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Abstract—This study focuses on maximum likelihood estima-
tion (MLE) within the context of partially observed stochastic
fractional differential equations (POSFDEs). Initially, the equa-
tion for state estimation is presented, followed by the derivation
of the maximum likelihood estimator (MLEr). Subsequently, the
asymptotic properties of the estimator are established. Lastly, as
an illustration to validate the findings, the Hyperbolic diffusion
model is introduced.

Index Terms—MLE; POSFDEs; state estimation; consisten-
cy; asymptotic normality

I. INTRODUCTION

Statistical inference has attracted considerable interest
from many researchers ( [5], [23]). For instance, Zhang et al.
( [26]) presented a numerical methodology aimed at uncover-
ing the structure and estimating line parameters without any
pre-existing information regarding voltage angles. Similarly,
Maldonado et al. ( [16]) applied a sequential Bayesian
method to deduce parameters within stochastic dynamic load
models. In another study, Zhang et al. ( [27]) examined the
concurrent estimation in a particular subset of bilinear model.
Ji and Kang ( [14]) investigated innovative techniques for
online parameter estimation in nonlinear systems. Addition-
ally, Escobar et al. ( [9]) suggested various approaches to
address the challenges of parameter estimation in continu-
ously operating stochastic systems. Ding ( [7]) conducted an
analysis of the properties of two distinct least squares meth-
ods that proficiently manage disturbances from both white
and colored noise using conventional techniques commonly
employed in the discipline. Shin and Park ( [20]) employed a
generator-regularized continuous conditional generative ad-
versarial network to assess uncertain parameters. Amorino
et al. ( [1]) introduced a contrasting function designed
to estimate parameters within a stochastic McKean-Vlasov
equation. Mehmood and Raja ( [17]) explored evolutionary
heuristics of estimation in Hammerstein model. Brusa et al.
( [4]) proposed an evolutionary optimization method aimed
at refining approximate maximum likelihood estimation in
discrete models. In practical applications, elements such as
unpredictable communication environments, exemplified by
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population dynamics with time delays, require consideration
of time lags. Consequently, the estimation of parameters
for stochastic delay differential equations has gained con-
siderable attention in recent times. Benke and Pap ( [3])
investigated the convergence characteristics of the MLEr. Liu
and Jia ( [15]) employed the method of moments to derive
parameter values from observations of discrete solutions. Zhu
et al. ( [29]) focused on determining parameters in a reaction-
diffusion system related to rumor propagation that includes
time delays. Jamilla et al. ( [13]) applied a multi-parent
crossover genetic algorithm to estimate parameters within
three models of neutral delay differential equations featuring
discrete delays. Long memory processes are extensively
utilized across diverse domains. Fractional Brownian motion
serves as an effective extension of standard Brownian motion
and demonstrates long-range dependence. While employing a
long-memory model to characterize certain physical process,
accurately identifying the model’s parameters becomes cru-
cial. As a result, several researchers have explored the issue
of parameter estimation for SFDE influenced by fractional
Brownian motion. For example, Wu and Ding ( [25]) present-
ed a MLEr based on wavelet analysis, which demonstrates
asymptotic normality. In a subsequent study, Dai et al.
( [6]) derived a Girsanov-type formula and proceeded to
estimate parameters utilizing the MLE approach. By using
MLE, Dufitinema et al. ( [8]) addressed the challenge of
concurrently deriving estimators for all unknown parameters.
Moreover, Feng et al. ( [10]) developed a comprehensive
neural network aimed at estimating both system and noise
parameters based on a brief sample trajectory.

