
 

  

Abstract— This article delves into the theoretical foundations 

of Double Integral Transforms (DIT), focusing on the pivotal 

role played by Fox's H-Function in their theoretical framework. 

The DIT denoted as 𝝓(𝒕), is formulated using Fox's H-Function 

and is expressed as a contour integral of Mellin-Barnes type, in-

volving various parameters and conditions. The study provides 

a concise representation of DIT as 𝝓(𝒕) = 𝑫𝑻[𝒇(𝒙, 𝒚)],   and 

three theorems are presented utilizing the power series expan-

sion of special functions including Laplace transforms, Hankel 

transforms, and additional transforms by Pathak and Narain. 

These theorems are proven analytically and the proofs of these 

theorems are validated through examples, demonstrating the 

manipulation of DIT under specific conditions. 

The Fox H-Function is a powerful mathematical tool explored 

for its significance in the analysis of DIT. As a hypergeometric 

series generalization, the H-Function finds widespread applica-

tions across mathematics, physics, and engineering. The appli-

cation of these theorems extends to evaluating integrals that 

combine H-Functions with other functions. This comprehensive 

analysis highlights the crucial significance of Fox's H-Function 

in enhancing the theoretical landscape and applicability of DIT. 

Ultimately, this article highlights the transformative role of DIT 

in integral transform theory, offering a vigorous tool for re-

searchers investigating structural stability and elasticity in var-

ious applied contexts. 

 

Index Terms— Double Integral Transform, Laplace Trans-

form, Hankel transform, H-Function. 

 

I. INTRODUCTION 

NTEGRAL equations and transforms are crucial tools to 

solve many engineering problems related to the cracks of 

different shapes in the materials and these different types 

of cracks in the structure or materials can be solved by using 

integral equations and transforms along with some special 

function based on the type of problem. In dealing with such a 

complex problem in the mathematical world, we are using 

transforms like Laplace transforms and Hankel transforms 

along with certain generalized hypergeometric functions. The 

H-Function, combined with Laplace and Hankel transforms, 

enables effective solutions for crack problems in materials, 

enhancing elasticity analysis and structural integrity. 
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Fig. 1 shows different types of cracks in materials before and 

after repair.          

 

Fig. 1. A material with a visible crack before repair and after 

repair. 

 

   Mathematical transformations are a crucial component of 

the analytical tools used by scientists and engineers. In the 

realm of mathematical analysis and integral transforms, DIT 

plays a crucial role in the expression of functions with two 

variables using new variables. The DIT, denoted as 𝜙(𝑡) un-

folds its mathematical richness, intricately connected to vari-

ous renowned transforms such as the Laplace Transform, the 

Hankel Transform, and the specialized transforms introduced 

by Pathak and Narain. As we navigate through this terrain, 

the study unveils a concise representation of the DIT empha-

sizing its chain properties and the underlying theorems that 

shape its theoretical foundations. This transformative process 

involves the integration of a given function over a region on 

the plane. Erdogan [1] suggests that systems of simultaneous 

dual integral equations with trigonometric and Bessel kernels 

can be solved by reducing them to simultaneous singular in-

tegral equations. However, it points out that using a direct 

method to solve these dual integral equations may not accu-

rately recover the oscillation character of the solution. Kalia 

[2] discussed the use of dual integral equations with Fox's H-

function kernel to solve a class of mixed boundary value 

problems involving the potential of an electrified disc. 

Kashuri et al. [3] established a relationship between the dou-

ble new integral transform and the double Laplace transform 

and presented various results in this regard. Al-Safi et al. [4] 

propose a new DIT called the Double Sumudu-Elzaki trans-

form (DSET) combined with the variational iteration method 

for solving nonlinear partial differential equations (PDEs) of 
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fractional order derivatives.  

The Laplace transform technique is used to analyze linear 

time-invariant systems in mathematics, engineering, and 

physics. With the increasing complexity of engineering prob-

lems, Laplace transforms help in solving complex problems 

with a straightforward approach just like the applications of 

transfer functions to solve ODE. Davies & Martin [5] exam-

ined a multitude of diverse techniques for numerically revers-

ing the Laplace transform and assessed them based on their 

suitability for real inversion problems, suitability for different 

function types, numerical precision, computational effi-

ciency, and ease of implementation and programming. Guo 

[6] investigates the impact of the stereotype associated with 

the Laplace transform on students’ perspective towards uti-

lizing this approach for resolving ODE with distinct initial 

conditions. Cost [7] investigates various methods for Laplace 

transform inversion in viscoelastic stress analysis, their appli-

cations, and the effectiveness of these methods in solving spe-

cific engineering problems. Schiff [8] presents a comprehen-

sive approach to the paper, focusing on the Laplace trans-

form's applications, theoretical foundations, and accessibility 

for students, making it a valuable resource for learning. 

The Hankel transform is another tool that plays a crucial 

role in solving problems with radial symmetry. This trans-

form extends the concept of the Fourier transform to func-

tions defined in polar coordinates. It is commonly used when 

dealing with problems that exhibit circular or cylindrical 

symmetry. The transform is defined as an integral involving 

a Bessel function, a special mathematical function that arises 

frequently in problems with circular symmetry. Garg et al. [9] 

introduced a finite integral transform that utilizes a combina-

tion of Bessel functions as a kernel, subject to certain condi-

tions. Cinelli [10] introduced finite Hankel transforms that in-

corporate kernels along with their corresponding infinite se-

ries. These advancements now allow for the application of in-

tegral transform theory to solve Bessel's equation with asym-

metric endpoint conditions. Ueda [11] delineates the primary 

aims and approaches of the study, emphasizing the utilization 

of the Hankel transform in tackling a particular fracture issue 

in piezoelectric substances subjected to thermal stress. It es-

tablishes a basis for the comprehensive examination and find-

ings articulated in the manuscript. Yonglin et al. [12] pro-

posed a new numerical. approach to the calculation of the 

Hankel transform, which is very important for solving multi-

ple physics and engineering problems. This approach is most 

useful in high oscillation integrals using Bessel functions 

which are commonly encountered in various fields like phys-

ics, engineering, etc. For example, in areas such as wave 

propagation and electromagnetic physics. 

