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Abstract—This paper addresses the finite-time anti-
synchronization issue for a type of delayed memristive neural
networks. By designing a novel memoryless state-feedback
controller, novel criteria on finite-time anti-synchronization of
the addressed system are discovered based on drive-response
framework, rigorous mathematical analysis techniques and
differential inclusions theory. The established theoretical results
indicate that the switching between finite-time and fixed-time
anti-synchronization depends on the position of the initial
functions, which are essentially different from existing switching
mechanism. In addition, a simulated example is given to verify
the validity of the theoretical findings.

Index Terms—Memristive neural network; Finite-/fixed-time
anti-synchronization; Time delay.

I. INTRODUCTION

IN 1971, Chua firstly proposed the concept of memristors,
until 2008, Stanley Williams et al. at Hewlett Packard

(HP) Laboratory had achieved true memristors, called a
fourth circuit component [1,2]. The size of the memristor
value relies on the total amount of charge flowing into
the device. Hence, Memristors are able to remember their
previous experiences, and this memory property makes them
promising candidates for mimicking biological synapses. In
order to further expand the application range of neural net-
works, it usually replaces the conventional resistor in network
models with the memristor, and then the conventional neural
networks become the memristive neural networks (MNNs).
Given the complex characteristics of memristors, the MNN
models have sufficient computing power and can accom-
modate more information, which are of great significance
for practical applications such as associative memory and
information processing (see [3-7]).

Recently, the study of dynamic behaviors of NNs has
became a hot research topic, such as stability [8], synchro-
nization [9], and almost periodicity [10], [11]. In particular,
synchronization related to MNNs is another meaningful topic
in describing the dynamic trajectories of nodes in various
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neural network models, which can converge in finite horizon.
Until now, there are numerous meaningful results regarding
synchronization of MNNs, like exponential synchronization
[12], lag complete synchronization [13], and asymptotic syn-
chronization [14]. Remarkably, the exponential or asymptotic
synchronization modes cannot guarantee that the status of
the corresponding error system approaches to zero within a
finite time, this greatly limits the application scope of neural
networks. Actually, faster or even limited convergence time
is usually required in practical applications, for instance,
intercepting missiles can track targets within a limited time,
even in the presence of wind deviation and signal interfer-
ence [15]. Furthermore, finite-time synchronization refers to
the optimal convergence time, and it also admits superior
robustness and anti-interference performance [16]. For this
reason, the studies on finite-time synchronization issues of
MNNs have aroused the enthusiasm of many researchers and
made fruitful theoretical results [17-21]. It is obvious that the
above-mentioned results basically based on kinds of finite-
time or fixed-time stability theorems, the switching between
these two synchronization relies on the control parameters
and is irrelevant to the position of the initial function. This
prompts us to search for new methods to explore the finite-
time synchronization problem of delayed MNNs without
using the finite-time stability theory.

Meanwhile, anti-synchronization describes the behavior
where the sum of relevant state variables of neural network
nodes is zero. Or, to put it another way, the state vari-
ables of the nodes have the reverse signs but the identical
modulus, like the chaotic behavior that often appears in
neural networks. It also can be applied in network com-
munication to transmit digital signals through continuous
transformations of synchronization and anti-synchronization,
which greatly improves the security and confidentiality of
the communication process [22]. So, the anti-synchronization
issue has become a crucial research topic by virtue of these
important applications in engineering fields. Nevertheless,
as we have seen, there is little literature on finite-time
anti-synchronization issues MNN without using the existing
finite-time stability theorems.

Motivated by above discussions, the finite-time anti-
synchronization problem of a class of time-varying delayed
memristive neural networks is studied in this paper. Specif-
ically, under the drive-response framework, by using the
Lyapunov stability theory and rigorous mathematical analysis
techniques, a class of memoryless state-feedback controller
is designed to realize the finite-time stability for the anti-
synchronization error system. It is believed that this article
brings some new and effective approaches for the qualitative
analysis of MNNs. Finally, the established results are tested
by a simulated example.

The remaining structure of this article is summarized as

IAENG International Journal of Applied Mathematics

Volume 55, Issue 3, March 2025, Pages 611-617

 
______________________________________________________________________________________ 



below. In Section 2, we give some necessary preliminaries. In
Section 3, a type of memoryless state-feedback controller is
designed to realize the finite-time anti-synchronization of the
drive-response MNNs. In Section 4, a simulation numerical
example is given to check the theoretical analysis. Ultimately,
conclusions will be drawn in Section 5.

