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Abstract—The Student t-linear regression method is widely
used in statistical analysis. It proves particularly beneficial when
dealing with a small sample or when the error distribution is
irregular. The model is based on the ordinary least squares
method and assumes that the random error term follows
Student t distribution. This feature gives it robustness and
flexibility, allowing it to provide more accurate parameter
estimates and hypothesis testing results. In the simulation
experiment section, we compared the proposed Student LIC
criterion with two other indicators to verify its effectiveness. We
also offer an in-depth exploration regarding the stability as well
as the sensitivity of the LIC criterion under diverse redundant
distributions. Experimental data show that the Student LIC
criterion has excellent stability and can significantly reduce
errors.

Index Terms—T distribution, Student t-linear regression, LIC
criterion, distributed estimation.

I. INTRODUCTION

IN the field of statistical analysis, when the sample size
of a dataset is limited or the error structure deviates from

the normal, the difficulty of accurately estimating parameters
increases. Traditional ordinary least squares (OLS) regression
assumes that the error is normally distributed. However, in
this case, this assumption is often insufficient and may lead
to bias in the estimates. To solve this problem, this paper
introduces the Student t regression model. The model uses
a student t-distribution, which is characterized by a heavier
tail. As a result, it provides a more flexible framework for
datasets showing outliers or non-normal distribution. This
integration enhances the model’s robustness against outliers
and provides it with greater flexibility.

A. Current research status

In the field of statistical analysis, research on redundant
data has made significant progress. In this paper, we propose
a new method depending on the Student t-linear regression
model. This study is to solve the problem of estimating the
distributed optimal subset in the context of redundant data.
This method is especially suitable for datasets with small
sample sizes or non-normal error distributions. It provides
more reliable parameter estimation and hypothesis testing
results.

Future research directions may include: improving existing
methods and developing new algorithms to enhance the accu-
racy and stability of estimation under non-normal distribution
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and outlier conditions. Explore the potential application of
this technology in fields that require handling complex data
structures, such as financial risk management and precision
medicine.

B. Our work

This paper deeply studies the theoretical characteristics
of the Student LIC criterion. It also gives useful guidance
for parameter selection and model evaluation in practical
applications. We compared the MAE and MSE of three meth-
ods: the LIC criterion, the minimum information matrix, and
the maximum gain matrix (respectively abbreviated as LIC,
Iopt, and Lopt). The results confirm the criterion to be the
optimal subset selection method. This paper also elaborates
on the basic theory of the Student LIC criterion, and designs
a series of simulation experiments. The purpose of these
experiments is to select appropriate performance indicators.
In addition, we explored the stability and sensitivity of these
three methods in three common distribution functions.

II. DISTRIBUTED STUDENT T-LINEAR REGRESSION
MODEL

This section of the study focuses on student t regression
model. It is expressed as:

YIk = XIkβ + εIk , εIk ∼ t(n0), k = 1, . . . ,Kn,

where n0 denotes the degrees of freedom with n0 ≥ 37. XIk

is a submatrix of size nIk × p with nIk ≥ p, representing
the vector of sub-residuals. The vector β = (β1, . . . , βp)

T

contains the regression coefficients.
The total dataset can be represented in a matrix form:

Y = (Y T
I1 , Y

T
I2 , . . . , Y

T
IKn

)T , X = (XT
I1 , X

T
I2 , . . . , X

T
IKn

)T ,

thus, the model can be simply written as:

Y = Xβ + ε, ε ∼ t(n0),

where Y is the random response variable and X = (Xij) is
the unknown matrix of size n× p.

The concept of distributed estimation has gained signifi-
cant momentum in this area. Specifically, a large amount of
data from a single computer is distributed to a large number
of computers, each of which generates local estimates by
applying statistical inference methods. Subsequently, the
local estimates are aggregated and averaged to produce a
final estimate. In this case, the size of the block called
Kn also plays a key role. If Kn is too large, one or more
local estimation anomalies may occur, which will adversely
affect the final result. Specifically, all data on a machine is
randomly and evenly divided into Kn blocks, and each block
is delivered to each machine in the following manner:
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1)For YIk = (YIk,1, · · · , YIk,nIk
), k = 1, . . . ,Kn, each

machine computes the estimate µ̂Ik of the local mean µ =
EY as follows:

µ̂Ik = ȲIk =

nIk∑
i=1

YIk,i/nIk .