Central to our investigation is Fox's H-Function, a power-

ful mathematical tool that transcends traditional boundaries. 

The three theorems established in this exploration leverage 

the power of series expansions, including those of Laplace 

Transforms, Hankel Transforms, and specialized transforms, 

providing a rigorous foundation for the analytical framework. 

Awasthi et. al. [13] considered the dual integral equations in-

volving Fox’s H-function and addressed the formal solution 

of specific dual integral equations simultaneously, which en-

compass Fox’s H-function. Fox [14] defined the H-function 

as a Mellin-Barnes-type contour integral, which is symboli-

cally denoted as  

𝐻𝑝,𝑞
𝑚,𝑛  [𝑥 |

{(𝑎𝑝,𝛼𝑝)}

{(𝑏𝑞,𝛽𝑞)}
]  

=
1

2𝜋𝑖
 ∫

∏ Γ(𝑏𝑗−𝛽𝑗𝑠) ∏ Γ(1−𝑎𝑗+𝛼𝑗𝑠)
𝑛
𝑗=1

𝑚
𝑗=1

∏ Γ
𝑞
𝑗=𝑚+1

(1−𝑏𝑗+𝛽𝑗𝑠) ∏ Γ
𝑝
𝑗=𝑛+1

(𝑎𝑗−𝛼𝑗𝑠)
 𝑥𝑠𝑑𝑠

𝐿
           (1)                

Where an empty product is interpreted as 1;𝑚, 𝑛, 𝑝, 𝑞 are in-

tegers such that 0 ≤ 𝑚 ≤ 𝑞 and 0 ≤ 𝑛 ≤ 𝑝; the 𝐴𝑗 , 1 ≤ 𝑗 ≤

𝑝 and 𝐵𝑗 , 1 ≤ 𝑗 ≤ 𝑞, are all positive; the poles of the integrand 

in (1) are simple; 𝐿 stands for a suitable contour of Mellin-

Barnes type which runs from −𝑖∞ 𝑡𝑜 𝑖∞ with indentations, if 

necessary in such a manner that all the poles of Γ(𝑏𝑗 −

𝛽𝑗𝑠), 𝑗 = 1,… ,𝑚 are to the right and those of Γ(1 − 𝑎𝑗 +

𝛼𝑗𝑠), 𝑗 = 1,… , 𝑛 to the left of 𝐿. 

In this paper, we discuss the chain properties connecting 

the double integral transform. 

𝜙(𝑡) = ∫ ∫ 𝑥𝛼−1 𝑦𝛽−1(𝑥 + 𝑦)𝜎∞

0
.

∞

0
 𝐻𝑢,𝑣

𝑓,𝑔
[𝜆(𝑥 +

𝑦) |
{(𝐴𝑢 ,𝜂𝑢)}
{(𝐵𝑣,𝜉𝑣)}

] . 𝐻𝑝,𝑞
𝑚,𝑛 [𝑡𝑥𝛼1𝑦𝛽1(𝑥 +

𝑦)𝜎1 |
{(𝑐𝑝,𝛾𝑝)}

{(𝑑𝑞,𝛿𝑞)}
 ] 𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦                                                  (2) 

Provided that 0 ≤ 𝑚 ≤ 𝑞, 0 ≤ 𝑛 ≤ 𝑝, 0 ≤ 𝑓 ≤ 𝑣, 0 ≤ 𝑔 ≤

𝑢, 𝑅(𝛼) > 0, 𝑅(𝛽) > 0, 𝛼1, 𝛽1, 𝜎1 ≥ 0 , − 𝑚𝑖𝑛
1≤𝑗≤𝑓

𝑅(𝐵𝑗|𝜉𝑗) <

𝑅(𝛼 + 𝛽 + 𝜎)  <  − 𝑚𝑎𝑥
1≤𝑖≤𝑔

 𝑅{(𝐴𝑖 − 1)/

𝜂𝑖} ,𝑚, 𝑛, 𝑝, 𝑞, 𝑓, 𝑔, 𝑢, 𝑣   are integers with various known 

transforms e.g. the Laplace transform, the Hankel transform, 

the 𝐽𝜈,𝜆
𝜇

  transfrom due to Pathak [16] and Ψ𝜈1,𝑘1,𝑚1
 transform 

due to Narain [17]. For the sake of brevity, we denote the 

double integral transform (2) as 

𝜙(𝑡) = 𝐷𝑇 [𝑓(𝑥, 𝑦)] 
The impetus for this scholarly article is derived from the 

finding (4) presented below, which was recently disclosed by 

Srivastava and Panda [18]. We prove three theorems fre-

quently using the power series expansion of various special 

functions appearing in the integral. We give several examples 

based on these theorems thereby evaluating a few known or 

new integrals involving the product of H-functions and other 

functions. Fig. 2 shows the step-by-step process. 