II. PRELIMINARIES

In this article, we consider the following MNNs

d

dt
zı(t) = −dızı(t)

+
n∑
=1

Aı

(
℘(z(t))− zı(t)

)
℘(z(t))

+
n∑
=1

Bı

(
℘(z(t− ι(t)))− zı(t)

)
℘(z(t− ι(t)))

+Iı, t ≥ 0, ı = 1, 2, ..., n, (1)

in which zı(t) means the voltage of the capacitor, dı >
0 means the neuron self-inhibition, ι(t) stands for the
time-varying delay satisfying 0 ≤ ι(t) ≤ ι, ι =

max
=1,2,...,n

{sup
t≥0

ι(t)}, Iı is external constant input or bias,

℘(·) represents the feedback function, Aı(℘(z(t))−zı(t)),
Bı(℘(z(t − ι(t))) − zı(t)) mean the feedback connec-
tion weight and the delayed feedback connection weight,
respectively, which are carried out by memristor and their
memductance dictated by the voltage applied to the memris-
tor. Therefore, according to the mathematical model of the
memductance established in [23], Aı(z) and Bı(z) can be
described as:

Aı(z)
.
= Aı

(
℘(z(t))− zı(t)

)
=


Θ̇ı,

d℘(z(t))
dt − dzı(t)

dt < 0,

unchange,
d℘(z(t))

dt − dzı(t)
dt = 0,

Θ̈ı,
d℘(z(t))

dt − dzı(t)
dt > 0,

and

Bı(z)
.
= Bı

(
℘(z(t− ι(t)))− zı(t)

)
=


Π̇ı,

d℘(z(t−ι(t)))
dt − dzı(t)

dt < 0,

unchange,
d℘(z(t−ι(t)))

dt − dzı(t)
dt = 0,

Π̈ı,
d℘(z(t−ι(t)))

dt − dzı(t)
dt > 0.

The initial functions of system (1) are

zı(h̄) = ϕı(h̄), h̄ ∈ [−ι, 0],

and
ϕı(h̄) ∈ C([−ι, 0],<), ı = 1, 2, ..., n.

Let MNNs (1) be the drive system and consider the
following response MNNs

d

dt
wı(t) = −dıwı(t)

+
n∑
=1

Aı

(
℘(w(t))− wı(t)

)
℘(w(t))

+

n∑
=1

Bı

(
℘(w(t− ι(t)))− wı(t)

)
℘(w(t− ι(t)))

+Iı + µı(t), t ≥ 0, ı = 1, 2, ..., n, (2)

where wı(t) means the state of the response system, µı(t) de-
notes the control input for reaching the anti-synchronization
target, and other system parameters admit the same meaning
as system (1). The initial data of system (2) is given by

wı(h̄) = ϕ̂ı(h̄), h̄ ∈ [−ι, 0],

and
ϕ̂ı(h̄) ∈ C([−ι, 0],<), ı = 1, 2, ..., n.

Next, we consider the anti-synchronization error eı(t) =
zı(t) + wı(t) with initial functions eı(h̄) = ϕ̄ı(h̄) +
ϕ̂ı(h̄), h̄ ∈ [−ι, 0], eı(h̄) ∈ C([−ι, 0],<), ı = 1, 2, ..., n.
Adding (1) and (2) yields that

d

dt
eı(t) = −dıeı(t) +

n∑
=1

Aı(z)℘(z(t))

+
n∑
=1

Aı(w)℘(w(t)) +
n∑
=1

Bı(z)℘(z(t− ι(t)))

+
n∑
=1

Bı(w)℘(w((t− ι(t))) + 2Iı

+µı(t), a.a. t ≥ 0, ı = 1, 2, ..., n. (3)

