
 

 Abstract—Maritime ship remote sensing image recognition 

holds immense importance for maritime safety management 

and military operations. This study enhances recognition 

efficiency by optimizing residual network 34 through spatial 

transformation networks, varied convolutional kernel sizes, 

and branch networks enriching image category discrimination. 

An advanced deep convolutional neural network model is 

devised, showcasing an enhancement in accuracy by 4.2% and 

14.9% compared to residual network 152 and 34, respectively. 

The model attains a loss of 0.03 with recall rate and F1 value of 

89.7% and 0.93, indicating high recognition accuracy. With an 

average training time of 84ms, it demonstrates superior 

computational efficiency. These findings emphasize the model's 

effectiveness in improving maritime ship remote sensing image 

recognition, thereby enhancing marine safety monitoring, 

facilitating marine resource management and development, 

and presenting promising applications in maritime operations. 

 

Index Term—Identification; Introducing branch networks; 

Maritime ships; Remote sensing images; Residual network; 

Spatial transformation network 

 

I. INTRODUCTION 

As the continuous advancement of remote sensing 

technology, remote sensing image (RSI) recognition of 

maritime ships has become an important research direction 

in fields such as ocean monitoring and maritime traffic 

control. The traditional RSI recognition methods for 

maritime ships mainly rely on technologies such as radar 

and sonar. However, these technologies are often affected by 

factors such as weather and environment in practical 

applications. At the same time, traditional technologies 

require manual feature extraction and classifier design, 

which demands a lot of time and results in poor recognition 

performance [1-2]. In recent years, deep learning, as a new 

type of artificial intelligence technology, can directly learn 

feature representations from raw images and automatically 

extract local and global features from images. It has been 

broadly applied in the RSI recognition [3-4]. 

Li et al. designed a high-resolution detection method for 

rotating bounding boxes with convolutional neural networks 

(CNNs) to raise the reliability and accuracy of ship RSIs. 

The method utilized a dual branch regression network to 

independently predict variables and combined multi-level 

features through an adaptive pool of spatial changes. The 
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results showed that the ship features obtained by this method 

were more compact [5]. Dong et al. designed a robust 

rotation insensitive target detection model with CNNs to 

reduce the uncertainty of target direction angle in ship RSIs. 

The model used a bounding box filtering method to enable 

the detector to adapt to different ground real environments. 

The outcomes showed that the detection effect of the model 

was good when the training data was limited [6]. Zhang et al. 

designed an RSI anchor free rotation detection technique 

with Gaussian mask model to reduce the issues of high 

computational cost and low accuracy in existing detection 

methods. The technique extracted multi-scale feature maps 

(FMs) through a U-shaped network with selective cascade 

modules, and modeled with the geometric features of ships. 

The results showed that this technique outperformed other 

techniques in detection [7]. Cui et al. designed an anchor 

free rotation ship detection model based on selective kernel 

network to address the issue of poor recognition 

performance of ship RSIs in complex scenes. They designed 

two customized modules, orthogonal pooling and soft 

rotation non-maximum suppression, to detect ships as key 

points. The findings indicated that the model had high 

computational efficiency and accuracy [8]. You et al. 

designed a detection algorithm based on improved 

regression models and feature enhancement to address the 

issues of semantic information confusion and boundary 

discontinuity in ship RSI recognition. The algorithm 

balanced the position and semantic information of 

multi-scale FMs through feature refinement networks, and 

used supervised learning-based attention networks to 

suppress background noise. The results showed that the 

algorithm had high robustness and accuracy [9]. Wang et al. 

artificially solved the problem of poor performance of 

traditional CNNs in ship RSI processing, and designed an 

image recognition algorithm based on lightweight CNNs 

and multi-feature cascading. It preprocessed complex 

remote sensing scenes through lightweight CNNs and used 

multi-source feature cascading decision-making to eliminate 

error alarms. The results showed that the algorithm was 

highly efficient [10]. Guo et al. designed a ship RSI 

recognition technology based on rotating scales and CNNs 

to address the issue of poor robustness in ship RSI detection. 