 

Fig. 2. The flowchart of the processes. 
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II. THEOREM 1  

If 𝜙(t) = DT [𝑓(𝑥)]  and 𝑓(𝑥) is the Laplace transform of 

𝑔(𝑧) then 

𝜙(𝑡) = 𝜆−𝛼−𝛽−𝜎 ∑
(−1)𝑟

𝑟!

∞
𝑟=0 𝜆−𝑟  𝐻𝑝+𝑣+2,   𝑞+𝑢+1

𝑚+𝑔,   2+𝑓+𝑛
  

 [𝑡𝜆−𝜃 |

(1−𝛼−𝑟,𝛼1),(1−𝛽,𝛽1),{(𝜖𝑓,𝜃𝜉𝑓)},{(𝑐𝑝,𝛾𝑝)},

(𝜖𝑓+1,𝜃𝜉𝑓+1),…,(𝜖𝑣,𝜃𝜉𝑣)       

{(Ψ𝑔𝜃,𝜃𝜂𝑔)},{(𝑑𝑞,𝛿𝑞)},(1−𝛼−𝛽−𝑟,𝛼1+𝛽1),

(Ψ𝑔+1,𝜃𝜂𝑔+1),   …,(Ψ𝑢,𝜃𝜂𝑢)

] ∫ 𝑧𝑟𝑔(𝑧)𝑑𝑧
∞

0
 (3) 

Where, 

{

𝜃 = 𝛼1 + 𝛽1 + 𝜎1,                                                            

𝜖𝑗 = 1 − 𝐵𝑗 − (𝛼 + 𝛽 + 𝜎)𝜉𝑗 ,    𝑗 = 1, … , 𝑣,              

Ψ𝑗 = 1 − 𝐴𝑗 − (𝛼 + 𝛽 + 𝜎)𝜂𝑗 ,   𝑗 = 1, … , 𝑢,             
 

Provided that the integrals ∫ 𝑔(𝑧)𝑑𝑧
∞

0
 and ∫ 𝑧𝑟𝑔(𝑧)𝑑𝑧,

∞

0
 𝑟 ≥

1, exist and all other conditions given with (2) are satisfied. 

Proof: We have 

𝑓(𝑥) = ∫ 𝑒−𝑥𝑧∞

0
𝑔(𝑧)𝑑𝑧    

On substituting for 𝑓(𝑥) in (2) and changing the order of in-

tegration which is justifiable under the given conditions, we 

have 

𝜙(𝑡) = ∫ 𝑔(𝑧)𝑑𝑧 ∫ ∫ 𝑒−𝑥𝑧𝑥𝛼−1𝑦𝛽−1(𝑥 + 𝑦)𝜎∞

0

∞

0

∞

0
  

𝐻𝑢,𝑣
𝑓,𝑔

[𝜆(𝑥 + 𝑦) |
{(𝐴𝑢,𝜂𝑢)}
{(𝐵𝑣,𝜉𝑣)}

]  

𝐻𝑝,𝑞
𝑚,𝑛 [𝑡𝑥𝛼1𝑦𝛽1(𝑥 + 𝑦)𝜎1 |

{(𝑐𝑝,𝛾𝑝)}

{(𝑑𝑞,𝛿𝑞)}
 ] 𝑑𝑥𝑑𝑦  

By the definition of Mellin transform 𝐹(𝑠) of a function 𝑓(𝑥) 

as  

𝐹(𝑠) = 𝑀{𝑓(𝑥): 𝑠} = ∫ 𝑥𝑠−1𝑓(𝑥)𝑑𝑥
∞

0   

Where 𝑠 is a complex number.  

For convenience, we abbreviate the first member of equation 

(1) by 

𝐻𝑝,𝑞
𝑓,𝑔

[𝑥] 

Then by the Mellin inverse theorem [21], it follows from (1) 

that 

  𝑀{𝐻𝑝,𝑞
𝑓,𝑔[𝑥]: 𝑠} =  

∏ Γ(𝑏𝑗+𝛽𝑗𝑠) ∏ Γ(1−𝑎𝑗−𝛼𝑗𝑠)
𝑛
𝑗=1

𝑚
𝑗=1

∏ Γ
𝑞
𝑗=𝑚+1

(1−𝑏𝑗−𝛽𝑗𝑠)∏ Γ
𝑝
𝑗=𝑛+1

(𝑎𝑗+𝛼𝑗𝑠)
 𝑧−𝑠

 

Provided that −min
1≤𝑗<𝑚

𝑅𝑒 (
𝑏𝑗

𝛽𝑗
) < 𝑅𝑒(𝑠) < min

1≤𝑗≤𝑛
𝑅𝑒 (

1−𝑎𝑗

𝛼𝑗
). 

By using [18] the relation 𝜙(𝑥) = 𝑥𝜎𝐻𝑝,𝑞
𝑓,𝑔

[𝜆𝑥] and expand-

ing 𝑒−𝑥𝑧 in powers of 𝑥𝑧 and integrating term by term by us-

ing the following known integral due to Srivastava and Panda 

[18], we obtain 

∫ ∫ 𝑥𝛼−1𝑦𝛽−1 (𝑥 + 𝑦)𝜎
∞

0

 𝐻𝑢,𝑣
𝑓,𝑔

[𝜆(𝑥 + 𝑦) |
{(𝐴𝑢, 𝜂𝑢)}

{(𝐵𝑣 , 𝜉𝑣)}
]

∞

0

 

 𝐻𝑝,𝑞
𝑚,𝑛 [𝑡𝑥𝛼1𝑦𝛽1(𝑥 + 𝑦)𝜎1 |

{(𝑐𝑝, 𝛾𝑝)}

{(𝑑𝑞 , 𝛿𝑞)}
 ] 𝑑𝑥𝑑𝑦

= 𝜆
−𝛼−𝛽−𝜎

𝐻𝑝+𝑣+2,𝑞+𝑢+1
𝑚+𝑔,2+𝑓+𝑛

 