Definition 2.1 The drive-response systems (1) and (2) are
said to be finite-time anti-synchronized if, for a appro-
priate designed feedback controller µı(t), there is a time
T (ϕ̄ı, ϕ̂ı) ≥ 0 such that

lim
t→T (ϕ̄ı,ϕ̂ı)

|eı(t)| = 0,

and

|eı(t)| ≡ 0, t ≥ T (ϕ̄ı, ϕ̂ı), ı = 1, 2, ..., n,

where T (ϕ̄ı, ϕ̂ı) is called the settling time of anti-
synchronization, which relies on the initial functions. Fur-
thermore, if T (ϕ̄ı, ϕ̂ı) is uniformly bounded, in other words,
there is a number Tmax > 0 such that T (ϕ̄ı, ϕ̂ı) ≤ Tmax,
then systems (1) and (2) are said to be fixed-time anti-
synchronized. From the above definition, one can find that
the finite-time anti-synchronization of systems (1) and (2) is
equivalent to the finite-time convergence of eı(t) described
by (3) to zero. To this end, the following technical lemma
and assumption on the activation functions are needed.
Lemma 2.1 (see Lemma 3 in [24]) Assuming that eı(t) is
a solution of system (3), if it is a differential function on <.
Then, the upper right Dini derivative D+|eı(t)| of |eı(t)| is

D+|eı(t)| =


eı(t)
|eı(t)| ėı(t), if eı(t) 6= 0,

ėı(t), if eı(t) = 0, ėı(t) > 0,
−ėı(t), if eı(t) = 0, ėı(t) < 0,

0, if eı(t) = 0, ėı(t) = 0.

Assumption 2.2 For all ı = 1, 2, ..., n, there exist nonnega-
tive constants ℘̂ı and lı such that

|℘ı(ß)| ≤ ℘̂ı, |℘ı(ß) +℘ı(ç)| ≤ lı|ß + ç|, for all ß, ç ∈ <.

Remark 2.1 There are some activation functions used in
engineering fields satisfy Assumption 2.2, such as sin ß and
arctan ß.
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III. MAIN RESULTS

In this part, we shall discuss the finite-time anti-
synchronization problem for systems (1) and (2). We first
design a memoryless state-feedback controller as follows

µı(t) = −sign(eı(t))(λı|eı(t)|+βı|eı(t)|θ+qı), 0 < θ < 1,
(4)

where λı, βı, qı are positive constants to be determined
later which are used to anti-synchronize the drive-response
systems (1) and (2). To present concisely, here we let

Aı = max{Θ̇ı, Θ̈ı}, Aı = min{Θ̇ı, Θ̈ı},

Bı = max{Π̇ı, Π̈ı}, Bı = min{Π̇ı, Π̈ı}.

Âı = max{|Θ̇ı|, |Θ̈ı|}, B̂ı = max{|Π̇ı|, |Π̈ı|},

Theorem 3.1 Assume that Assumption 2.2 holds, if the error
system (3) is controlled with the following memoryless state-
feedback controller,

µı(t) = −sign(eı(t))(λı|eı(t)|+βı|eı(t)|θ+qı), 0 < θ < 1,
(5)

in which λı > 0, βı > 0, qı > 0, and they satisfy

λı > −dı +
n∑
=1

Âıl +
n∑
=1

B̂ıl · 2
θ

1−θ , (6)

qı >
n∑
=1

|Aı −Aı|℘̂ +
n∑
=1

|Bı −Bı|℘̂

+

n∑
=1

B̂ıl · 2
θ

1−θ · ((1− θ)βminι)
1

1−θ

+2|Iı|, ı = 1, 2, ..., n, (7)

then the response system (2) can be anti-synchronized with
the drive system (1) in a finite time.

To prove this theorem, two lemmas need to be established.
Lemma 3.2 Under the conditions of Theorem 3.1, then for
every eı(t) of system (3) with sup

−ι≤h̄≤0
( max
1≤ı≤n

|eı(h̄)|) > 1, it

would finite-timely cross the hyperplane with

sup
−ι≤h̄≤0

( max
1≤ı≤n

|eı(h̄)|) = 1.

Proof. Since 0 < θ < 1, it can be concluded from (6) and
(7) that

λı > −dı +
n∑
=1

Âıl +
n∑
=1

B̂ıl (8)

and

qı >
n∑
=1

|Aı −Aı|℘̂ +
n∑
=1

|Bı −Bı|℘̂ + 2|Iı|. (9)

Continuity argument ensures that there is a sufficiently small
ε > 0 satisfying

ε− λı − dı +
n∑
=1

Âıl + eει
n∑
=1

B̂ıl < 0. (10)

Denote

Λ(e(t)) = sup
t−ι≤h̄≤t

(
max

1≤ı≤n
eεh̄|eı(h̄)|

)
, t ≥ 0.