The technology extracted features through intersection and 

union balanced sampling and used a balanced feature 

pyramid. The outcomes denoted that the technology had 

high robustness and accuracy [11]. 

In summary, many scholars have utilized deep learning 

techniques to the recognition of ship RSIs. However, most 

scholars only used basic deep learning frameworks or 
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combined them with other technologies, which still has the 

problem of high model complexity. Therefore, based on the 

improved framework of Residual Network-34 (ResNet-34) 

in Deep Convolutional Neural Network (DCNN), this study 

further optimizes it using Spatial Transformer Network 

(STN) and convolutional kernels of different sizes, and 

combines branch networks to design a ship RSI recognition 

model based on the improved DCNN to improve recognition 

efficiency and accuracy. The innovation of the research lies 

in the optimization of ResNet-34, which enhances the 

model's ability to learn ship features. At the same time, 

combined with branch networks, the accuracy of ship image 

recognition is improved, providing new ideas for the 

processing of ship RSIs. 

The article mainly contains three parts. The first part is 

the design of ship RSI recognition technology based on 

improved ResNet-34 network. Firstly, a ship RSI feature 

extraction model is constructed, and then a ship RSI 

classification method based on branch network is designed. 

The second part is the experiment findings of the model. 

The first section is the performance analysis with the raised 

ResNet-34 network. The second section is the actual 

application effect analysis. The third part is a summary of 

the entire article and points out the deficiencies of the 

research. 

II. METHODS AND MATERIALS 

This part mainly elaborates on the construction of a 

maritime ship RSI recognition model with improved DCNN. 

Firstly, a feature extraction method for ship RSIs is designed 

and improved on the basis of the DCNN architecture 

ResNet-34. Then, a branch network is introduced to further 

optimize the feature extraction model. 

A. Ship remote sensing image feature extraction model 

based on improved ResNet-34 

The research first focuses on feature extraction of RSIs. 

Because of the small target size of ship images, the feature 

information extracted through traditional DCNN models is 

relatively single and easily affected by background 

information, resulting in low recognition accuracy [12]. 

ResNet-34 is a DCNN architecture that overcomes problems 

such as vanishing gradients, exploding gradients, overfitting, 

and degradation by introducing residual blocks and batch 

normalization techniques [13]. Therefore, the study uses 

ResNet-34 for feature extraction of ship RSIs. Firstly, the 

study uses an STN to eliminate interference from 

background information. Additionally, it extracts multi-scale 

information by utilizing convolution kernels of different 

sizes to design an improved ResNet-34 network model. STN 

represents a representative model of a spatial attention 

mechanism. It can transform various deformation data in 

space and automatically capture important regional 

characteristics. STN can ensure that images achieve 

comparable results to the original image despite undergoing 

operations such as cropping, translation, or rotation [14]. 

STN contains three principal components: a positioning 

network, a grid generator, and a sampler. The positioning 

network is responsible for regressing transformation 

parameters. By inputting feature images, it can output 

spatial transformation parameters through a series of hidden 

network layers, as illustrated in equation (1).  

( )locf U =                 (1) 

In equation (1),   represents the spatial transformation 

parameter, ( )locf   represents the fully connected or 

convolutional function, and U  represents the input FM. 

There are various forms of spatial transformation parameters, 

and different affine transformations can obtain outputs of 

different dimensions, whose size depends on the type of 

transformation. A grid generator is a sampling network 

constructed based on the parameters predicted by the 

transformation model. These parameters are the output 

obtained by oversampling a set of points in the input image 

[15]. A mapping relationship can be obtained through a grid 

generator, which can represent the correspondence between 

the feature image and the output feature image through 

matrix operations. The expression is shown in equation (2). 
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In equation (2), ( ),s s

i ix y  denotes the target pixel 

position on the output FM, T  denotes affine 

transformation, ( ),t t

i ix y  represents the sampling position 

on the corresponding input FM, and A  represents the 

transformation matrix. By using 11 , 12 , 21 , and 22 , 

the angle of image rotation can be determined, and by using 

13  and 23 , the translation amount of image width and 

height can be determined. The sampler uses the sampling 

grid and the input FM as inputs to generate the output and 

calculate the transformed FM. The calculation method is 

indicated in equation (3). 