2) Aggregate all local estimators and average them to get
the final estimator:

µ̂(a) =
1

Kn

Kn∑
k=1

µ̂Ik ,

where the variance of µ̂Ik is different, mean var(µ̂Ii) ̸=
var(µ̂Ij )(i ̸= j).

µ̂w =

Kn∑
k=1

wkµ̂Ik , wk =
µ−1
Ik∑nIk

k=1 µ
−1
Ik

, µIk = trace(var(µ̂Ik)),

where var(µ̂w) ≤ var(µ̂(a)).
For the confidence interval C(YIk) at a given confidence

level of 1− α, the probability is:

P (µIk ∈ C(YIk)|µIk) = 1− α.

The function w, defined within the interval w ∈ (0, 1) ,
serves as the confidence domain function. The acceptance
region Aw (µIk) for each µIk is assumed to meet the
following condition:

Aw(µIk) = ȲIk : (µIk − tnIk
−p,1−αwσ̂Ik · C̄Ik ,

µIk − tnIk
−p,α(1−w)σ̂Ik · C̄Ik),

where C̄Ik is the average of CIk,xi for all xi in XIk ,
calculated as:

C̄Ik =

nIk∑
i=1

CIk,xi

nIk

, xi ∈ XIk

where CIk,xi
denotes the i-th diagonal element

XIk(X
T
Ik
XIk)

−1XT
Ik

. Consequently, C̄Ik can be expressed
as the vector of these diagonal elements:

diag{XIk(X
T
Ik
XIk)

−1XT
Ik
} = (CIk,x1 , CIk,x2 , · · · , CIk,xnIk

).

Specifically, the confidence interval is obtained by invert-
ing the acceptance region at the α confidence level. When
w = 1

2 , the confidence interval C(YIk) for the mean µIk is
defined as:

C(YIk) = {µIk : Y Ik + tnIk
−p,1−α

2
σ̂Ik · CIk ≤ µIk ≤ Y Ik+

tnIk
−p,1−α

2
σ̂Ik · CIk},

where E(σ̂2
Ik
) = σ2

Ik
. The calculation of is σ̂2

Ik
given by:

σ̂2
Ik

=
1

nIk − P
ε̂TIk ε̂Ik =

1

nIk − P
Y T
Ik
(InIk

×nIk
−HIk)YIk ,

where ε̂Ik = YIk − ŶIk = (InIk
×nIk

−HIk)YIk

For submatrices XT
Ik
XIk of full rank, the matrix HIk is

calculated as:

HIk = XIk(X
T
Ik
XIk + λIn×n)

−1XT
Ik
,

where λ represents the interference term, and In×n is the
original matrix of n× n.

Subsequently, the shortest interval length with respect to
µIk can be obtained:

L(C(YIk)) = 2σ̂Ik · C̄Ik · tnIk
−p,1−α

2
.

III. STEPS

i. Optimal Subset Selection: The LIC criterion is ap-
plied to determine the optimal subset Iopt through three
steps:

• First, determine I1opt based on the shortest interval
length.

• Second, obtain I2opt by maximizing the information
matrix.

• Finally, the intersection of I1opt and I2opt yields Iopt.
ii. Simulation Preparation: Generate simulated datasets

using R software, ensuring that the error terms follow a
Student t-distribution with specific degrees of freedom.

iii. Error Calculation: Calculate the MSE and MAE for
the LIC criterion, as well as for I1opt and I2opt methods.

iv. Performance Evaluation: Compare the performance
of LIC, I1opt, and I2opt through line charts of MSE and
MAE.

v. Simulation Description and Analysis: Describe the
design of the simulation experiment and analyze the
stability and sensitivity under different conditions.

vi. Result Discussion: Discuss the simulation results and
assess the effectiveness of the LIC criterion in handling
non-normal error distributions and outlier data.

IV. LIC CRITERION FOR OPTIMAL SUBSET SELECTION

In this study, we have meticulously designed a sequence of
steps to select the optimal indicator subset sequence {Ik}kn

k=1,
with the goal of enhancing estimation precision and reducing
dataset size.

Step 1: The initial step is to identify the optimal indicator
subset I1opt based on the shortest interval length of µIk , This
is achieved by minimizing the expression:

I1opt = argmin
Ik

{σ̂Ik · CIk · tnIk−1,1−α
2
},

where σ̂Ik , C̄Ik and tnIk−1,1−α
2

are derived from
L(C(YIk)) = 2σ̂Ik · C̄Ik ·tnIk−p,1−α

2
.