Obviously, eεt|eı(t)| ≤ Λ(e(t)), ı = 1, 2, ..., n, and we will
discuss the following two situations:

Situation A. eεt|eı(t)| < Λ(e(t)), ı = 1, 2, ..., n. We
obtain from the property of continuous functions that there
is a sufficiently small ζ > 0, such that

eεh̄|eı(h̄)| < Λ(e(t)), and Λ(e(h̄)) < Λ(e(t)),

for h̄ ∈ (t, t+ ζ), ı = 1, 2, ..., n.

Situation B. If there exist a index ı0 and a time t0 ≥ 0
satisfying eεt0 |eı0(t0)| = Λ(e(t0)), we have from lemma 2.1
that

D+(eεt|eı0(t)|)
∣∣∣∣
t=t0

= εeεt0 |eı0(t0)|

+eεt0sign(eı0(t0))
[
− dı0eı0(t0)

+
n∑
=1

Aı0(z)℘(z(t0)) +
n∑
=1

Aı0(w)℘(w(t0))

+
n∑
=1

Bı0(z)℘(z(t0 − ι(t0)))

+
n∑
=1

Bı0(w)℘(w(t0 − ι(t0))) + 2Iı0

−sign(eı0(t0))(λı0 |eı0(t0)|+ βı0 |eı0(t0)|θ

+qı0)
]
. (11)

Observe that∣∣∣∣ n∑
=1

Aı0(z)℘(z(t0)) +
n∑
=1

Aı0(w)℘(w(t0))

∣∣∣∣
=

∣∣∣∣ n∑
=1

Aı0(z)℘(z(t0)) +
n∑
=1

Aı0(z)℘(w(t0))

+
n∑
=1

Aı0(w)℘(w(t0))−
n∑
=1

Aı0(z)℘(w(t0))

∣∣∣∣
=

∣∣∣∣ n∑
=1

Aı0(z)
(
℘(z(t0)) + ℘(w(t0))

)
+
( n∑
=1

Aı0(w)−
n∑
=1

Aı0(z)
)
℘(w(t0))

∣∣∣∣
≤
∣∣∣∣ n∑
=1

Aı0(z)
(
℘(z(t0)) + ℘(w(t0))

)∣∣∣∣
+

∣∣∣∣( n∑
=1

Aı0(w)−
n∑
=1

Aı0(z)
)
℘(w(t0))

∣∣∣∣
≤

n∑
=1

Âı0l|e(t0)|+
n∑
=1

|Aı0 −Aı0|℘̂. (12)

A similar manner as (12) produces∣∣∣∣ n∑
=1

Bı0(z)℘(z(t0 − ι(t0)))

+
n∑
=1

Bı0(w)℘(w(t0 − ι(t0)))

∣∣∣∣
≤

n∑
=1

B̂ı0l|e(t0 − ι(t0))|
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+
n∑
=1

|Bı0 −Bı0|℘̂. (13)

Moreover, it is easy to see from

eε(t0−ι(t0))|e(t0 − ι(t0))| ≤ eεt0 |eı0(t0)|,

that

|e(t0 − ι(t0))| ≤ eει|eı0(t0)|,  = 1, 2, ..., n. (14)

From (11), (12), (13), and (14), one deduces that

D+(eεt|eı0(t)|)
∣∣∣∣
t=t0

≤ eεt0
[
ε|eı0(t0)| − dı0 |eı0(t0)|+

n∑
=1

Âı0l|e(t0)|

+
n∑
=1

|Aı0 −Aı0|℘̂ +
n∑
=1

B̂ı0le
ει|eı0(t0)|

+
n∑
=1

|Bı0 −Bı0|℘̂ + 2|Iı0 | − λı0 |eı0(t0)|

−βı0 |eı0(t0)|θ − qı0
]

≤ eεt0
[(
ε− dı0 +

n∑
=1

Âı0l +
n∑
=1

B̂ı0le
ει

−λı0
)
|eı0(t0)|+

n∑
=1

|Aı0 −Aı0|℘̂

+
n∑
=1

|Bı0 −Bı0|℘̂ + 2|Iı0 | − qı0
]

< 0. (15)

Therefore, there exists a ζ > 0, such that eεh̄|eı0(h̄)| <
eεt0 |eı0(t0)|, and Λ(e(h̄)) < Λ(e(t0)), h̄ ∈ (t0, t0 + ζ).