, max(0,1 ) max(0,1 )
H W

c c s s

i n m i i

n m

V U x m y n= − − − −  (3) 

In equation (3), c

iV  indicates the pixel value of the 

coordinate ( , )t t

i ix y  in the c  channel of the output FM. 

,

c

n mU , H , and W  mean the pixel values of the inner 

coordinate, the height, and the width in the input FM, 

respectively. STN does not rely on a specific network 

architecture and can be inserted into any CNN architecture, 

providing spatial transformation capabilities for different 

tasks and applications. Meanwhile, due to the different 

morphological structures of different categories of ships, the 

key to ship RSI classification lies in the extraction of small 

features. If only a single scale convolution kernel is used, 

the extracted feature information will be relatively single, 

which will affect the accuracy of ship classification. 

Research extracts multi-scale information by introducing 

parallel convolutional layers and STN concatenation. The 

specific structure is indicated in Figure 1. 

In Figure 1, the parallel convolution module has two 

channels. One channel contains a 1×1 convolution kernel 

and a 3×3 convolution kernel, while the other channel 

contains a 1×1 convolution kernel and a 5×5 convolution 

kernel, with a batch normalization layer added after each 

convolution kernel. Parallel convolutional layers perform 

convolution operations on FMs using convolution kernels of 
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different sizes, resulting in new FMs of varying sizes. These 

are then upsampled to the output FM size, enriching the 

image's features without altering the original FM size. It 

encodes and decodes the relevant feature information in the 

image from a global perspective, thereby enhancing image 

recognition performance. Equation (4) shows the various 

branch expressions of parallel convolutional layers. 
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            (4) 

In equation (4), 1Y , 2Y , and 3Y  represent the outputs of 

1×1, 3×3, and 5×5 convolution kernels, respectively. 

( )conv 
 

represents convolution operation. X  represents 

input FM. It merges the outputs of two channels along the 

depth direction and outputs them through a 3×3 

convolutional kernel. The calculation method for the output 

and its output size is shown in equation (5). 
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In equation (5), Y  represents the comprehensive output, 

sO  represents the output size, sI  represents the input size, 

sF  represents the convolution kernel’s size, dP  represents 

padding, and tS  represents step size. The calculation 

process of parallel convolutional layers is denoted in Figure 

2. 

B. Classification method for ship remote sensing images 

based on branch networks 

Although the optimized ResNet-34 network has been 

used to construct feature extraction methods for ship RSI 

recognition, ship images have features with large inter-class 

and small intra-class differences. If only the feature 

extraction method is used to distinguish ship RSIs, the effect 

is not very good [16-17]. Therefore, based on the improved 

ResNet-34 network, a base branch network and a meta 

embedding branch network are constructed to increase 

inter-class differences and reduce intra-class differences, and 

fused with the designed feature extraction network. In the 

base branch network, the first step is to construct a loss 

function (LF) and study the use of a central LF. The central 

LF can be utilized to enhance the compactness of samples 

belonging to the same class and to increase the dispersion of 

samples belonging to different classes. Furthermore, the 

deep features derived from this method exhibit high 

discriminability. Finally, the center LF’s expression is 

represented in equation (6). 
2
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In equation (6), CL  represents the center LF, ix  

represents the feature vector of the i  th sample, 
yic  

denotes the center vector of iy  categories, and m  

represents the batch size. Next, it updates the gradient and 

class center using the calculation method shown in equation 

(7). 
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In equation (7), C

i

L

x




 represents gradient, 

jc  

represents class center, and ( )iy j =  represents condition, 

which means when iy  is the j  class. In class center 

updates, if the condition is met, the value of ( )   is 1, and 

if the condition is not met, the value of ( )   is 0. If only 

the central LF is used to supervise network learning, the 

calculated loss value may be small, leading to overfitting 

[18]. The study combines the central LF with the normalized 

exponential LF to enhance feature recognition. The total LF 

of the base branch network is indicated in equation (8). 
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In equation (8), bL  represents the total LF of the base 

branch network, SL  represents the normalized exponential 

LF, 
jW  represents the j  column of the weights in the 

fully connected layer at the end of the network, b  

represents bias, d  represents the feature dimension, and 

C  represents the limiting variable, whose values range 

from 0 to 1. Its functions are to balance the center LF and 

the normalized exponential LF. The larger the C , the more 

compact the samples of the same type are, while the smaller 

the C , the opposite is true. Due to the fact that using only 

base branch networks can only make samples of the same 

category more compact, the classification accuracy for 

samples of different categories is insufficient. The study 

further distinguishes images using meta embedding branch 
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Figure 1 Parallel convolutional layers and STN concatenation 

structure 

 