[𝑡𝜆−𝜃 |

(1−𝛼,𝛼1),(1−𝛽,𝛽1),{(𝜖𝑓,𝜃𝜉𝑓)},{(𝑐𝑝,𝛾𝑝)},

(𝜖𝑓+1,𝜃𝜉𝑓+1),…,(𝜖𝑣,𝜃𝜉𝑣)  

{(Ψ𝑔,𝜃𝜂𝑔)},{(𝑑𝑞,𝛿𝑞)},(1−𝛼−𝛽,𝛼1+𝛽1),

(Ψ𝑔+1,𝜃𝜂𝑔+1),…,(Ψ𝑢,𝜃𝜂𝑢)

]            (4) 

Where all the conditions given in (3) are satisfied, we obtain 

the theorem. 

Convergence of Theorem 1: Theorem 1 provides a relation 

between the DIT and the Laplace transform. The convergence 

of this theorem is governed by the following factors: 

a) Integral convergence 

The Integral ∫𝑔(𝑧)𝑑𝑧 and ∫ 𝑟𝑟𝑔(𝑧)𝑑𝑧 converge if the 

function 𝑔(𝑧) decays rapidly enough as 𝑧 → ∞. For example, 

𝑔(𝑧)~𝑒−𝑎𝑧 (where 𝑎 > 0) ensures the finiteness of these in-

tegrals. 

b) Series Convergence  

The series expansion in the theorem involves factorial 

growth in the denominator, ensuring convergence if 𝑔(𝑧) sat-

isfies appropriate decay conditions. 

The series also depends on the Fox's H-function, which 

must converge under the specified parameter constraints. 

c) Fox's H-Function 

The Fox's H-function converges as a Mellin-Barnes-type 

contour integral if the poles of 𝛤(𝑏𝑗 − 𝛽𝑗𝑠) and  𝛤(1 − 𝑎𝑗 +

𝛼𝑗𝑠) lie on opposite sides of the contour 𝐿. Parameter con-

straints such as 𝑅(𝛼 + 𝛽 + 𝜎) > 0 ensure this condition is 

satisfied. 

Example: Let 𝑔(𝑧) = 𝑧−𝜇−
1

2 𝐾
𝜈+

1

2

(𝑏𝑧) 

By using [18], we obtain 

𝑓(𝑥) =
√𝜋 Γ(−𝜇+𝜈+1)Γ(−𝜇−𝜈)

(2𝑏)
1
2

(𝑥2 − 𝑏2)𝜈
𝜇/2

 𝑃𝜈
𝜇(𝑥/𝑏)       (5)  

Where 𝑃𝜈
𝜇
(𝑧) is the associated Legendre function with 

𝑅(𝜇) − 1 < 𝑅(𝜈) < −𝑅(𝜇) 

By putting 𝑠 = 𝑟 − 𝜇 +
1

2
 in [20], we obtain  

∫ 𝑍𝑟𝑔(𝑧)𝑑𝑧 = 𝑏−𝑟+𝜇−
1

2  2𝑟−𝜇−
3

2 Γ (
1

2
𝑟 −

1

2
𝜇 +

1

2
−

∞

0
1

2
𝑣) Γ (

1

2
𝑟 −

1

2
𝜇 +

1

2
+

1

2
𝜈)                              (6) 

Finally, by putting the values from (5) and (6) in the theorem, 

we obtain 

∫ ∫ 𝑥𝛼−1𝑦𝛽−1(𝑥2 − 𝑏2)
1

2
𝜇 𝑃𝜈

𝜇
(

𝑥

𝑏
) (𝑥 + 𝑦)𝜎∞

0

∞

0
  

𝐻𝑢,𝑣
𝑓,𝑔

[𝜆(𝑥 + 𝑦) |
{(𝐴𝑢,𝜂𝑢)}
{(𝐵𝑣,𝜉𝑣)}

] 𝐻𝑝,𝑞
𝑚,𝑛 [𝑡𝑥𝛼1𝑦𝛽1(𝑥 +

𝑦)𝜎1 |
{(𝑐𝑝,𝛾𝑝)}

{(𝑑𝑞,𝛿𝑞)}
 ] 𝑑𝑥𝑑𝑦  

=
𝜆−𝛼−𝛽−𝜎 2− 𝜇−1𝑏𝜇

√𝜋 Γ(−𝜇+𝜈+1)Γ(−𝜇−𝜈)
∑

(−2/𝑏𝜆)𝑟

𝑟!
. Γ (

1

2
𝑟 −

1

2
𝜇 +

1

2
−∞

𝑟=0

1

2
𝜈) Γ (

1

2
𝑟 −

1

2
𝜇 +

1

2
+

1

2
𝜈)𝐻𝑝+𝑣+2,   𝑞+𝑢+1

𝑚+𝑛,   2+𝑓+𝑛
  

[𝑡𝜆−𝜃 |

(1−𝛼−𝑟,𝛼1),(1−𝛽,𝛽1),{(𝜖𝑓,𝜃𝜉𝑓)},   {(𝑐𝑝,𝛾𝑝)},

(𝜖𝑓+1 ,𝜃𝜉𝑓+1),…,(𝜖𝑣,𝜃𝜉𝑣)

{(Ψ𝑔,𝜃𝜂𝑔)},{(𝑑𝑔 ,𝛿𝑔)},(1−𝛼−𝛽−𝑟,𝛼1+𝛽1),

 (Ψ𝑔+1 ,𝜃𝜂𝑔+1),…,(Ψ𝑢,𝜃𝜂𝑢) 

]                       (7) 

Provided that 𝑅(𝜇) − 1 < 𝑅(𝜈) < −𝑅(𝜇) and the conditions 

given in (3) are satisfied. 