Step 2: The LSE of βIk and the variance of β̂Ik are then
demonstrated as follows:

β̂Ik =
(
XT

Ik
XIk

)−1
XT

Ik
YIk , var

(
β̂Ik

)
= σ̂2

Ik

(
XT

Ik
XIk

)−1
,

where E(σ̂2
Ik
) = σ2

Ik
. Building on this, the optimal indicator

subset I2opt is found by maximizing the information matrix
XT

Ik
XIk :

I2opt = argmax
Ik

∣∣XT
Ik
XIk

∣∣ .
This step is similar to the IBOSS algorithm proposed by

Wang Haiying under the D-op criterion. The algorithm se-
lects a subset from Kn two-dimensional variables (YIk , XIk),
maximizing the formula:

δDopt = argmax
δ

∣∣∣∣∣
Kn∑
k=1

δkXIkX
T
Ik

∣∣∣∣∣ ,
Kn∑
k=1

δk = i,

where δk represents the indicator variable. When δk = 1, the
subset includes (YIk , XIk). Conversely, δk = 0, the subset
excludes (YIk , XIk).

Step 3: To further eliminate redundant information and
reduce the subset, the final optimal subset is calculated as:

Iopt = I1opt ∩ I2opt.
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Consequently, from all subsets {Q = (YIk , XIk)}
Kn

k=1, an
optimal subset QIopt = (YIopt , XIopt) is derived. For this
subset, the shortest interval length of µIopt is given by:

L(C(YIopt)) = σ̂Iopt · C̄Iopt · tnIopt−1,1−α
2
.

V. SIMULATION STUDY

In this part, the proposed LIC criterion’s performance
is evaluated by means of simulated data. Additionally, the
performance of two other indicators, opt1 and opt2, is ana-
lyzed under identical conditions. The purpose is to conduct
a comparative analysis. This analysis aims to elucidate the
advantages of the LIC criterion over other indicators in a
more comprehensive manner.

A. Simulation preparation

In this study, the performance of various indicator subsets
was assessed by calculating the MSE and MAE of the esti-
mates µ̂ based on I1opt, I

2
opt, and Iopt. Generally, lower values

of these metrics indicate better prediction performance.
The estimates for each subset were defined as follows:

µ̂I1
opt

= XI1
opt

β̂I1
opt

, µ̂I2
opt

= XI2
opt

β̂I2
opt

, µ̂Iopt = XIopt β̂Iopt .

For each subset estimate µ̂Ik , the MSE is calculated as:

MSE(µ̂Ik) =
1

nIk

[(YIk − ŶIk)
T (YIk − ŶIk)].

Using this definition, the MSE of the one-step average
estimate µ̂(a) and the one-step median estimate µ̂(m) can be
calculated as:

MSE(µ̂(a)) = min
k

{ 1

nIk

[(YIk − X̂Ik β̂
(a))T

× (YIk − X̂Ik β̂
(a))]}

MSE(µ̂(m)) = min
k

{ 1

nIk

[(YIk − X̂Ik β̂
(m))T

× (YIk − X̂Ik β̂
(m))]}

For the specific subsets I1opt and I2opt, their MSE are
calculated as:

MSE(µ̂I1
opt

) =
1

nI1
opt

[(YI1
opt

− ŶI1
opt

)T (YI1
opt

− ŶI1
opt

)],

MSE(µ̂I2
opt

) =
1

nI2
opt

[(YI2
opt

− ŶI2
opt

)T (YI2
opt

− ŶI2
opt

)].

The MSE for the optimal subset µ̂Iopt is calculated as:

MSE(µ̂Iopt) =
1

nIopt

(YIopt − ŶIopt)
T (YIopt − ŶIopt).

The MAE is defined for the five estimates:

MAE(µ̂(a)) = min
k

{|Y Ik − µ̂(a)|},

MAE(µ̂(m)) = min
k

{|Y Ik − µ̂(m)|},

MAE(µ̂I1
opt

) = |Y Ik − µ̂I1
opt

|,
MAE(µ̂I2

opt
) = |Y Ik − µ̂I2

opt
|,

MAE(µ̂Iopt) = |Y Ik − µ̂Iopt |.

B. Stability analysis

I: Simulation Description
The focus of this section is to explore the stability of the

LIC criterion under different conditions. Specifically, we as-
sume that the error term follows Student t-distribution. At the
same time, the generation process of the dataset X2 follows
other different distributions, including uniform distribution,
chi-squared distribution, and geometric distribution. Under
these conditions, we conduct an analysis of the stability of
the LIC criterion.