 
Figure 2 The calculation of row convolutional layers 
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networks, which integrate the features of the image itself 

with corresponding memory features, quantify the 

recognition degree of known categories using feature norms, 

and increase the difference between categories without 

being affected by class center interference, thereby 

enhancing the discrimination between categories [19]. 

Firstly, it obtains the discriminative center of the meta 

embedding branch network. The discriminative center can 

effectively capture the core features of categories, enhance 

inter class discrimination, and the acquisition process 

includes two steps: neighborhood sampling and propagation. 

The acquisition process is shown in Figure 3. 

In Figure 3, during the neighborhood sampling stage, the 

network randomly selects a batch of samples during training 

and divides them into small batches based on their labels. 

These small batch features are used to update the class 

center of each group to ensure consistency within the class. 

In the propagation stage, the network optimizes the feature 

representation and category center through alternating 

updates, ensuring that the feature vectors of each sample are 

as close as possible to the center of the corresponding group 

of the sample, while staying away from the centers of other 

groups. In the meta embedding branch network, due to the 

lack of supervision ability for updating small data samples, a 

memory module is added to the network to connect features. 

The connected features are called meta embedding features, 

and then images are classified based on this feature. The 

classification process includes two steps. Firstly, it performs 

memory synthesis using the calculation method shown in 

equation (9). 

1

N

m T i i

i

f o C o c
=

= =             (9) 

In equation (9), mf  represents memory features, o  

represents weight coefficients, and C  represents class 

centers. Among them, the function of weight coefficients is 

to evaluate the weight between memory features and 

category centers, and then scale the memory features 

through a scaling coefficient to dynamically change them. 

The calculation method is shown in equation (10). 

1
( )m m bf f f


 =  +              (10) 

In equation (10), mf   represents meta embedding 

features, bf  represents features obtained by the ResNet-34 

network, and   represents scaling coefficients. The scaling 

factor is the distance between the features obtained by the 

ResNet-34 and their nearest category center, calculated as 

shown in equation (11). 

2
( , ) mine b b i

t
R f M f c = = −         (11) 

In equation (11), eR  represents the reachability function, 

and M  represents the class center of a certain feature. In 

the context of scaling factors, a relatively small value means 

that the input sample is known, whereas a relatively large 

value means that the input sample is unknown. Then, cosine 

similarity is used to calculate the classification results, as 

shown in equation (12). 

cos( , )M m k m kP f w f w  =  =           (12) 

In equation (12),   represents the control parameter, 

mf   represents the regularization of meta embedding 

features, and 
kw  represents the regularization of weights. 

The next step is to calculate the LF, and study use the sum of 

the maximum marginal LF and the cross entropy LF as the 

LF of the meta embedded branch network. The calculation 

method is shown in equation (13). 

( , )m m M b ceL L f M L= +               (13) 

In equation (13), mL  represents the LF of the meta 

embedded branch network, ML  represents the maximum 

marginal LF, ceL  represents the cross entropy LF, and m  

refers to the weight. The implementation of the meta 
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Figure 3 The process of obtaining the discrimination center 
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Figure 4 The Implementation process of meta embedding branch network 
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embedded branch network is shown in Figure 4. 

Usually, image recognition involves fusing all features 

and directly classifying them. However, in the recognition of 

ship RSIs, unknown categories appear. Therefore, 

conventional methods have poor performance in classifying 

ship RSIs [20]. The study adopts an end-to-end fusion 

approach to combine the base branch network with the meta 

embedding branch network to determine the category of 

ship RSIs. The classification result after fusion is shown in 

equation (14). 

