzheng Center-Sports Park 102 

Sports Park-Beiyuan 98 
Beiyuan-Beike 120 
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