We draw a conclusion from the above two situations that
Λ(e(t)) is decreasing, and Λ(e(t)) ≤ Λ(e(0)), t ≥ 0, and
thus

eε(t−ι) sup
t−ι≤h̄≤t

(
max

1≤ı≤n
|eı(h̄)|

)
≤ Λ(e(t)) ≤ Λ(e(0)),

which means that

sup
t−ι≤h̄≤t

(
max

1≤ı≤n
|eı(h̄)|

)
≤ Λ(e(0))

eε(t−ι)
.

Accordingly, sup
t−ι≤h̄≤t

(
max

1≤ı≤n
|eı(h̄)|

)
will be less

than 1 as t increases. Let the first time satisfy

sup
t−ι≤h̄≤t

(
max

1≤ı≤n
|eı(h̄)|

)
= 1 as T1, then we obtain

T1 ≤
ln Λ(e(0))

ε
+ ι,

which shows that each anti-error function eı(t) would cross

the hyperplane sup
t−ι≤h̄≤t

(
max

1≤ı≤n
|eı(h̄)|

)
= 1, and the time

it takes is no more than T1. Lemma 3.2 proof completed.
Lemma 3.3 Under the conditions of Theorem 3.1. Then for
every eı(t) of system (3) with sup

−ι≤h̄≤0

(
max

1≤ı≤n
|eı(h̄)|

)
≤ 1

would fixed-timely flow to 0.

Proof. Let

Ξ(e(t)) = sup
t−ι≤h̄≤t

(
max

1≤ı≤n

|eı(h̄)|1−θ

1− θ
+ βminh̄

)
,

βmin = min
1≤ı≤n

{βı}, t ≥ 0. (16)

It is obvious that

|eı(t)|1−θ

1− θ
+ βmint ≤ Ξ(e(t)), ı = 1, 2, ..., n,

and if there is an index ı1 and a time t1 ≥ 0, such that
|eı1 (t1)|1−θ

1−θ + βmint1 = Ξ(e(t1)), it then follows that

D+
( |eı1(t)|1−θ

1− θ
+ βmint

)∣∣∣∣
t=t1

= |eı1(t1)|−θ × sign(eı1(t1))
[
− dı1eı1(t1)

+
n∑
=1

Aı1(z)℘(z(t1)) +
n∑
=1

Aı1(w)℘(w(t1))

+

n∑
=1

Bı1(z)℘(z(t1 − ι(t1)))

+
n∑
=1

Bı1(w)℘(w(t1 − ι(t1)))

+2Iı1 − sign(eı1(t1))(λı1 |eı1(t1)|
+βı1 |eı1(t1)|θ + qı1)

]
+ βmin

≤ |eı1(t1)|−θ ×
(
− dı1 |eı1(t1)|

+

n∑
=1

Âı1l|e(t1)|+
n∑
=1

|Aı1 −Aı1|℘̂

+
n∑
=1

B̂ı1l|e(t1 − ι(t1))|+
n∑
=1

|Bı1 −Bı1|℘̂

+2|Iı1 | − λı1 |eı1(t1)| − βı1 |eı1(t1)|θ − qı1
)

+βmin. (17)

Observe that

|e(t1 − ι(t1))|1−θ

1− θ
+ βmin(t1 − ι(t1))

≤ |eı1(t1)|1−θ

1− θ
+ βmint1.

A simple calculation produces

|e(t1 − ι(t1))|

≤
(
|eı1(t1)|1−θ + (1− θ)βminι

) 1
1−θ

= |eı1(t1)|
(

1 +
(1− θ)βminι

|eı1(t1)|1−θ
) 1

1−θ

≤ |eı1(t1)| × 2
θ

1−θ

(
1 +

((1− θ)βminι)
1

1−θ

|eı1(t1)|

)
= 2

θ
1−θ

(
|eı1(t1)|+ ((1− θ)βminι)

1
1−θ

)
,
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which, together with (17), results in

