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Abstract—A bi-level optimization model for Battery Energy 
Storage Systems (BESS) was proposed, focusing on both 
economic efficiency and reliability. The model effectively 
alleviated the timing mismatch between new energy generation 
and load demands. The upper level solved the connection 
location and optimal capacity of the BESS with the objective of 
minimizing the average daily costs of the BESS. The lower level 
determined the daily operation strategy of the BESS by 
minimizing the vulnerability of the power grid, reducing peak 
load shavings, and enhancing the ability to suppress load 
fluctuations. An improved grey wolf optimization algorithm 
(IGWO) was employed to solve this model, and an analytic 
hierarchy process (AHP) method was used at the lower level to 
determine the weight coefficients of each objective. The model's 
effectiveness was investigated through simulations on the 
modified IEEE-33 bus system. The results demonstrated that 
the proposed bi-level optimization model for energy storage not 
only achieved optimal benefits but also improved load 
fluctuation and voltage quality. 
 

Index Terms—Battery energy storage system; bi-level model; 
improved GWO algorithm; analytic hierarchy process 
 

I. INTRODUCTION 

n recent years, as energy supplies have tightened, China 
has intensified efforts to clean its energy sources under the 

dual-carbon target [1]-[2]. Distributed Generations (DGs), 
primarily photovoltaics (PV) and wind turbines (WT), have 
developed rapidly due to their cleanliness and environmental 
friendliness. Due to the intermittent and uncertain nature of 
their output, the extensive integration of DGs into 
distribution networks may lead to voltage violations, changes 
in power flow distribution, and system losses increase, which 
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may adversely affect the safe, economical, and stable 
operation of the system [3]-[5]. Battery Energy Storage 
Systems (BESSs) have flexible power supply and storage 
capabilities, making them effectively alleviate the timing 
mismatch between new energy generation and load demands. 
In addition, they can reduce the abandoning of wind and solar 
power, fully leveraging the advantages of renewable energy 
sources [6]. The proper configuration of energy storage 
systems is particularly important in distribution systems with 
DGs. Excessive capacity and improper connection locations 
can have a direct impact on the high efficiency and economic 
functioning of the distribution networks, while insufficient 
capacity has a minimal effect on enhancing system 
operational efficiency [7]-[8]. Numerous scholars have 
conducted studies on the selection of sites and capacity 
determination of BESS. The reference [9] proposed a strategy 
to optimally allocate distributed ESS size by injecting P and 
Q into the distribution network through ESS, and a 
multi-objective energy storage siting and capacity 
optimization model was established to improve voltage 
quality and reduce power loss. A method in [10] was 
proposed for an optimal configuration of micropower sources 
and energy storage devices based on optimal expectations of 
power characteristics. This method aimed to minimize the 
average fluctuation rate of the total output power of 
micro-sources and micro-grid to effectively reduce the 
maximum adjustable power and available capacity of ESS. In 
the reference [11], a capacity optimization allocation method 
for BESS considering the primary frequency regulation rate 
characteristics was proposed to increase the frequency 
regulation capability and performance of the power system. 
However, the above models did not start from the economics 
of installing energy storage, which might lead to high 
installation and maintenance costs. The reference [12] 
constructed an active distribution network planning model 
with dynamic configuration of energy storage, and validated 
the model with four scenarios proposed in spring, summer, 
autumn and winter, which effectively improved the reliability 
of electricity consumption and operation economy. The 
reference [13] proposed an optimal planning scheme for grid 
integration of photovoltaics and energy storage, which 
effectively maintained the balance between economics and 
carbon emissions within the active distribution network. 
Bi-level optimization, as an effective method for solving 
energy storage system planning problems, has been widely 
applied in power systems. Table 1 shows the progress of 
research on the optimal allocation of energy storage using 
bi-level optimization over the year. 

I
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TABLE I 
COMPARISON OF RELATED STUDIES 

Upper level model objective function Lower level model objective function 
Optimization 

algorithm 
Reference 

Annual cost: equipment investment cost, operation and maintenance  
cost, power purchase cost from the power grid 

Energy storage charging and discharging 
costs 

IBPSO 14 

Total cost of investment in distribution network operations: the 
total cost of distribution network operation investment, the input costs 
for energy storage construction 

Voltage fluctuations; Load fluctuations GA+IMOPSO 15 

The total planning cost of the ESS in the distribution network: the 
investment and construction cost of energy storage, operation and 
maintenance cost, auxiliary equipment cost 

The utilization rate of the energy storage 
battery; Indicator of daily voltage deviation; 
The network loss rate 

PSO+NSGA‑III 16 

The present value of total cost: the current value of the investment 
cost, the present value of operating cost 