When managing a system, situations may arise where
directly acquiring the system’s state is not feasible, or the
expense associated with obtaining this state is prohibitively
high. In such cases, it becomes essential to apply specific
algorithms to estimate the system’s state. Over the past few
decades, several researchers have explored the challenge of
state estimation in relation to stochastic differential equa-
tions. For example, Basit and colleagues ( [2]) introduced
a distributed state estimator’s design specifically tailored for
nonlinear systems. Song and associates ( [21]) examined state
estimation pertaining to neural networks. Meanwhile, Wen et
al. ( [24]) explored fusion estimation challenges for a type
of systems. Zhang et al. ( [28]) employed physics-informed
deep learning techniques to estimate traffic states utilizing
the traffic flow model alongside the computational graph ap-
proach. When both parameters and states are simultaneously
unknown, it is crucial to integrate theoretical approaches with
algorithmic methods to estimate these elements. For instance,
Stojanovic et al. ( [22]) introduced two distinct strategies
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aimed at robust joint estimation of parameters and states
in linear stochastic models, accommodating all conceivable
faults and non-Gaussian noise. Hossain ( [11]) provided a
thorough overview of various techniques used for estimating
the state of charge in batteries, which was complemented
by a review of methods for estimating parameters in Li-ion
battery models. Impraimakis and Smyth ( [12]) analyzed the
capabilities of a new unscented Kalman filter for estimating
input parameters and states in both linear and nonlinear
systems. Rodriguez et al. ( [19]) introduced an innovative
estimator aimed at accurately capturing vehicle dynamics.

While numerous authors have explored the parameter
estimation problem associated with stochastic differential e-
quations, there exists limited research specifically addressing
parameter estimation for POSFDEs. In this research, the top-
ic is explored. The state estimation equation is provided and
the MLEr is derived. Furthermore, the asymptotic properties
of the estimator are established.

The structure of the article is outlined below. Section 2
presents the state estimation equation and MLEr. Section
3 discusses the asymptotic properties of the estimator. The
Hyperbolic diffusion model is provided as an illustration
to validate the findings in Section 4. The conclusions are
summarized in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

Define a fundamental probability space denoted as
(Ω, F,P), which comes with a right-continuous and non-
decreasing collection of σ-algebras represented by {Ft}t≥0.

The POSFDEs is considered as follows:
dXt =f(t,Xt, θ)dt+ g(t,Xt)dW

H
t

dYt =u(t,Xt)dt+ v(t,Xt)dWt, t ∈ [0, T ],

X0 =ξ, Y0 = η.

(1)

In this context, WH , for H ∈ ( 1
2 , 1) signifies the fractional

Brownian motion, while W represents standard Brownian
motion that is independent of WH . The parameter θ remains
unknown. We also assume that ξ and η have a fixed distri-
bution, denoted as π0.

It is assumed that the functions f , g, u and v are known
and satisfy

Assumption 1: |f(t, x, θ)|+ |g(t, x)| ≤ K(1 + |x|) for all
t ∈ [0, T ], K > 0,

Assumption 2: |f(t, x, θ)−f(t, y, θ)|+|g(t, x)−g(t, y)| ≤
K(|x− y|) for all t ∈ [0, T ], K > 0,

Assumption 3: |u(t, x)| + |v(t, x)| ≤ K ′(1 + |x|) for all
t ∈ [0, T ], K ′ > 0,

Assumption 4: |u(t, x) − u(t, y)| + |v(t, x) − v(t, y)| ≤
K ′(|x− y|) for all t ∈ [0, T ], K ′ > 0.

Remark 1: Since stochastic differential equation (1) satis-
fy the linear growth condition and Lipschitz condition, there
exists a unique solution.

Let Ω = C([0, T ];R2) represent the collection of con-
tinuous functions mapping the interval [0, T ] into R2. We
examine (X,W ∗) = (Xt,W

∗
t , t ∈ [0, T ]) depend on Ω,

where for each point (x, y) ∈ Ω, we have (Xt,W
∗
t )(x, y) =

(xt, yt). The probability measure P̃ is the distinguished
probability measure on Ω such that, if we define the variable
ξ as ξ = W ∗0 and let W̃ = (W̃t) for t ∈ [0, T ] with
W̃t = W ∗t − W ∗0 , then the pair (X, ξ) is independent

from the process W̃ , which behaves as fractional Brown-
ian motion characterized by the Hurst parameter H . The
canonical filtration on Ω is denoted as (Ft, t ∈ [0, T ]), where
Ft = σ{(Xs,W

∗
s ), 0 ≤ s ≤ t}∨N , with N representing the

collection of null sets in the measure space (Ω, P̃).
Define the function m(x, θ) on the interval [0, T ] for every

continuous function x = (xt, t ∈ [0, T ]) as follows:

m(x, θ)(t) =
f(t,Xt, θ)

g(t, xt)
, t ∈ [0, T ]). (2)

Let ktm(x,θ) = (ktm(x,θ)(s), 0 < s < t).
Let A = (At, t ∈ [0, T ]), < A >= (< A >t, t ∈ [0, T ])

by
At := A

m(X,θ)
t , < A >t:=< Am(X,θ) >t . (3)

It is understood that At and < A >t are solely determined
by X(t) = (Xs, 0 ≤ s ≤ t).