The dataset (X,Y ) is generated as follows:

Yi = Xiβ + εi, εi ∼ t(n0),

where X is composed of (X1, X2) while Y is made up of
(Y1, Y2). The definitions are as follows:

X1 = (Xij) ∈ IRn1×p, X1ij ∼ N(0, 2),

X2 = (Xij) ∈ IRn2×p, X2ij ∼,

Y1 = X1β + ε1, n1 = n− nr,

Y2 = X2β + ε2, n2 = nr.

The cases differ based on the distribution of X2ij :
1) Case 1 (Uniform Distribution): X2ij ∼ Unif(0, 3)
2) Case 2 (Chi-Square Distribution): X2ij ∼ χ2(20)
3) Case 3 (Geometric Distribution): X2ij ∼ Geom(0.6)

It is noted that β ∼ Unif(0, 3) and ε = (ε1, ε2) where
ε1 ∼t(exp(exp(0.5 -X2))), ε2 ∼t(exp(exp(0.5 -(X2))), and
then run our simulation.

This section studies the stability of the LIC criterion under
different distributions by changing the values of n and p.

II: Simulation Analysis
Case1. This case study is the stability of the LIC criterion

under uniform distribution conditions.
i: The impact of n-value on the stability of the LIC
In this experiment, the settings for the values are as

follows: p = 8, K = 10, α = 0.01, σ1 = 3, σ2 = 5, and
nr = 50. Under these conditions, the sample size n varies
within the set {1000, 2000, 3000, 4000, 5000}.

Fig. 1. shows that under uniform distribution, both MAE
and MSE of the LIC method showed good stability as the
sample size n increased. Specifically, MAE fluctuates greatly
when the sample size increases from 1000 to 2000, but its
value gradually stabilizes and decreases significantly in the
range of n reaching 2000 to 5000. At the same time, MSE
has remained at a low level with minimal variation. These
results show that the LIC can effectively control the error
and maintain high stability under different sample sizes.

ii: The impact of p-value on the stability of the LIC
In this experiment, the settings for the values are as

follows: n = 2000, K = 10, α = 0.01, σ1 = 3, σ2 = 5, and
nr = 50. Under these conditions, the sample size p varies
within the set {8, 9, 10, 11, 12}.

Fig. 2. shows that under uniform distribution, as the p-
value increases from 8 to 12, the LIC method exhibits higher
stability and lower error at all p-values. In contrast, the MAE
and MSE of the Opt1 and Opt2 methods fluctuate more
significantly at different p-values.

Case2. This case study is the stability of the LIC criterion
under chi-square distribution conditions.

i: The impact of n-value on the stability of the LIC
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Fig. 1. Stability analysis of LIC for n-value variations under
uniform distribution.

Fig. 2. Stability analysis of LIC for p-value variations under
uniform distribution.

In this experiment, the settings for the values are as
follows: p = 8, K = 10, α = 0.01, σ1 = 3, σ2 = 5, and
nr = 50. Under these conditions, the sample size n varies
within the set {1000, 2000, 3000, 4000, 5000}.

Fig. 3. shows that under the chi-square distribution, the
MAE and MSE of all methods show a decreasing trend. This
indicates that as the amount of data increases, the error of
the model decreases. However, the LIC method shows the
lowest MAE and MSE under all sample sizes. In contrast,
the error metrics of the Opt1 and Opt2 methods fluctuate
greatly with different sample sizes.

ii: The impact of p-value on the stability of the LIC
In this experiment, the settings for the values are as

follows: n = 2000, K = 10, α = 0.01, σ1 = 3, σ2 = 5, and
nr = 50. Under these conditions, the sample size p varies
within the set {8, 9, 10, 11, 12}.

Fig. 4. shows that under the chi-square distribution, the
LIC method shows lower values on both MAE and MSE
metrics. This may indicate that LIC has better adaptability to
variable dimension changes under the chi-square distribution.
The Opt1 and Opt2 methods show greater fluctuations on
MAE and MSE. Especially at p = 10, the fluctuation of
Opt2 is particularly significant. The results show that the LIC
method may have potential advantages in controlling errors
under the condition of chi-square distribution.

Case3. This case study is the stability of the LIC criterion

Fig. 3. Stability analysis of LIC for n-value variations under
chi-squared distribution.