 

III. THEOREM 2 

If 

𝜙(𝑡) = 𝐷𝑇[𝑓(𝑥)]                                                               (8) 

And      𝑓(𝑥) = 𝐽𝜈,𝜆1

𝜇
 transform of 𝑔(𝑧)                              (9)       

Where, 

𝐽𝜈,𝜆1

𝜇 (𝑥) = ∑
(−1)𝑟(

1

2
𝑟)

𝜈+2𝑟+2𝜆1

Γ(1+𝜆1+𝑟) Γ(1+𝜆1+𝜈+𝜇𝑟)
∞
𝑟=0 , 𝜇 >  0                (10) 

Then 

𝜙(𝑡) =

𝜆
−𝛼−𝛽−𝜎−𝜈−2𝜆1+

1
2

2𝜈+2𝜆1
∑

(−1)𝑟(2𝜆)−2𝑟

Γ(1+𝜆1+𝑟)Γ(1+𝜆1+𝜈+𝜇𝑟)

∞
𝑟=0 . 𝐻𝑝+𝑣+2,   𝑞+𝑢+1

𝑔+𝑚,   2+𝑓+𝑛
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×

[
 
 
 

𝑡𝜆−𝜃 ||

(
1

2
−𝛼−𝜈−2𝜆−2𝑟,𝛼1),(1−𝛽,𝛽1),{(𝜖𝑓,𝜃𝜉𝑓)},{(𝑐𝑝,𝛾𝑝)},

 (𝜖𝑓+1 ,𝜃𝜉𝑓+1),…,(𝜖𝑣,𝜃𝜉𝑣)

{(Ψ𝑔,𝜃𝜂𝑔)},{(𝑑𝑔 ,𝛿𝑔)},(
1

2
−𝛼−𝛽−𝜈−2𝜆1−2𝑟,𝛼1+𝛽1),

  (Ψ𝑔+1 ,𝜃𝜂𝑔+1),…,(Ψ𝑢,𝜃𝜂𝑢) ]
 
 
 

  

× ∫ 𝑧𝜈+2𝑟+2𝜆1+
1

2
∞

0
𝑔(𝑧)𝑑𝑧                                                 (11)  

Provided that the integrals 

∫ 𝑧
1

2𝑔(𝑧)𝑑𝑧  & ∫ 𝑧𝜈+2𝜆1+2𝑟+
1

2𝑔(𝑧)𝑑𝑧
∞

0

∞

0
 exist 𝛼1. 𝛽1, 𝜎1, 𝜇 ≥

0, 𝑅 (𝛼 + 𝜈 + 2𝜆1 +
1

2
) > 0, 𝑅(𝛽) > 0,− 𝑚𝑖𝑛

1≤𝑗≤𝑓
𝑅(𝐵𝑗/𝜉𝑗) <

𝑅 (𝛼 + 𝛽 + 𝜎 + 𝜈 + 2𝜆1 +
1

2
) < − 𝑚𝑎𝑥

1≤𝑖≤𝑔
𝑅{(𝐴𝑖 − 1)/𝜂𝑖}, 

and 𝜖𝑗(𝑗 = 1,2, … , 𝑣) and 𝜑𝑗(𝑗 = 1,2, … , 𝑢) are the same as 

in (3). 

Proof: On substituting for  

𝑓(𝑥) = ∫ (𝑥𝑧)
1

2 𝐽𝜈,𝜆1

𝜇 (𝑥𝑧)𝑔(𝑧)𝑑𝑧
∞

0
                                (12) 

The expression for 𝜙(𝑡) given by (2) and changing the order 

of integration which is suitable under the given conditions, 

we have 

𝜙(𝑡) = ∫ 𝑧
1

2𝑔(𝑧)𝑑𝑧 ∫ ∫ 𝑥𝛼−
1

2𝑦𝛽−1𝐽𝜈 ,𝜆1

𝜇 (𝑥𝑧) (𝑥 +
∞

0

∞

0

∞

0

𝑦)𝜎𝐻𝑢,𝑣
𝑓,𝑔

[𝜆(𝑥 + 𝑦) |
{(𝐴𝑢,𝜂𝑢)}
{(𝐵𝑣,𝜉𝑣)}

] 𝐻𝑝,𝑞
𝑚,𝑛 [𝑡𝑥𝛼1𝑦𝛽1(𝑥 +

𝑦)𝜎1 |
{(𝑐𝑝,𝛾𝑝)}

{(𝑑𝑞,𝛿𝑞)}
]  𝑑𝑥𝑑𝑦                                                         (13) 

Now on substituting the series expansion for 𝐽𝜈,𝜆1

𝜇
(𝑥𝑧) from 

(10) and evaluating the inner integral with the help of (4) we 

obtain the theorem stated above. 