Define

< A,A∗ >t:=< Am(X,θ), A∗ >t=

∫ t

0

kt∗(s)m(X, θ)(s)ds,

(4)
and

nt(X, θ) := n
m(X,θ)
t =

d < A,A∗ >t
d < A∗ >t

, (5)

where ñt(X) := nt(X,θ)
θ , t ∈ [0, T ].

Define the processes

Ãt(x, θ) =

∫ t

0

ktm(x,θ)dW̃
H
s , (6)

< Ã >t (x, θ) :=

∫ t

0

m(x, θ)(s)ktm(s)ds, t ∈ [0, T ], (7)

where Ãt(θ, x) is a Gaussian martingale.
Let

Υt(x, θ) = eÃt(x,θ)−
1
2<Ã>t(x,θ), t ∈ [0, T ], (8)

and
Υt(θ) = Υt(X, θ). (9)

Let P = ΥT (θ)P̃, Yt = σ({Ys, 0 ≤ s ≤ t}), πt(φ) =
E[φ(Xt)|Yt], σt(φ) = Ẽ[φ(Xt)Υt|Yt].

Then, we have

πt(φ) =
σt(φ)

σt(1)
, t ∈ [0, T ]. (10)

Define

Zt =

∫ t

0

ktm(X,θ)(s)g
−1(s,Xs)dYs, t ∈ [0, T ], (11)

Z∗t =

∫ t

0

kt∗(s)g
−1(s,Xs)dYs, t ∈ [0, T ]. (12)

Then, Z and Z∗ are semimartingales as follows:

Zt =< A >t +At, t ∈ [0, T ], (13)

Z∗t =< A,A∗ >t +A∗t , t ∈ [0, T ]. (14)

Thus,

Zt =

∫ t

0

n2s(X, θ)d < N∗ >s +

∫ t

0

ns(X, θ)dN
∗
s , (15)

Z∗t =

∫ t

0

ns(X, θ)d < N∗ >s +N∗t , (16)
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where t ∈ [0, T ].
Then, we have

Zt =

∫ t

0

ns(X, θ)dZ
∗
t , t ∈ [0, T ]. (17)

Let

αt = Z∗t −
∫ t

0

πs(n)d < N∗ >s, t ∈ [0, T ]. (18)

The process πs(n) = E[ns(X, θ|Ys], 0 ≤ s ≤ t.
For t ∈ [0, T ], the unnormalized filter is

Υ̃t(θ) = σt(1) = Ẽ[Υt|Yt]. (19)

Then, we have

Υ̃T (Yt, θ) = eθ
∫ T
0
πs(ñ)dZ

∗
s− θ

2

2

∫ T
0
π2
s(ñ)d<N

∗>s . (20)

Then, the MLEr is

θ̂T =

∫ T
0
πs(ñ)dZ∗s∫ T

0
π2
s(ñ)d < N∗ >s

. (21)

In the following section, we will demonstrate the asymp-
totic properties of the MLEr.

III. MAIN RESULTS AND PROOFS

Theorem 1: Under conditions 1–4, as T →∞, the MLEr
θ̂T is consistent, that is to say

θ̂T
a.s.→ θ.

Proof: Since

dZ∗t = πt(n)d < N∗ >t +dαt. (22)

We know that α is a continuous martingale on (Yt,P) and
< α >=< N∗ >.

Then, we obtain

θ̂T =

∫ T
0
πs(ñ)dZ∗s∫ T

0
π2
s(ñ)d < N∗ >s

= θ +

∫ T
0
πs(ñ)dαs∫ T

0
π2
s(ñ)d < N∗ >s

,

(23)
in other words

θ̂T − θ =

∫ T
0
πs(ñ)dαs∫ T

0
π2
s(ñ)d < N∗ >s

. (24)

Thus, we get ∫ T
0
πs(ñ)dαs∫ T

0
π2
s(ñ)d < N∗ >s

a.s.→ 0. (25)

Hence, we have
θ̂T

a.s.→ θ.