(1 )M BP P P = + −           (14) 

In equation (14), P  refers to the fused classification 

result, BP  represents the classification result of the base 

branch network, and   represents the calibration degree. 

Finally, a constraint is set for the classification results to 

reduce the influence of unknown categories, and the 

constraint expression is indicated in equation (15). 

 1,...,
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D ii N
P C x P
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


= 


         (15) 

In equation (15),   represents the threshold used to 

distinguish between unknown and known categories, and 

unknown  represents unknown. The implementation 

process of the designed ship image recognition model is 

shown in Figure 5. 

III. RESULTS 

This part mainly elaborates on the experimental results 

based on the improved DCNN maritime ship RSI 

recognition model. Firstly, the effectiveness analysis of the 

recognition model was analyzed, and then the practical 

application of the recognition model was discussed, to fully 

assess the model. 

A. Performance analysis of ship RSI recognition model 

To prove the effectiveness of the designed ship RSI 

recognition algorithm, experiments were conducted using 

TABLE I 

PARAMETERS OF 7 DIFFERENT CATEGORIES OF SHIPS 

Category Ship width Ship length Draft 

1 24.2 182.9 8.2 

2 16.9 172.9 6.6 

3 20.5 153.9 6.4 

4 16.9 135.0 4.6 

5 17.7 121.0 4.4 

6 16.5 102.3 4.3 

7 12.2 89.4 4.1 
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Figure 5 Implementation process of ship image recognition model 
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Python on a computer with an Intel i9-9900K central 

processor, an RTX 2080Ti graphics processor, and a 32GB 

RAM. Seven different categories of ships were selected 

from the HRSC2016 dataset, and the ship parameters are 

indicated in Table Ⅰ. 

Firstly, the amount of iterations was set to 200 and the 

batch size was set to 64. The loss and accuracy of the design 

model were calculated during the training, and compared 

with the loss and accuracy of the models in reference [21], 

reference [22], ResNet-152, and ResNet-34. The comparison 

results are shown in Figure 6. 

Figures 6 (a) and (b) show the losses of different models, 

respectively. From Figure 6 (a), the loss curves of all three 

models showed a decreasing trend and gradually flatten out. 

At the max amount of iterations, the loss of ResNet-34 

model was 0.18, the loss of ResNet-152 model was 0.06, the 

loss of the model in reference [21] was 0.04, the loss of the 

model in reference [22] was 0.07, and the loss of the 

designed algorithm was 0.03. Compared with the other four 

models, the loss value of the designed algorithm was 

significantly reduced, indicating that the convergence effect 

of the designed model was good and that it could better fit 

the training data. In Figure 6 (b), the accuracy curves of the 

design model, the model in reference [22], the model in 

reference [20], ResNet-152, and ResNet-34 models all 

showed a gradually increasing trend and gradually reached a 

stable state. When the max amount of iterations was reached, 

the accuracy of the five models was 95.3%, 92.8%, 86.7%, 

91.1%, and 80.4%, respectively. Compared with the model 

in reference [22], the model in reference [20], ResNet-152 

and ResNet-34, the designed model’s accuracy increased by 

2.5%, 8.6%, 4.2% and 14.9%, respectively. The above 

results demonstrated the effectiveness of the design model 

and proved its good effectiveness in remote sensing ship 

image recognition. This may be because the design model 

builds a deeper network structure, but compared to 

traditional networks, it has lower complexity and requires 

fewer parameters. The next step was to study the recognition 

accuracy of the designed algorithm under different 

signal-to-noise ratios (SNR), and compare it with 

ResNet-152, ResNet-34, and DCNN. The outcomes are 

indicated in Table Ⅱ. 