Anti-burst capability index of distribution 
network 

Mathematical 
method 

17 

The average daily costs of BESS: the daily investment cost, daily 
maintenance cost, daily charging and discharging cost and daily 
generation subsidy of the BESS 

Grid vulnerability indicators; Peak load 
shaving; Suppression of fluctuations 

IGWO This paper 

 
The reference [14] established a bi-level model for the 

joint operation of distributed power supply and energy 
storage in distribution networks, and improved the particle 
swarm algorithm by using chaotic optimization, which 
effectively improved the economy of operation and voltage 
distribution. Reference [15] presented an optimal allocation 
strategy for energy storage capacity in distribution network, 
which enhanced operational economy and mitigated voltage 
and load fluctuations. A bi-level optimization model for 
multi-point energy storage was established in reference [16] 
considering the service life of energy storage, which 
effectively reduced the planning cost and voltage fluctuation 
rate. The use of a variety of renewable energy sources and 
energy storage for distribution network planning guaranteed 
the economic operation of the distribution network and 
improved the reliability of a single emergency outage[17]. 
The above-mentioned references only considered one or a 
few of the indicators of economy or reliability in distribution 
network operation for the optimal configuration of BESS. 
However, in the optimization process, factors such as 
economy, safety, and reliability are often contradictory. 
Optimization based solely on a single-sided metric cannot 
meet the practical engineering requirements. Furthermore, 
the optimization configuration of BESS presents challenges 
such as multi-dimensionality, complex coupling 
relationships and huge computation. The reference [18] 
employed a multi-objective non-dominated sorting genetic 
algorithm to solve the multi-objective model of BESS. 
However, this algorithm exhibited strong randomness in its 
crossover and mutation operations. Similarly, as a 
mainstream algorithm, the Particle Swarm Optimization 
(PSO) algorithm was known for its fast convergence and 
simple structure, but it was prone to getting trapped in local 
optima [19].  

To address the issues mentioned above, a bi-level 
optimization configuration model for BESS in this paper 
was established through the following four points: (1) A 
bi-level model was used for planning the configuration of 
BESS. The upper level model optimized the average daily 
cost of BESS, while the lower level model focused on 
optimizing the power grid's vulnerability index, peak load 
shaving, and the ability to stabilize load fluctuations. (2) The 
analytic hierarchy process method (AHP) was adopted to 
determine the weight coefficients of the objectives at the 
lower level optimization model. (3) An improved grey wolf 
optimization algorithm (IGWO) was proposed, which 

iteratively solved the upper and lower level optimization 
models, avoiding issues such as getting trapped in local 
optima, common in traditional multi-objective algorithms. 
(4) The impact of BESS with different SOC limits and the 
number of connections on the distribution network was 
compared and analyzed. Simulations were conducted on the 
IEEE-33 node distribution network system to verify the 
effectiveness of the proposed method.  

 

II. PHOTOVOLTAIC, WIND TURBINE, AND BESS MODELING 

2.1 PV model  
The output power of the photovoltaics (PV) and the wind 

turbine (WT) is influenced by solar irradiance, temperature, 
wind speed, cloud cover, humidity, etc. Among these, PV is 
most significantly affected by solar irradiance, while WT is 
primarily influenced by wind speed. The solar irradiance and 
wind speed data involved in this paper are generated by 
simulation with the HOMER software. The relationship 
between the output power PPV of PV and solar irradiance r is 
as follows [20]: 

 (1) 

where, PPe represents the rated output power of the PV; rN 
is the solar irradiation amplitude when the PV output power 
is maximum. 

2.2 WT model 
The output power PWT of the wind turbine expressed as a 

function of wind speed v is as follows [21]: 

 (2) 

where, vr is the rated wind speed; vin and vout represent the 
cut-in wind speed and the cut-out wind speed, respectively; 

 is the rated output power of the WT. 

2.3 BESS model 
The State of Charge (SOC) of the BESS depends on the 

charge state at the previous moment. The SOC at each 
moment can be expressed as: 

(1) Energy storage charging process 
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 (3) 

(2) Energy storage discharge process 

 (4) 

where, δ is the self-discharge rate; Pc(t) and Pd(t) are the 
charging and discharging power of BESS at moment t, 
respectively; Δt is the time interval of charging and 
discharging; EBESS is the capacity of BESS; ηc and ηd are the 
charging and discharging efficiency of BESS, respectively. 
 