D+
( |eı1(t)|1−θ

1− θ
+ βmint

)∣∣∣∣
t=t1

≤ |eı1(t1)|−θ
[
− dı1 |eı1(t1)|

+
n∑
=1

Âı1l|e(t1)|+
n∑
=1

|Aı1 −Aı1|℘̂

+
n∑
=1

B̂ı1l2
θ

1−θ (|eı1(t1)|+ ((1− θ)βminι)
1

1−θ )

+
n∑
=1

|Bı1 −Bı1|℘̂ + 2|Iı1 |

−λı1 |eı1(t1)| − βı1 |eı1(t1)|θ − qı1
]

+ βmin

≤ |eı1(t1)|−θ
[(
− dı1 +

n∑
=1

Âı1l +
n∑
=1

B̂ı1l2
θ

1−θ

−λı1
)
|eı1(t1)|+

n∑
=1

|Aı1 −Aı1|℘̂

+
n∑
=1

B̂ı1l2
θ

1−θ ((1− θ)βminι)
1

1−θ

+
n∑
=1

|Bı1 −Bı1|℘̂ + 2|Iı1 | − βı1 |eı1(t1)|θ − qı1
]

+βmin

< −|eı1(t1)|−θ × βı1 |eı1(t1)|θ + βmin

≤ 0. (18)

This implies that there is a χ > 0, such that

|eı1(h̄)|1−θ

1− θ
+ βminh̄ ≤

|eı1(t1)|1−θ

1− θ
+ βmint1,

for h̄ ∈ (t1, t1 + χ).

Hence, from the above discussion, we conclude that

max
1≤ı≤n

|eı(t)|1−θ

1− θ
+ βmint ≤ Ξ(e(t)) ≤ Ξ(e(0))

≤ sup
−ι≤h̄≤0

(
max

1≤ı≤n

|eı(h̄)|1−θ

1− θ

)
, t ≥ 0,

that is,(
max

1≤ı≤n
|eı(t)|

)1−θ

≤ sup
−ι≤h̄≤0

(
max

1≤ı≤n
|eı(h̄)|1−θ

)
−βmin(1− θ)t, t ≥ 0,

and hence, we have that max
1≤ı≤n

|eı(t)| would flow to 0 as time

t increases. Denote T2 as the time such that max
1≤ı≤n

|eı(T2)| =
0, then we have

T2 ≤
1

βmin(1− θ)

{
sup
−ι≤h̄≤0

(
max

1≤ı≤n
|eı(h̄)|1−θ

)
−
(

max
1≤ı≤n

|eı(T2)|
)1−θ}

≤ 1

βmin(1− θ)
(1− 0)

=
1

βmin(1− θ)
, (19)

which means that for each |eı(t)| it takes no longer than
1

βmin(1−θ) from 1 to 0, ı = 1, 2, ..., n. This proof is finished.
With the above two lemmas in hand, we can give the proof
of the main results.
Proof of Theorem 3.1. For each solution eı(t) of anti-error
system (3), the finite-time anti-synchronization of systems
(1)-(2) can be realized according to the location of the initial
error function. Specially speaking,
Situation A: sup

−ι≤h̄≤0
( max
1≤ı≤n

|eı(h̄)|) ≤ 1.

In the situation, we know from Lemma 3.3 that every
anti-error function eı(t) would flow to 0, and the required
time will not exceed 1

βmin(1−θ) , ı = 1, 2, ..., n. Namely, the
drive-response systems (1) and (2) achieve fixed-time anti-
synchronization under the designed controller.
Situation B: sup

−ι≤h̄≤0
( max
1≤ı≤n

|eı(h̄)|) > 1.

In the situation, we can find from Lemma 3.2 that |eı(t)|
would flow to 1 within a finite-time, which is less than
ln Λ(e(0))

ε + ι.
To sum up, as time t increases, every eı(t) would reach 0

in finite time Tall at last, and Tall ≤ ln Λ(e(0))
ε +ι+ 1

βmin(1−θ) .