Fig. 4. Stability analysis of LIC for p-value variations under
chi-squared distribution.

under geometric distribution conditions.
i: The impact of n-value on the stability of the LIC
In this experiment, the settings for the values are as

follows: p = 8, K = 10, α = 0.01, σ1 = 3, σ2 = 5, and
nr = 50. Under these conditions, the sample size n varies
within the set {1000, 2000, 3000, 4000, 5000}.

Fig. 5. shows that under the geometric distribution, as the
sample size n increases, the LIC method shows lower and
stable values on both the MAE and MSE key error indicators.
This implies that its good robustness in handling geometric
distributed data. In contrast, the Opt1 and Opt2 methods,
although also showed a tendency for errors to decrease with
increasing sample size. However, the error indicators of the
Opt1 and Opt2 methods fluctuate greatly under different
sample sizes.

ii: The impact of p-value on the stability of the LIC
In this experiment, the settings for the values are as

follows: n = 2000, K = 10, α = 0.01, σ1 = 3, σ2 = 5, and
nr = 50. Under these conditions, the sample size p varies
within the set {8, 9, 10, 11, 12}.

Fig. 6. shows that under the geometric distribution, the
MAE and MSE values of the LIC method always remain
the lowest among all p-values. In addition, the MSE curve
of the LIC method shows high stability and less fluctuation
when p changes. In contrast, the values of the Opt1 and
Opt2 methods fluctuate significantly under different p-values.
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Fig. 5. Stability analysis of LIC for n-value variations under
geometric distribution.

Especially at p = 9, the MSE value of the Opt2 method
appears a significant peak. Although Opt1 and Opt2 also
show certain stability under some p-values. Overall, the LIC
method performs better in controlling errors and maintaining
stability.

Fig. 6. Stability analysis of LIC for p-value variations under
geometric distribution.

C. Sensitivity analysis

This section examines the sensitivity of the LIC principle
under uniform, chi-square, and geometric distributions by
changing the values of K and nr. The simulation description
in this section is the same as the simulation description in
the stability analysis, so it will not be repeated here.

I: Simulation Analysis
Case 4. This case study is the sensitivity of the LIC

criterion under uniform distribution conditions.
i: The impact of K-value on the sensitivity of the LIC
In this experiment, the settings for the values are as

follows: p = 8, n = 6000, α = 0.01, σ1 = 3, σ2 = 5,
and nr = 50. Under these conditions, the sample size K
varies within the set {5, 10, 15, 20, 25}.

Fig. 7. shows that under the uniform distribution, the MAE
of the LIC method fluctuates within a smaller range under
different K values. In contrast, the MAE of the Opt1 and
Opt2 methods fluctuate greatly. At the same time, for MSE,

the LIC method maintains a very low level over the entire K-
value range, almost close to zero, and there is no significant
fluctuation. From the trend analysis, MAE and MSE of LIC
method have relatively stable change trend under different
K values, but Opt1 and Opt2 methods have obvious change
trend.

Fig. 7. Sensitivity analysis of LIC for K-value variations
under uniform distribution.

ii: The impact of nr-value on the sensitivity of the LIC
In this experiment, the settings for the values are as

follows: p = 8, n = 2000, α = 0.01, σ1 = 3, σ2 = 5,
and nr = 50. Under these conditions, the sample size nr

varies within the set {50, 60, 70, 80, 90}.
Fig. 8. shows that under the uniform distribution, the LIC

method shows some sensitivity to changes in nr on both
the MAE and MSE error metrics, but the overall error level
remains in the low range. In particular, the MAE and MSE
of the LIC method fluctuated slightly during the increase of
the nr value from 50 to 90, but the magnitude of the change
was small compared to that of the Opt1 and Opt2 methods.

Fig. 8. Sensitivity analysis of LIC for nr-value variations
under uniform distribution.

Case 5. This case study is the sensitivity of the LIC
criterion under chi-square distribution conditions.

i: The impact of K-value on the sensitivity of the LIC
In this experiment, the settings for the values are as

follows: p = 8, n = 6000, α = 0.01, σ1 = 3, σ2 = 5,
and nr = 50. Under these conditions, the sample size K
varies within the set {5, 10, 15, 20, 25}.
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Fig. 9. shows that under the chi-square distribution, the
fluctuation of LIC is smaller compared to Opt1 and Opt2.
As the K value increases from 5 to 25, the MAE of LIC
changes more smoothly. In particular, LIC also shows low
sensitivity in terms of MSE. Its MSE values fluctuate very
little throughout the K-value range and remain consistently
low. However, the MSE values of Opt1 and Opt2 fluctuate
more. Overall, the LIC method is less sensitive to the change
of K value under the chi-square distribution and has better
stability.