III. BI-LEVEL PLANNING MODEL FOR BESS SIZING AND 

SITE SELECTION 

The optimization model takes into account operational 
optimization and economic efficiency. However, it involves 
a large number of variables and scales, making the planning 
issue complex and difficult to resolve directly. To address 
multi-level and large-scale optimization problems, scholars 
have proposed a multi-level planning framework. Its special 
form, bi-level planning [22], has been used extensively in 
electric power systems[23]-[24]. Therefore, to reduce the 
complexity of solving the planning problem, a bi-level 
optimization method to articulate the BESS planning issue 
was proposed in this study. In the bi-level planning, the 
interrelationships between the energy storage system's 
capacity, operational strategy, and location are considered, 
with the structure of the bi-level optimization model 
illustrated in Fig.1. 

 
Fig. 1.  Bi-level planning model structure 

 
In a bi-level planning model, the objective function, 

decision variables and constraints are different for the upper 
and lower level model, but the optimization processes of the 
upper and lower layers depended on each other and required 
information interaction between the layers through 
parameter transfer: the upper level planning passed the 
decision variables, namely the capacity and installation 
location of BESS, as parameters to the lower level planning, 
and these parameters served as initial conditions and 
constraints for the optimization of lower level decision 
variables. Based on this, the lower level planning model 
performed power flow calculations and optimized the 
24-hour operational strategy for BESS connected to various 
nodes. The objective function values obtained at the lower 

level were then fed back into the objective function of the 
upper level, and the process iterated repeatedly until the 
optimum was reached. 

3.1 Upper level planning model 
3.1.1 Objective function  
The minimization of average daily costs of BESS (CTotal,d) 

as the objective function in the upper level can be formulated 
as: 

                    (5) 

where, CI,d, COM,d, CCD,d and CES,d represent the daily 
investment cost, daily maintenance cost, daily charging and 
discharging cost and daily generation subsidy of the BESS. 

  (6) 

  (7) 

where, NBESS, EBESS, m and x represent the number of 
BESS units, capacity of BESS, cost per unit capacity and 
investment years, respectively; λ is the annual capital 
recovery factor; and ρ is the discount rate. 

  (8) 

herein, the annual maintenance cost of BESS is assumed 
to be 5%. 

  (9) 

where, φp (t) and φs (t) represent the electricity purchasing 
and selling prices for BESS during the period time t, 
respectively. 

  (10) 

where, the government subsidy for BESS is 0.12 
Yuan/kWh. 

3.1.2 Constraints 
(1) BESS capacity constraint 
  (11) 

where, EBESS,min and EBESS,max are the upper and lower 
limits of the BESS capacity, respectively. 

(2) SOC constraint 
  (12) 

where, SOCmax and SOCmin are the upper and lower SOC 
limits, respectively. 

(3) BESS energy balance constraint 
  (13) 

To ensure the normal operation of the BESS in the next 
cycle, it is required that the SOC values at the beginning and 
end of the period are equal. 

(4) Power balance constraint 

(14) 

where, Pgrid (t) is the absorbed/fed-in power from the 
upper grid, Nbus, Nl, NBESS, and NDG are the total number of 
nodes, branches, energy storage, and distributed Generations, 
respectively; Pload,i(t)  is the load power of node i; PL,l(t) is 
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the network loss of the lth branch; PBESS,k(t) is the kth BESS 
output power at time t; and PDG,j(t) is and the jth DG output 
power at time t.  

(5) Node position constraints 

  (15) 

where, LBESS,i represents the node which the ith BESS is 
connected, the range of connected nodes is from 2 to n, and 
the ith BESS and the jth BESS cannot be connected to the 
same node. 

3.2 Lower level planning model 
3.2.1 Objective function 
The lower level model’s objective function focused on 

minimizing the grid's vulnerability, reducing the Peak load 
shaving in the system within a day, and suppressing 
fluctuations. It optimized the operational strategies of the 
BESS connected to various nodes. 

(1) Grid vulnerability indicators 
The vulnerability of node i at moment t is expressed as: 

  (16) 

where, Vi (t) is the voltage of node i at moment t; Vi (0) is 
the rated voltage of node i; ΔVmax is the maximum voltage 
excursion. 

Normalized at moment t to 

  (17) 

where,  and   respectively represent the 

maximum and minimum values of the vulnerability of all 
nodes at time t.  

Thus, the average value of grid vulnerability at time t is: 

  (18) 

As voltage collapse at any node can potentially initiate a 
chain reaction of collapses at other nodes, it's imperative that 
the grid vulnerability index also accounts for the uniformity 
of vulnerability distribution across all nodes. To address this, 
an equilibrium index method was employed to quantify the 
degree of equilibrium, denoted as J, ranging from 0 to 1. 
Here, 0 signifies absolute equilibrium, while 1 indicates 
absolute disequilibrium.  