The proof is complete.
Remark 2: From conditions 1–4, we could have

lim sup
T

Q
1
2

T |θ̂T − θ|
(2 log logQT )

1
2

= 1, a.s.

where QT =
∫ T
0
π2
s(ñ)d < N∗ >s.

Theorem 2: Under conditions 1–4,√∫ T

0

π2
s(ñ)d < N∗ >s(θ̂T − θ)

d→ N (0, 1).

as T →∞.

Proof:√∫ T

0

π2
s(ñ)d < N∗ >s(θ̂T−θ) =

∫ T
0
πs(ñ)dνs√∫ T

0
π2
s(ñ)d < N∗ >s

.

Then, we have∫ T
0
πs(ñ)dνs√∫ T

0
π2
s(ñ)d < N∗ >s

d→ N (0, 1).

Thus,√∫ T

0

π2
s(ñ)d < N∗ >s(θ̂T − θ)

d→ N (0, 1). (26)

The proof is complete.

IV. EXAMPLE

Consider the partially observed fractional Hyperbolic dif-
fusion model as follows:

dXt =θ
Xt√

1 +X2
t

dt+ dWH
t

dYt =Xtdt+ dWt, t ∈ [0, T ],

Y0 =0, X0 = 0,

(27)

in which WH , for H ∈ ( 1
2 , 1) signifies the fractional

Brownian motion, while W represents standard Brownian
motion that is independent of WH . The parameter θ remains
unknown.

Since |θ x√
1+x2

− θ y√
1+y2
| ≤ 2θ|x − y| and |θ x√

1+x2
| ≤

θ(1 + |x|), it can be checked that the equation satisfies
Assumptions 1–4.

Define X̂t = E(Xt|Yt), Kt = E([Xt − X̂t]
2|Yt).

Then,
dX̂t =θ

X̂t√
1 + X̂2

t

dt+Ktdνt, t ∈ [0, T ]

X̂0 =0,

(28)

{
dKt =dt+ 2θKtdt−K2

t d < N∗ >t

K0 =0.
(29)

Thus,
Kt → θ +

√
θ2 + 1, (30)

as t→∞.
Let Kθ = θ +

√
θ2 + 1.

Then, we have
dX̂t =θ

X̂t√
1 + X̂2

t

dt+Kθdνt, t ∈ [0, T ]

X̂0 =0.

(31)

The verification of the MLEr’s conformity with the asymp-
totic properties is straightforward.

Next, we make the simulations of MLEr. We utilized
Paxson’s method ( [18]) for simulation. In Table 1, H =
0.65, the size of n ranges from 1000 to 5000. In Table 2,
H = 0.75, the size of n ranges from 1000 to 5000. In Table
3, H = 0.65, the size of n ranges from 10000 to 50000.
In Table 4, H = 0.75, the size of n ranges from 10000 to
50000. In Table 5, H = 0.8, the size of n ranges from 10000
to 50000.
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TABLE I
MLER SIMULATION RESULTS.

True Value Average Value Absolute Er-
ror

θ Size n θ̂n |θ − θ̂n|

2

1000 2.0517 0.0517

2000 2.0368 0.0368

5000 2.0149 0.0149

3

1000 3.0621 0.0621

2000 3.0408 0.0408

5000 3.0193 0.0193

TABLE II
MLER SIMULATION RESULTS.

True Value Average Value Absolute Er-
ror

θ Size n θ̂n |θ − θ̂n|

1

1000 1.0625 0.0625

2000 1.0481 0.0481

5000 1.0173 0.0173

2

1000 2.0592 0.0592

2000 2.0313 0.0313

5000 2.0169 0.0169

V. CONCLUSION

The purpose of this research is to explore the issue of MLE
for POSFDEs. We presented the state estimation equation.
We derived the asymptotic properties such as consistency and
asymptotic normality for the MLEr by utilizing the proba-
bility theory. Future investigations will focus on addressing
estimation challenges for POSFDE driven by fractional Lévy
process.
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