Convergence of Theorem 2: Theorem 2 relates the DIT to 

the 𝐽𝑣,𝜇 transform of a function 𝑔(𝑧). The convergence anal-

ysis for this theorem includes: 

a) Integral Convergence   

The integrals ∫ 𝑧𝑟𝑔(𝑧)𝑑𝑧 and ∫ 𝑔(𝑧) 𝑑𝑧 converge if 𝑔(𝑧) ∼
𝑒−𝑎𝑧 or exhibits a similarly rapid decay. These conditions 

ensure the integral remains finite. 

b) Series Convergence 

The series expansion in Theorem 2 depends on the factorial 

term in the denominator, which dominates the growth of the 

numerator, ensuring convergence for well-behaved func-

tions 𝑔(𝑧). 

c) Fox's H-Function 

The Fox's H-function must satisfy the Mellin-Barnes con-

tour integral conditions for convergence. Constraints such as 

−𝑅(
𝐵𝑗

𝜉𝑗
) < 𝑅(𝛼 + 𝛽 + 𝜎) < −𝑅(

𝐴𝑗−1

𝜂𝑗
) ensure the decay be-

havior necessary for series convergence. 

Example: Let 𝑔(𝑧) = 𝑧−
1

2 𝑒−𝑎𝑧𝐽𝜈(𝑏𝑧) on using 

[18], we get 

𝑓(𝑥) = ∫ 𝑔(𝑧)𝐽𝜈(𝑧𝑥)(𝑧𝑥)1/2𝑑𝑧
∞

0
 

𝑓(𝑥) = ∫  𝑧−1/2 𝑒−𝑎𝑧𝐽𝜈(𝑏𝑧)𝐽𝜈(𝑧𝑥)(𝑧𝑥)1/2𝑑𝑧
∞

0
 

𝑓(𝑥) =
1

𝜋
𝑏−

1

2𝑄
𝜈−

1

2

(
𝑎2+𝑏2+𝑥2

2𝑏𝑥
)                                          (14) 

Provided that 𝑅(𝑎) > 𝐼𝑚(𝑏) > 0 𝑎𝑛𝑑 𝑅(𝜈) > −
1

2
.                                                                                                      

By using [20], we obtain 

∫ 𝑧𝜈+2𝑟+
1

2 𝑔(𝑧) 𝑑𝑧 =
𝑏𝜈 Γ(2𝑟+2𝜈+1)

2𝜈 𝑎2𝜈+2𝑟+1 Γ(𝜈+1)
₂𝐹1 (𝜈 + 𝑟 +

1

2
; 𝜈 +

∞

0

𝑟 + 1; 𝜈 + 1; −
𝑏2

𝑎2)   

Provided that 𝑅(𝑎) > 𝐼𝑚(𝑏) > 0 𝑎𝑛𝑑 𝑅(𝜈) > −
1

2
.  Hence 

using the result (11) with 𝜆1 = 0  and 𝜇 = 1  , we have 

∫ ∫ 𝑥𝛼−1𝑦𝛽−1(𝑥 + 𝑦)𝜎 𝑄
𝜈−

1

2

∞

0

∞

0
(

𝑎2+𝑏2+𝑥2

2𝑏𝑥
)  𝐻𝑢,𝑣

𝑓,𝑔
[𝜆(𝑥 +

𝑦) |
{(𝐴𝑢,𝜂𝑢)}
{(𝐵𝑣,𝜉𝑣)}

] 𝐻𝑝,𝑞
𝑚,𝑛 [𝑡𝑥𝛼1𝑦𝛽1(𝑥 + 𝑦)𝜎1 |

{(𝑐𝑝,𝛾𝑝)}

{(𝑑𝑞,𝛿𝑞)}
] 𝑑𝑥𝑑𝑦 =  

𝜆
−𝛼−𝛽−𝜎−𝜈+

1
2 𝑏

𝜈+
1
2𝜋

22𝜈Γ(1+𝜈)𝑎2𝜈+1
∑

(−1)𝑟

𝑟!

(2𝜆𝑎)−2𝑟Γ(2𝜈+2𝑟+1)

Γ(𝜈+𝑟+1)
. ₂𝐹1  (𝜈 +∞

𝑟=0

𝑟 +
1

2
, 𝜈 + 𝑟 + 1; 𝜈 + 1;

−𝑏2

𝑎2 )𝐻𝑝+𝑣+2,   𝑞+𝑢+1
𝑚+𝑔,   2+𝑓+𝑛

                                                              

 

[
 
 
 

𝑡𝜆−𝜃 ||

(
1

2
−𝛼−𝜈−2𝑟,𝛼1),(1−𝛽,𝛽1),{(𝜖𝑓,𝜃𝜉𝑓)},

{(𝑐𝑝,𝛾𝑝)},(𝜖𝑓+1 ,𝜃𝜉𝑓+1),…,(𝜖𝑣,𝜃𝜉𝑣)

{(Ψ𝑔,𝜃𝜂𝑔)},{(𝑑𝑞 ,𝛿𝑞)},(
1

2
−𝛼−𝛽−𝜈−2𝑟,𝛼1+𝛽1),

(Ψ𝑔+1 ,𝜃𝜂𝑔+1),…,(Ψ𝑢,𝜃𝜂𝑢) ]
 
 
 

                  (15)    

Provided that 𝑅(𝑎) > 𝐼𝑚(𝑏) > 0, 𝑅(𝜈) > −
1

2
, 𝛼1, 𝛽1, 𝜎1 ≥

0 and the other conditions given in (3) are satisfied. 

                                                                                        

IV.          THEOREM 3 

If 

𝜙(𝑡) = 𝐷𝑇[𝑓(𝑥)]                                                             (16) 

And 𝑓(𝑥) is self-reciprocal in the 𝜓𝑣1
, 𝑘1, 𝑚1 transform then  

𝜙(𝑡) =
𝜆
−𝛼−𝛽−𝜎−𝜈1−

1
2

2𝑣1
∑

(−1)𝑟

𝑟!