The degree of equilibrium at time t is: 

  (19) 

In the formula, pi(t) represents the ratio of the 
vulnerability of node i to the total vulnerability of the grid at 
time t. The expression is: 

  (20) 

Finally, the average grid vulnerability indicator and the 
equilibrium indicator at time slice t are weighted and 
summed (with each weight being 0.5 in the text), and then 

the average value of 24 h is calculated to obtain the final 
vulnerability indicator GV: 

  (21) 

(2) Peak load shaving 
  (22) 

where,   and  are the maximum and minimum 

net load power of the system for one day after connecting the 
BESS, respectively. 

(3) Suppression of fluctuations 

  (23) 

The objective function of the lower level model is 
described as follows: 

  (24) 

where, ,  and are normalized to the objective 

functions f1, f2 and f3 respectively; k1, k2 and k3 are the weight 
coefficients of , and respectively, satisfying 

k1+k2+k3=1. 
3.2.2 Constraints 
(1) Power flow constraint 

  (25) 

where, Pj and Qj are the active and reactive power 
injections at node j respectively; Vj and Vi are the voltage 
amplitudes at node j and i respectively; ij is the voltage 
phase angle difference between node i and j; Gij and Bij are 
the branch conductance and conductance between node i and 
j. 

(2) Nodal voltage constraints 
  (26) 

where, Vi,  and  are the voltage amplitude of 

node i and its upper and lower limits respectively. 

IV. DETERMINATION OF TARGET WEIGHTING FACTORS 

AHP [25] is a way to decompose a complex problem into 
several parts and then compare them two by two to evaluate 
the problem. The method quantitatively corrects the 
evaluation process through a nine-level scale method, the 
core of which is to determine the evaluation indexes and 
form an evaluation system. Therefore, an important step in 
the hierarchical analysis method is to use the nine-level scale 
method to construct a judgment matrix to determine the 
importance of each objective, the judgment matrix A can be 
expressed as: 

  (27) 

where, aij is the importance of the ith indicator fi compared 
to the jth indicator fj, and its value is shown in Table 2. 
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TABLE Ⅱ 
AHP SCALE VALUES 

Value of aij Hidden meaning 

1 fi is as important as fj 
3 fi is slightly more important than fj

 

5 fi is significantly more important than fj 
7 fi is intensely more important than fj 
9 fi is extremely important compared to fj 
2、4、6、8 Indicates the intermediate value of the above 

judgment 
Inverse number Importance of indicator j to indicator i, mji=1/mij 

After constructing the judgment matrix, the consistency 
test must be carried out, which is to avoid that the indicator x 
is more important than the indicator y, but the final result 
shows that the indicator y is more important than the 
indicator x. If the test passes, the normalized eigenvectors 
are the weight coefficients of the objective function. 
Otherwise, the judgment matrix must be reconstructed until 
the consistency test passes, the specific steps are as follows. 

The eigenvector ωk, (k=1, 2, 3, …, n) corresponding to the 
largest eigenvalue λmax of the judgment matrix A is 
calculated, which is normalized to the weight value kk of 
each indicator, denoted as: 

  (28) 

The weights corresponding to each indicator are then: 
  (29) 

The consistency test is calculated as: 

  (30) 

where, CI and RI are the consistency and random 
consistency indicator, respectively; CR is the consistency 
ratio, whose value is less than 0.1 represents that the 
judgment matrix passes the consistency check; n is the 
number of indicators. 

V. PLANNING SOLUTION ALGORITHM 

5.1 The original grey wolf optimizer algorithm 
The grey wolf optimizer algorithm (GWO) [26] is inspired 

by the cooperative hunting behavior of grey wolf packs. It 
simulates the collaborative mechanisms observed in wolf 
packs to solve optimization problems. It is characterized by 
a stable structure and requires a few parameters to be 
adjusted. In GWO, grey wolves have four social ranks, in 
descending order of rank: alpha (α) wolves, beta (β) wolves, 
delta (δ) wolves, and omega (⍵) wolves. The first three 
categories of wolves guide the omega wolves in hunting 
prey. The mathematical model for surrounding the prey can 
be expressed as: 

  (31) 

  (32) 

where, t is the number of iterations;  is the distance 

between the prey and the wolf;  and are the coefficient 

vectors;  and  are the wolf and the prey position vector, 

respectively. The vectors  and  are calculated as follows: 

  (33) 

  (34) 

where r1 and r2 are random values between [0,1]; the 
convergence factor  takes values in the range [0,2] and 
decreases linearly as the number of iterations increases. 

The mathematical model for chasing prey is detailed in 
reference [26]. 

5.2 Improved grey wolf optimizer 
Like other intelligent algorithms, the initial population in 

the grey wolf optimizer is generated randomly. If the initial 
population generation is overly concentrated it will affect 
the results of the solution scheme. Additionally, the grey 
wolf optimizer also faces the issue of premature 
convergence. To address these two points, an improved grey 
wolf optimizer is proposed in this paper. 