Fig. 9. Sensitivity analysis of LIC for K-value variations
under chi-square distribution.

ii: The impact of nr-value on the sensitivity of the LIC
In this experiment, the settings for the values are as

follows: p = 8, n = 2000, α = 0.01, σ1 = 3, σ2 = 5,
and nr = 50. Under these conditions, the sample size nr

varies within the set {50, 60, 70, 80, 90}.
Fig. 10. shows that under the chi-square distribution, as

the value of nr changes, the MAE and MSE curves of the
LIC method show different trends compared to Opt1 and
Opt2. The MAE of the LIC reaches a local peak at nr =
60, and then decreases with the increase of nr. Similarly,
the MSE of LIC also reaches a peak at nr = 60, and then
shows a decreasing trend as nr continues to increase. These
fluctuations may indicate that the LIC method is sensitive to
changes in the parameter nr, especially when the nr value
is low.

Fig. 10. Sensitivity analysis of LIC for nr-value variations
under chi-square distribution.

Case 6. This case study is the sensitivity of the LIC
criterion under geometric distribution conditions.

i: The impact of K-value on the sensitivity of the LIC
In this experiment, the settings for the values are as

follows: p = 8, n = 6000, α = 0.01, σ1 = 3, σ2 = 5,
and nr = 50. Under these conditions, the sample size K
varies within the set {5, 10, 15, 20, 25}.

Fig. 11. shows that under the geometric distribution, the
MAE value of the LIC method remains at a low level and
fluctuates little when the K value changes. Moreover, its
MSE value also remains the lowest throughout the K value
range, with a small change in amplitude. This indicates that
the LIC method can maintain its performance consistency
well in the face of changes in the parameter K. In contrast,
the Opt1 and Opt2 methods show greater fluctuations when
certain K values change.

Fig. 11. Sensitivity analysis of LIC for K-value variations
under geometric distribution.

ii: The impact of nr-value on the sensitivity of the LIC
In this experiment, the settings for the values are as

follows: p = 8, n = 2000, α = 0.01, σ1 = 3, σ2 = 5,
and nr = 50. Under these conditions, the sample size nr

varies within the set {50, 60, 70, 80, 90}.
Fig. 12. shows that under the geometric distribution, the

LIC method shows a certain sensitivity to the change of
parameter nr. On the two error indicators of MAE and MSE,
the error value of the LIC method fluctuates with the change
of nr, especially around nr = 80, the MAE value of the LIC
method shows a local peak. And the MSE values remained
low and stable over the entire nr range. This sensitivity
indicates that the performance of the LIC method may be
affected to a certain extent when adapting to the change of
the nr parameter, but overall, it can still maintain a low error
level.

D. Summary of the simulation
In the simulation experiment of numerical analysis, the sta-

bility and sensitivity when dealing with different distribution
data were deeply explored. The experimental results show
that the criterion exhibits strong stability and sensitivity.
It can effectively reduce errors and improve the accuracy
and reliability of data. Especially when the data size and
dimension change, the LIC criterion shows good stability.
It can maintain a low error value and a relatively stable
curve trend. Most importantly, these findings highlight the
superiority of the LIC criterion in handling different data
distributions. They provide theoretical support for the further
research and application of this criterion.
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Fig. 12. Sensitivity analysis of LIC for nr-value variations
under geometric distribution.

This study verified the effectiveness of the Student LIC
standard through simulation experiments. Although the re-
search results are quite insightful, we must admit that the
generalizability of these results may be limited by sample
selection and model assumptions. For example, if the data
distribution deviates from our assumed distribution, the ac-
curacy of the model will decrease. Future research should
test the stability and reliability of the LIC standard under a
wider range of conditions.

VI. CONCLUSION

This paper discusses the theoretical basis of Student t-
linear regression model. And discussed its applicability in
distributed data estimation. In particular, the comparison
between LIC and other subset selection methods highlights
the superiority of the Student LIC principle in dealing with
non-normal error distribution and outlier data. The research
results show that the Student LIC criterion can not only
achieve optimal subset selection, it can also effectively re-
duce redundant information and maintain a small credibility
interval, thereby improving the estimation accuracy.

DATA AVAILABILITY

The criterion has been implemented by us in an R package
called LIC, and this package has been publicly released.
For more details, please visit the website at https://CRAN.R-
project.org/package=LIC.
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