From Table Ⅱ, when the SNR was 5dB, the recognition 

accuracy of the designed model was 94.23%. Compared 

with ResNet-152, ResNet-34, and DCNN, the accuracy of 

the designed algorithm was promoted by 1.26%, 4.55%, and 

6.10%, respectively. When the SNR was 10dB, the 

recognition accuracy of the designed model was 96.62%, 

which was 1.84%, 5.36%, and 5.88% higher than the other 

three algorithms, respectively. When the SNR was 15dB, the 

recognition accuracy of the four models was 98.73%, 

96.45%, 92.44%, and 93.16%, respectively. The design 

model’s accuracy was greatly higher than other algorithms, 

further proving its superior performance. This may be due to 

the introduction of residual mapping in the design model, 

which uses skip connections for residual learning to solve 

problems such as gradient vanishing, thereby improving 

recognition accuracy. Finally, the recall and F1 values of the 

design model, the model in reference [22], the model in 

reference [21], ResNet-152, and ResNet-34 were calculated 

separately, as shown in Figure 7. 

Figures 7 (a) and (b) show the recall rates and F1 values 

of different models. The two of the three models showed an 

increasing trend with the increase of iteration times and 

gradually flatten out. In Figure 7 (a), the recall rate of the 

designed algorithm was 89.7%, the recall rate of the model 

in reference [22] was 84.5%, the recall rate of the model in 

reference [21] was 80.1%, the recall rate of ResNet-152 was 

83.3%, and the recall rate of ResNet-34 was 77.9%. The 

recall rate of the design model was higher than the other 

four models. In Figure 7 (b), the F1 values of the three 

models were 0.93, 0.88, 0.83, 0.86, and 0.80, respectively. 

The F1 values of the designed model were 0.5, 1.0, 0.7 and 

0.13 higher than those of the other two models, respectively. 

This means that in the recognition of ship images, the design 

algorithm is significantly less affected by background 

information interference, indicating that the design 

algorithm can better recognize ship RSIs and has high 

reliability. 

B. Analysis of the practical application effect of ship RSI 

recognition model 

To prove the effect of the designed ship RSI recognition 

model in practical applications, the study first used different 

models to detect 7 different types of ships on the HRSC2016 

dataset, and the recognition outcomes are indicated in Figure 

8. 

From Figure 8, in the first type of ship, the design 

model’s recognition rate was 91.3%, which was 4.2% and 

11.7% higher than the recognition rates of the other two 

models. In the second type of ships, the recognition rates of 

the three models were 90.6%, 85.2%, and 83.9%, 

respectively. In the third class of ships, the design model’s 

recognition rate was 92.4%, the recognition rate of 

ResNet-152 was 82.7%, and the recognition rate of 

ResNet-34 was 81.2%. In the fourth, fifth, sixth, and seventh 

types, the recognition rates of the designed model were 

93.0%, 89.9%, 94.2%, and 91.1%, respectively. In different 

types of ships, the design model’s recognition rate was 

significantly higher than that of other models, indicating that 

the design model could accurately recognize RSIs of 

different types of ships, proving its strong generalization 

ability. This may be because the design algorithm extracts 

multi-scale information through different convolution 

kernels, resulting in better recognition performance on 

different types of images. Next step was to calculate the 

average accuracy and average training time of different 

models for RSI recognition of different types of ships, as 

shown in Table Ⅲ. 

From Table Ⅲ, in the RSIs of seven different types of 

ships, the designed model’s recognition accuracy was 

TABLE Ⅱ 

RECOGNITION ACCURACY OF DIFFERENT MODELS UNDER DIFFERENT 

SNRS 

Model 
SNR (db) 

5 10 15 

Designed model 94.23 96.62 98.73 

ResNet-152 92.97 94.78 96.45 

ResNet-34 89.68 91.26 92.44 

DCNN 88.13 90.74 93.16 
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90.44%, 87.18%, 89.67%, 89.26%, 90.97%, 92.28%, and 

91.61%, respectively, with an average accuracy of 90.20%, 

greatly higher than the other three models. The design 

model’s average training time, ResNet-152, ResNet-34, and 

DCNN were 84ms, 86ms, 101ms, and 1.5ms, respectively. 

The average training time of the design model was lower 

than that of other models. The above results demonstrated 

that the design model had high discrimination for RSIs of 

different ships, and also demonstrated its high 

computational efficiency. This is because the research 

combines the base branch network with the meta embedding 

branch network through end-to-end fusion, reducing image 

classification time and improving computational efficiency. 