(1) Generating initial population using tent mapping 
  The basic GWO cannot ensure that the initial population 

is uniformly distributed in the solution space. Chaotic 
sequences have the advantages of randomness, regularity, 
and ergodicity. Compared to other mappings, the tent 
mapping generates more uniform sequences. Therefore, this 
paper utilizes tent mapping for the initialization of the grey 
wolf population. The tent mapping can be expressed as: 

  (35) 

where the distribution sequence generated is most 
uniform when u is taken as 0.5, and this belongs to the most 
typical tent mapping [27], when the distribution density is 
insensitive to parameter changes. Then equation (35) can be 
transformed into equation (36). 

  (36) 

Based on the tent mapping, the population Y is 
represented as: 

  (37) 

(2) Improved convergence factor 
The convergence factor influences the search capability of 

the grey wolf algorithm. The original grey wolf algorithm 
employs a linear convergence factor, but the convergence 
process in most optimization problems is non-linear. 
Therefore, this paper introduces an exponential function to 
improve the convergence factor a. The new non-linear 
convergence factor is represented as: 

  (38) 

where, T is the maximum number of iterations. 
The curve of the improved convergence factor compared 

to the original one is shown in Fig.2. The absolute value of 
slope for the improved convergence factor increases from 
small to large, which is beneficial for the algorithm to 
diverge better in the early stages of iteration, facilitating the 
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search for the global optimum, and later improving the 
convergence speed of the algorithm. 

 
Fig. 2.  Convergence factor curve before and after improvement 

 
With the large number of variables and dimensions in the 

bi-level planning model and the complexity of the solution 
problem, this paper encodes the location of the proposed 
bi-level grey wolf algorithm based on the idea of interactive 
iteration as shown in Fig.3. 

The upper level planning consisted of two parts: the 
capacities and the connection locations of the n BESS units, 
totaling 2*n dimensions, as shown in Fig.3(a). The lower 
level planning involved the power output of each BESS unit 
from the first to the nth for every hour of the day, totaling 
24*n dimensions, as shown in Fig.3(b). 

 
(a) Upper level coding 

 

 
(b) Lower level coding 

Fig. 3.  Bi-level coding structure 

 
The process of the designed bi-level algorithm is 

illustrated in Fig.4. 
The specific steps of the proposed algorithm are as 

follows: 
Step 1: Input the data of the distribution network to be 

planned and the algorithm parameters. Both the upper and 
lower populations are set to 30, with a maximum of 100 
iterations.  

Step 2: Initialize the upper level wolf pack by tent 
mapping and set the upper level iteration count i=0. 

Step 3: Pass the initialized population of the upper level to 
the lower level as known quantities, initialize the lower level 
wolf pack by tent mapping, and set the lower level iteration 
count j=0.  

Step 4: Input the BESS capacity and connection locations 
passed from the upper level, along with the BESS output 
obtained from the lower level initialization, into the system 

for power flow calculation, obtaining the lower level fitness 
function values.  

Step 5: Increase the lower level iteration count by one: 
j=j+1, and update the positions of the lower level wolf packs. 
If j<jmax, return to Step 3; otherwise, input the lower level 
results obtained in Step 4 back into the upper level fitness 
function.  

Step 6: Calculate the value of the upper level fitness 
function, update the position of the upper level wolf packs, 
and increment the upper level iteration count by one, i=i+1.  

Step 7: Check if the upper level iteration count meets 
i<imax. If it does, return to Step 2; otherwise, output the 
bi-level optimization configuration results of BESS. 

 
Fig. 4.  Flow of the bi-level planning algorithm 

 

VI. SIMULATION ANALYSIS FOR THE PROPOSED BI-LEVEL 

MODEL 

6.1 Parameter settings  
To validate the performance of the proposed bi-level 

planning model, a simulation analysis was conducted using 
the modified IEEE 33-node distribution system, as 
illustrated in Fig.5. The voltage amplitude is 12.66 kV, with 
a total load of 3715 kW + 2300 kvar. System parameters can 
be found in reference [28]. A 400 kW photovoltaic system 
was allocated at node 28, and 300 kW wind turbines were 
connected at nodes 9, 20, and 25. The typical daily load 
curve is depicted in Fig.6, while the typical daily output of 
PV and WT, calculated using equations (1) and (2), is 
presented in Fig.7. 
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Fig. 5.  Modified IEEE33-node system 
 

 
Fig. 6.  Typical daily load characteristic curve 
 

 
Fig. 7.  Typical daily output of PV and WT 
 

In this paper, it is considered that among the three 
indicators, peak shaving is the most important, followed by 
grid vulnerability and suppressing load fluctuations is the 
least important. Upon comparison, peak shaving is slightly 
more important than grid vulnerability; grid vulnerability is 
slightly more important than suppressing load fluctuations. 
The judgment matrix obtained in section 3 is as follows: 

  (39) 

As calculated by equation (30), the judgment matrix 
yielded a consistency ratio CR of 0.088<0.1, indicating that it 
passed the consistency test. The weight values for each 
objective function are [0.297,0.5396,0.1634], i.e., k1=0.297, 
k2=0.5396, k3= 0.1634. 