IV. A NUMERICAL EXAMPLE

In this section, we will provide a simulated example to
explain the validity of the proposed theoretical results.
Example 4.1. Consider the following drive MNNs with time
delays

ż1(t) = −z1(t) +A11(z)℘1(z1(t)) +A12(z)℘2(z2(t))
+B11(z)℘1(z1(t− 0.2))
+B12(z)℘2(z2(t− 0.3)) + 0.4,

ż2(t) = −2z2(t) +A21(z)℘1(z1(t))
+A22(z)℘2(z2(t)) +B21(z)℘1(z1(t− 0.2))
+B22(z)℘2(z2(t− 0.3)) + 0.6,

(20)
where

A = (Θ̈ı)2×2 =

(
−1.1 0.33

1.2 − 0.82

)
,

A = (Θ̇ı)2×2 =

(
1.8 − 0.92
2.1 − 0.6

)
,

B = (Π̈ı)2×2 =

(
0.47 − 1.92

−1.92 0.31

)
,

B = (Π̇ı)2×2 =

(
0.96 − 3.11
−2.96 0.17

)
,

the initial functions of system (20) are given as z1(h̄) =
3.6, z2(h̄) = −4.8, h̄ ∈ [−0.3, 0].

The corresponding response MNNs with time delays are
presented as

ẇ1(t) = −w1(t) +A11(w)℘1(w1(t))
+A12(w)℘2(w2(t))
+B11(w)℘1(w1(t− 0.2))
+B12(w)℘2(w2(t− 0.3))
+0.4 + µ1(t),

ẇ2(t) = −2w2(t) +A21(w)℘1(w1(t))
+A22(w)℘2(w2(t))
+B21(w)℘1(w1(t− 0.2))
+B22(w)℘2(w2(t− 0.3))
+0.6 + µ2(t),

(21)
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Fig. 1. States of zı(t), ı = 1, 2.

the initial functions of system (21) are presented by as
w1(h̄) = −2.6, w2(h̄) = 3.8, h̄ ∈ [−0.3, 0].

Let ℘ı(zı(t)) = sin(zı(t)), ℘ı(wı(t)) = sin(wı(t)), ı =
1, 2, and µ1(t), µ2(t) are designed as

µ1(t) = −sign(e1(t))(10.1|e1(t)|+ 1.2|e1(t)| 12 + 9.8),

µ2(t) = −sign(e2(t))(8.5|e2(t)|+ |e2(t)| 12 + 8.2).

Obviously, lı = 1, ℘̂ı = 1, ı = 1, 2, and it can be
calculated that

λ1 = 10.1 > 9.86 = −d1 +

2∑
=1

Â1l +

2∑
=1

B̂1l × 2,

λ2 = 8.5 > 7.46 = −d2 +

2∑
=1

Â2l +

2∑
=1

B̂2l × 2,

q1 = 9.8 > 6.8 ≈
2∑
=1

|A1 −A1|℘̂

+
2∑
=1

|B1 −B1|℘̂ +
2∑
=1

B̂1l × 0.5× 0.32 + 2|I1|,

q2 = 8.2 > 3.65 ≈
2∑
=1

|A2 −A2|℘̂

+
2∑
=1

|B2 −B2|℘̂ +
2∑
=1

B̂2l × 0.5× 0.32 + 2|I2|.

This means that all assumptions of Theorem 3.1 are
valid, and it can be deduced that the finite-time anti-
synchronization between systems (20)-(21) is achieved. In
the simulation, the time evolution of synchronization curves
of drive-response systems are presented in Figs. 1-3, we can
know from Fig. 3 that a clear convergence of the trajectory
of the anti-error dynamics to the origin in finite-time. These
show that the drive system (20) anti-synchronizes with its
response system (21) in finite-time.
Remark 4.1 In such as [17-21], some conditions for finite-
time synchronization of relevant MNNS are established using
finite-time stability theorems, but in this article, new criteria
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for finite-time anti-synchronization of systems (1)-(2) are ob-
tained using rigorous analytical techniques without utilizing
various finite-time stability theorems. On the other hand, the
designed controller (4) does not depend on time delays and
only rely on the current states, which means that such type
of controller can be validated and realized easily in practice.

V. CONCLUSION

In this paper, inspired by [25,26], we have reinvestigated
finite-time anti-synchronization of the MNNs with time-
varying delays. By using a novel analytical method and
designing a novel memoryless state-feedback controller, we
establish some new criteria realizing the finite-time anti-
synchronization for considered MNNs. A numerical example
has also been given to demonstrate the effectiveness of our
results. To the best of our knowledge, this is the first paper to
study the finite-time anti-synchronization for delayed MNNs
without the help of finite-time stability theory, which further
enriches the synchronization theory of MNNs.
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