Finally, it calculated the PR curves under different 

Intersection Over Union (IOU) ratios and compared them 

with the out comes of the ResNet-34 model, as denoted in 

Figure 9. 

Figures 9 (a) and (b) express the PR curves of the 

ResNet-34 model and the designed model under different 

IOU values, respectively. From Figure 9 (a), when the IOU 

values were 0.5, 0.6, and 0.7, the areas under the PR curve 

of the ResNet-34 model were 0.722, 0.847, and 0.906, 

respectively. From Figure 9 (b), the areas under the PR 

curve of the design model were 0.785, 0.893, and 0.958, 

respectively. The area under the PR curve of the designed 

model was higher than that of the ResNet-34 model under 
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Figure 7 Recall rates and F1 values of different models 
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Figure 8 The recognition results of different models on different ships 

 

TABLE Ⅲ 

AVERAGE ACCURACY AND TIME OF DIFFERENT MODELS FOR RECOGNIZING SHIP IMAGES OF DIFFERENT TYPES 

Model DCNN ResNet-34 ResNet-152 Designed model 

1 69.36% 77.84% 85.31% 90.44% 

2 78.75% 81.76% 85.59% 87.18% 

3 68.07% 68.59% 77.81% 89.67% 

4 62.08% 74.82% 75.97% 89.26% 

5 63.56% 65.79% 71.53% 90.97% 

6 75.92% 76.70% 84.19% 92.28% 

7 78.96% 74.87% 81.38% 91.61% 

Average precision (%) 70.96 74.34 80.25 90.20% 

Time (ms) 105 101 86 84 
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different IOU values, indicating good overall performance 

of the designed model and proving its practicality. 

IV. CONCLUSION 

As the quick advancement of deep learning technology, 

its application in RSI recognition of maritime ships is 

becoming increasingly widespread. However, traditional 

RSI recognition methods suffer from low accuracy and 

efficiency in processing maritime ship images. This study 

proposed an improved DCNN algorithm, which first 

optimized the ResNet-34 model by using STN and 

convolutional kernels of different sizes to extract multi-scale 

features. Then, a branch network was introduced to enhance 

the discrimination between feature categories to improve 

recognition performance. The outcomes denoted that the 

designed model’s recognition accuracy was as high as 

95.3%, which was improved by 4.2% and 14.9% compared 

to the ResNet-152 and ResNet-34 models, respectively, 

proving its good recognition performance. When the SNR 

was 15dB, the designed model’s recognition accuracy was 

98.73%, significantly higher than other models, proving its 

high accuracy. In practical application analysis, the designed 

model’s average recognition accuracy for 7 different types 

of ships reached 90.20%, far exceeding other models, with 

an average training time of 84ms, proving its high 

computational efficiency and further demonstrating its good 

performance. The above results demonstrated the 

effectiveness and practicality of the design model. However, 

the study did not explore the training time and resource 

consumption of the model on large-scale datasets. In the 

future, the model will be further optimized to reduce 

computational complexity and further improve its running 

speed. 
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Figure 9 PR curves of different models under different IOU values 

 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 3, March 2025, Pages 676-684

 
______________________________________________________________________________________ 



[19] Almi’ani N, Anbar M, Karuppayah S, et al. “Feature Selection and 

1DCNN-based DDOS Detection in Software-Defined Networking,” 

Engineering Letters, vol. 32, no.7, 2024. 

[20] Chen K, Wang L, Wu H, et al. “Background-Aware Correlation Filter 

for Object Tracking with Deep CNN Features,” Engineering Letters, 

vol. 32, no.7, 2024. 

[21] Yasir M, Jianhua W, Mingming X, Hui S, Zhe Z, Shanwei L, Hossain 

M S. “Ship detection based on deep learning using SAR imagery: a 

systematic literature review,” Soft Computing, vol. 27, no.1, pp63-84, 

2023.  

[22] Xu Z, Sun J, Huo Y. “Ship images detection and classification based 

on convolutional neural network with multiple feature regions,” IET 

Signal Processing, vol. 16, no.6, pp707-721, 2022. 

 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 3, March 2025, Pages 676-684

 
______________________________________________________________________________________ 