6.2 Case study  
In order to verify the effectiveness of the bi-level planning 

models and algorithms proposed in this paper, a comparative 
analysis is carried out through the following four scenarios. 

Scenario 1: BESS is not accessed; 
Scenario 2: BESS for single access, SOC range is set to 

40%-60%, 25%-75%, 10%-90% respectively, and optimized 
using GWO algorithm. 

Scenario 3: 2-4 nodes are selected to access BESS, 
respectively, with the appropriate SOC range obtained based 
on Scenario 2, and the GWO algorithm is used for 
optimization. 

Scenario 4: Based on the results of Scenario 3, the optimal 
number of BESS accesses is determined and analyzed using 
the IGWO and PSO algorithms for comparison. 

The results of the optimal allocation of BESS under the 
different scenarios are shown in Table 5. A positive average 
daily cost of BESS indicates daily expenditure, while a 
negative cost indicates profitability for the scenario. 

The parameters of BESS and time-of-use electricity price 
are presented in Tables 3 and 4, respectively. 

TABLE Ⅲ 
PARAMETERS OF THE BESS 

Parameters Values 

Unit capacity cost (103Yuan/MWh) 127 
Year of investment/(year) 10 
Discount rate/% 6.332 
Charging/discharging efficiency 0.95 
SOC initial value 0.5 
Self-discharge rate/% 0.1 

TABLE Ⅳ 
TIME-OF-USE ELECTRICITY PRICE 

Time(h) Price (Yuan/kWh) 

00:00-07:00  23:00-24:00 0.3818 
07:00-10:00  15:00-18:00  21:00-23:00 0.8395 
10:00-15:00  18:00-21:00 1.3222 

 
Table 5 illustrates that without BESS integration, the grid 

vulnerability index is 0.4610, the load peak-to-valley 
difference is 0.3721 p.u., and the load fluctuation value is 
0.051. Upon integrating BESS, there was a notable reduction 
in both grid vulnerability and load peak-to-valley difference, 
accompanied by an enhancement in load fluctuation 
suppression. All these indicators showed improvement. 
Additionally, in each scenario, BESS units were 
strategically located near branching nodes, terminal nodes, 
and distributed energy sources within the distribution 
network, effectively contributing to power support. 

In Scenario 2, the BESS with the SOC range from 10% to 
90% demonstrated superior voltage regulation, maximum 
power adjustment capacity, and optimal performance in load 
fluctuation suppression. As the SOC allowable range 
increased, the average daily cost of BESS decreased from 
153.7 Yuan to 67.104 Yuan. Meanwhile, the grid 
vulnerability index decreased, the peak load shaving and 
load fluctuation further reduced. In order to reflect more 
clearly the impact of different SOC allowable ranges on 
planning, the BESS output and the SOC curve under 
Scenario 2 are presented in Fig.8, respectively. 

Combined with Table 5 and Fig.8, it is evident that when 
the SOC range is 40%-60%, the BESS is connected to node 
32 with an access capacity of 0.3835 MWh, in this case, 
there is irregular charging and discharging behavior of the  
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TABLE Ⅴ 
RESULTS OF THE OPTIMAL CONFIGURATION OF BESS UNDER DIFFERENT SCENARIOS 

Scenarios 

The 
number 

of 
BESS 

Solution 
algorithm 

SOC range 

BESS planning results 
Upper level 

objective function 
Lower level objective function 

Nodes/ capacity (MWh) 
Average daily 
cost (Yuan) 

Grid 
vulnerability 

Peak load 
shaving (p.u.) 