Γ(2𝑚1−𝑟)Γ(
1

2
−𝑘1+𝑚1+𝜈1+𝑟)

Γ(1+2𝑚1+𝜈1+𝑟)
∞
𝑟=0          

2−2𝑟  
1

Γ(1+𝜈1+𝑟)Γ(−𝑘1+𝑚1+
1

2
−𝑟)

𝐻𝑝+𝑣+2,𝑞+𝑢+1
𝑔+𝑚,   2+𝑓+𝑛

   

[
 
 
 

𝑡𝜆−𝜃 ||

(
1

2
−𝛼−𝜈1−2𝑟,𝛼1),(1−𝛽,𝛽1),{(𝜖𝑓,𝜃𝜉𝑓)},   {(𝑐𝑝,𝛾𝑝)},

(𝜖𝑓+1 ,𝜃𝜉𝑓+1),…,(𝜖𝑣,𝜃𝜉𝑣)

{(Ψ𝑔,𝜃𝜂𝑔)},{(𝑑𝑞 ,𝛿𝑞)},(
1

2
−𝛼−𝛽−𝜈1−2𝑟,𝛼1+𝛽1),

(Ψ𝑔+1 ,𝜃𝜂𝑔+1),…,(Ψ𝑢,𝜃𝜂𝑢) ]
 
 
 

       

∫ 𝑧𝜈1+2𝑟+
1

2
∞

0
𝑓(𝑧)𝑑𝑧                                                         (17) 

Provided that the integrals 

∫ 𝑧𝜈1+2𝑟+
1

2
 ∞

0
𝑓(𝑧)𝑑𝑧 𝑎𝑛𝑑 ∫ 𝑧−𝜈1+

1

2
 𝑓(𝑧)𝑑𝑧

∞

0
 exist 

𝛼1, 𝛽1, 𝜎1 ≥ 0, 𝑅 (𝜈1 − 𝑘1 + 𝑚1 +
1

2
) > 0, 𝑅(𝑚1) > 0, 𝜈1 <

0, 𝜈1 < −2𝑚1, 2𝑚1 is not an integer; −𝛿′ < 𝑅 (𝛼 + 𝛽 +

𝜎 + 𝜈1 +
1

2
) < −𝛽′, 𝑎𝑛𝑑 𝜃, 𝜖𝑗(𝑗 = 1,… , 𝑣), 𝜓𝑗(𝑗 = 1,… , 𝑢) 

are the same as in (3). 

Proof: We have  

𝑓(𝑥) = 2𝜈1 ∫ (𝑥𝑧)−𝜈1+
1

2 
∞

0
.                     

𝐻2,4
2,1 [

𝑥2𝑧2

4
|
(𝑘1−𝑚1−

1

2
,1),(𝜈1−𝑘1+2𝑚1+

1

2
,1)

(𝜈1,1),(𝜈1+2𝑚1,1),(−2𝑚1,1),(0,1)
] 𝑓(𝑧)𝑑𝑧               (18) 

On substituting for 𝑓(𝑥) from (18) in (16) and changing the 

order of integration which is justifiable under the above con-

ditions, we obtain 

𝜙(𝑡) = 2𝜈1 ∫ 𝑧−𝜈1+
1

2𝑓(𝑧)𝑑𝑧 ∫ ∫ 𝑥𝛼−𝜈1+
1

2
−1𝑦𝛽−1(𝑥 +

∞

0

∞

0

∞

0

𝑦)𝜎  𝐻𝑢,𝑣
𝑓,𝑔

[𝜆(𝑥 + 𝑦) |
{(𝐴𝑢,𝜂𝑢)}
{(𝐵𝑣,𝜉𝑣)}

] 𝐻𝑝,𝑞
𝑚,𝑛 [𝑡𝑥𝛼1𝑦𝛽1(𝑥 +

𝑦)𝜎1 |
{(𝑐𝑝,𝛾𝑝)}

{(𝑑𝑞,𝛿𝑞)}
] 𝐻2,4

2,1 [
𝑥2𝑧2

4
|

(𝑘1−𝑚1−
1

2
,1),(𝜈1−𝑘1+𝑚1+

1

2
,1)

(𝜈1,1),(𝜈1+2𝑚1,1),(−2𝑚1,1),(0,1)
] 𝑑𝑥𝑑𝑦     

                                                                                    (19) 

But from the power series expansion due to Mukherji and 

Prasad [15] 
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𝐻𝑝,𝑞+1 
𝑚+1,𝑛 [𝑎𝑥𝜎 |

{(𝑎𝑝, 𝛼𝑝)}

(𝑏0, 𝛽0), {(𝑏𝑞 , 𝛽𝑞)}
] =

1

𝛽0

. 

∑
(−1)𝑟

𝑟!

∏ Γ(𝑏𝑗−𝛽𝑗 𝜌𝑟)∏ Γ(1−𝑎𝑗+𝛼𝑗 𝜌𝑟)𝑛
𝑗=1

𝑚
𝑗=1

∏ Γ(1−𝑏𝑗+𝛽𝑗 𝜌𝑟)∏ Γ(𝑎𝑗−𝛼𝑗 𝜌𝑟)
𝑝
𝑗=𝑛+1

𝑞
𝑗=𝑚+1

𝑎𝜌𝑟𝑥𝜎𝜌𝑟∞
𝑟=0  (20) 

Where, 

𝜌𝑟 =
𝑏0+𝑟

𝛽0 
, 𝛽 < 𝑅 (

𝑏0

𝛽0
) < 𝛿, | 𝑎𝑟𝑔 𝑎| <

1

2
𝜆𝜋, 𝜆 > 0, 𝐴 >

0, We have 

𝐻2,4
2,1 [

𝑥2𝑧2

4
|

(𝑘1−𝑚1−
1

2
,1),(𝜈1−𝑘1+𝑚1+

1

2
,1)

(𝜈1,1),(𝜈1+2𝑚1,1),(−2𝑚1,1),(0,1)
] =

∑
(−1)𝑟

𝑟!
 