Load 
fluctuation 

Scenario 1 / / / / / 0.4610 0.3721 0.0511 
Scenario 2 1 GWO 40%-60% 32 / 0.3835 153.70 0.4606 0.3443 0.0431 
 25%-75% 17 / 0.4501 18.642 0.4591 0.3252 0.0402 

10%-90% 17 / 0.3917 -67.104 0.4572 0.3107 0.0378 
Scenario 3 2 GWO 10%-90% 17 / 0.7799   32 / 0.4593 -242.23 0.4426 0.2530 0.0261 

3 3 / 0.4836     17 / 0.4022 

32 / 0.4344 

10.972 0.4479 0.2746 0.0292 

4 3 / 0.4846     16 / 0.3715 

17 / 0.3857   29 / 0.4529 

61.324 0.4489 0.2759 0.0399 

Scenario 4 2 PSO 10%-90% 16 / 0.6309   17 / 0.6407 -149.88 0.4459 0.2576 0.0304 

IGWO 16 / 0.4904   17 / 1.0582 -410.80 0.4408 0.2510 0.0234 

 

BESS. This phenomenon can be attributed to the limited 
SOC allowable range, which hinders the optimal functioning 
of the BESS. it becomes apparent that with a wider SOC 
available range, BESS units exhibit the ability to discharge 
during peak load periods and charge during low load periods. 
The power curves of net load in Scenario 2 are shown in 
Fig.9. 

 
(a) SOC change curves 

 
(b) Power of BESS 

Fig. 8.  Variation of BESS output and SOC for each BESS in Scenario 2 
 

In Fig.9, the red line depicts the net load curve with a SOC 
range of 10%-90%. Compared to the net load curves under 
the other two SOC ranges, the peaks and valleys of the net 

load curve under the SOC available range of 10%-90% are 
significantly reduced, measuring 0.7603 p.u. and 0.4496 p.u., 
respectively. At this point, the peak-to-valley difference is 
0.3107 p.u., which is 16.50% lower than the 
pre-optimization period. 

 
Fig. 9.  Net load curves in Scenario 2 
 

This verifies that a larger available range of SOC is 
preferred, and considering the life of the storage and 
maintaining its energy level to prevent overcharging and 
over-discharging, the BESS with a SOC range of 10%-90% 
is selected for subsequent work. 

The BESS with SOC ranging from 10% to 90% is selected 
in Scenario 3, and from two to four BESSs are connected 
sequentially in the distribution network for comparative 
analysis. The SOC as well as the operation strategy of 
BESSs at different nodes are shown in Fig.10. 
Combined with Fig.10 and Table 5, it can be seen that on the 
whole no matter how many BESSs are connected to the 
distribution network, they can cooperate, discharging during 
peak hours, charging during low valley hours, and adjusting 
the technical parameters during the rest of the day in 
accordance with the constraints of the individual objective 
functions. 

From Table 5, it is observed that as the number of BESSs 
increases from one to four, the average daily costs of BESS, 
peak load shaving, and load fluctuation initially decrease 
and then increase. Each objective function has an optimal 
value at the access of two BESSs. Compared to no BESS,  
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(a) SOC of two BESSs 

 
(b) SOC of three BESSs 

 
(c) SOC of four BESSs 

 
(d) Power output of two BESSs 

 

 
(e) Power output of three BESSs 

 
(f) Power output of four BESSs 

Fig. 10.  The SOC and power output of BESSs in Scenario 3 
 

the average daily cost of BESS is -242.23 Yuan which 
obtained the optimal economy, the grid vulnerability index 
is 0.4426, a reduction of 3.99%, and the load fluctuation 
index is 0.0261 with a reduction of 48.92%. However, 
connecting more than two BESSs to the distribution network 
leads to an increase in grid vulnerability, as well as worsened 
peak load shaving and load fluctuation.  

The results of BESS accessing two points in the 
distribution network are better than the results of accessing 
one point, which can be summarized for the following 
reasons: Firstly, an extra BESS can dispatch more power to 
gain profit through time-sharing tariff arbitrage. What is 
more, there has been a decrease in the average daily cost of 
the BESS. Secondly, the extra BESS can also take part in the 
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peak shifting task of the distribution network, which leads to 
an improvement of the peak-to-valley difference and a 
reduction of load fluctuation. 

 
Fig. 11.  Net load curves in Scenario 3 
 

In Scenario 4, the proposed IGWO algorithm is employed 
to determine the optimal configuration of the two BESS 
units integrated into the distribution network. The SOC, 
operation strategy and net load profile of the BESSs are 
shown in Fig.12, Fig.13, and Fig.14, respectively. 

As Table 5 shows, the average daily cost of BESS after 
optimization using the IGWO algorithm in scenario 4 is 
-410.8 Yuan, which is more profitable than that of the GWO 
algorithm by 168.57 Yuan per day, and the grid vulnerability 
indicator, peak load shaving and load fluctuation are 0.4408, 
0.2510p.u. and 0.0234 respectively, which are 4.06%, 0.79% 
and 10.34% less than that optimized by GWO algorithm, and 
4.38%, 32.55% and 54.21% less than the scenario without 
BESS respectively. In contrast, the average daily cost of 
BESS, grid vulnerability index, peak load shaving, and load 
fluctuation after optimization using the PSO algorithm are 
-149.88 Yuan, 0.4459, 0.2576, and 0.0304, respectively. 
These results are inferior to those optimized by the GWO 
and IGWO algorithms, indicating that the PSO algorithm is 
less effective than the GWO algorithm in handling 
high-dimensional, nonlinear, and complex problems. 

 

 
Fig. 12.  The operation strategy and SOC curve of the 16-node BESS 
 

From Fig.12, Fig.13 and Fig.14, it can be seen that the 

overall trend of operation strategies is both discharging at 
peak loads and charging at valley loads in Scenario 4. 
Additionally, the BESS engages in charging and discharging 
activities during the remaining periods to facilitate arbitrage 
while maintaining equilibrium with various distribution 
network indicators. Taking the BESS at node 17 as an 
example, the BESS discharges power to the distribution grid 
in conjunction with the WT from 0:00 to 4:00, effectively 
lowering the net load curve during this period. Subsequently, 
from 5:00 to 9:00, the BESS absorbs surplus power, thereby 
elevating the load trough. Following this, from 9:00 to 14:00, 
coinciding with peak electricity prices, the BESS discharges 
power to the distribution grid in coordination with the PV. 
This action not only mitigates the initial peak of the load 
curve but also enables tariff arbitrage. Between 15:00 and 
17:00, the BESS is recharged at reduced tariffs. Furthermore, 
from 18:00 to 21:00, in conjunction with ample wind 
resources and higher tariffs, the BESS supplies power to the 
distribution network. This not only reduces the second peak 
of the load curve but also leverages tariff differentials for 
profit. 

 
Fig. 13.  The operation strategy and SOC curve of the 17-node BESS 
 

 
Fig. 14.  Net load curves in Scenario 4 
 

Throughout the day, the SOC values of the two BESS 
units consistently remain within the range of 10% to 90%. 
Specifically, at 0:00 and 24:00, both BESS units are at a 
SOC value of 50%. This practice serves to prevent 
overcharging and over-discharging of the BESS units, 
thereby enhancing their service life. Moreover, maintaining 
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the SOC within this range ensures an adequate energy 
reserve to optimize various distribution network indicators 
for the following day. 

From Fig.14, it can be seen that the net load curve 
optimized by the IGWO algorithm is smoother compared to 
the GWO algorithm, which verifies the superiority of the 
IGWO algorithm proposed in this paper. 

 
(a) Voltage before BESS access 

 
(b) Voltage after BESS access 

Fig. 15. Voltage before and after BESS access 
 

Fig.15(a) shows the voltage profile before installing the 
BESS, and Fig.15(b) shows the node voltage profile at 
Scenario 4. In one day, the voltage magnitude is as low as 
0.9253 p.u. without BESS access and 0.9271 p.u. after BESS 
access. Furthermore, voltage curves become smoother. 
 

Ⅶ. CONCLUSION 

In this study, we comprehensively assessed the economic, 
safety, and reliability aspects of the distribution network for 
establishing a bi-level optimization configuration model of 
BESS units. By orchestrating the optimization processes at 
both upper and lower levels, the potential of BESS in the 
distribution network was fully exploited. Under the 
verification of the IEEE 33-node distribution network 
system, the conclusions are as follows:  

(1) The IGWO algorithm is developed by incorporating 
tent chaotic mapping and a nonlinear convergence factor to 
enhance the performance of the GWO algorithm. This 
augmentation renders the IGWO algorithm notably more 
effective in tackling high-dimensional and nonlinear 
challenges, such as optimizing BESS. 

(2) The AHP method is utilized to transform the lower 
level complex multi-objective optimization problem into a 
multi-level single-objective problem. This transformation 
simplifies the computational process and facilitates clear and 
concise results. 

(3) Various SOC ranges of BESS are individually 
optimized, revealing that larger SOC ranges enhance both 
the economic efficiency of BESS and its regulatory impact 
on distribution network indices. However, to mitigate the 
risks of overcharging and over-discharging, SOC operation 
is typically confined within the range of 10% to 90%. This 
constraint not only safeguards the service life of BESS but 
also ensures its sustained operational reliability. 

(4) After connecting varying numbers of BESS units to 
the distribution network, it is determined that optimal 
outcomes are achieved when two BESS units are integrated. 
Utilizing the IGWO algorithm facilitates the attainment of 
optimal economic efficiency, and after BESS integration, 
the grid's vulnerability index, peak-to-valley difference, and 
load fluctuation decreased by 4.38%, 32.55%, and 54.21%, 
respectively, compared to the case without BESS. 
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