Γ(2𝑚−𝑟)Γ(
1

2
−𝑘1+𝑚1+𝜈1 +𝑟)

Γ(1+2𝑚1+𝜈1+𝑟) Γ(1+𝑣1+𝑟)Γ(−𝑘1+𝑚1+
1

2
−𝑟)

. (
𝑥𝑧

2
)

2𝜈1+2𝑟

 ∞
𝑟=0      

                                                                                          (21)   

Provided that 𝑅 (𝑣1 − 𝑘1 + 𝑚1 +
1

2
) > 0, 𝑅(𝑚1) > 0, 𝑣1 <

0,−𝑣1 < −2𝑚1,  and 2𝑚1 is not a positive integer. On sub-

stituting the results (21) in (19) interchanging the order of 

integration and summation and finally using the result (4), 

we obtain the theorem. 

Convergence of Theorem 3: Theorem 3 relates the DIT to 

a function 𝑓(𝑥) that is self-reciprocal in the 𝜓𝑘,𝑚 transform. 

The convergence considerations include: 

a) Integral Convergence 

The Integral ∫ 𝑧𝑟𝑔(𝑧)𝑑𝑧 converges if 𝑓(𝑧) ∼ 𝑒−𝑎𝑧2
 or ex-

hibits sufficient decay. For Gaussian-like functions, this con-

dition is automatically satisfied. 

b) Series Convergence 

The series expansion converges due to the rapid growth of 

𝑟! in the denominator, ensuring the terms diminish as 𝑟 → ∞. 

This is further supported by the asymptotic behavior of the 

Fox's H-function. 

c) Fox's H-Function 

The Fox's H-function converges if the Mellin-Barnes inte-

gral conditions are met. Constraints such as −𝛿 < 𝑅(𝛼 + 𝛽 +
𝜎) < −𝛽 ensure that the integral is well-behaved. 

Example: Let us consider  𝑓(𝑥) = 𝑒−𝑥2
 

Where the function 𝑓(𝑥) is a Gaussian function that often sat-

isfies self-reciprocal properties in integral transforms. 

Since 𝑓(𝑥) is self-reciprocal in the 𝜓𝑣1
, 𝑘1, 𝑚1 transform. On 

expressing 𝑓(𝑥) in an integral form involving Fox's H-func-

tion, we obtain equation (18) as  

𝑓(𝑥) =

2𝜈1 ∫ (𝑥𝑧)−𝜈1+
1

2 
∞

0
𝐻2,4

2,1 [
𝑥2𝑧2

4
|
(𝑘1−𝑚1−

1

2
,1),(𝜈1−𝑘1+2𝑚1+

1

2
,1)

(𝜈1,1),(𝜈1+2𝑚1,1),(−2𝑚1,1),(0,1)
]  

× 𝑓(𝑧)𝑑𝑧     

Using 𝛼 = 1, 𝛽 = 1, 𝜎 = 0; 𝑣1 = −1, 𝑘1 = 0,𝑚1 = 1 and  

 𝜆 = 1, we get 

𝑓(𝑥) = 2−1 ∫ (𝑥𝑧)1𝐻2,4
2,1 [

𝑥2𝑧2

4
|

(−
1

2
,1),(

1

2
,1)

(−1,1),(1,1),(−2,1),(0,1)
] 𝑒−𝑧2

𝑑𝑧 
∞

0
       

                                                                                          (22)                               

Further on substituting equation (22) in (16), we get 

𝜙(𝑡) = 2−1 ∫ 𝑧𝑒−𝑧2
𝑑𝑧 ∫ ∫  

∞

0
𝑥

1

2𝑦0(𝑥 +
∞

0

∞

0

𝑦)0 𝐻𝑢,𝑣
𝑓,𝑔

(𝜆(𝑥 + 𝑦)| {(𝐴𝑢 ,𝜂𝑢}

{(𝐵𝑣,𝜉𝑣)}
)𝐻𝑝,𝑞

𝑚,𝑛 (𝑡𝑥1𝑦1|
{(𝑐𝑝,𝛾𝑝)}

{(𝑑𝑞,𝛿𝑞)}
) .   

𝐻2,4
2,1 (

𝑥2𝑧2

4
|

(−
1

2
,1),(

1

2
,1) 

(−1,1),(1,1),(−2,1),(0,1)
) 𝑑𝑥𝑑𝑦                             (23)  

Using the series expansion for Fox's H-function as provided 

by Mukherji and Prasad [15], we get 

𝐻2,4
2,1 (

𝑥2𝑧2

4
|

(−
1

2
,1),(

1

2
,1) 

(−1,1),(1,1),(−2,1),(0,1)
) =

∑
(−1)𝑟

𝑟!
 

Γ(2𝑚−𝑟)Γ(
1

2
−𝑘1+𝑚1+𝜈1 +𝑟)

Γ(1+2𝑚1+𝜈1+𝑟) Γ(1+𝑣1+𝑟)Γ(−𝑘1+𝑚1+
1

2
−𝑟)

. (
𝑥𝑧

2
)

2𝜈1+2𝑟

 ∞
𝑟=0   

On substituting the above expression into equation (23), on 

interchanging the summation, and on simplifying each term 

by performing the integrations involving 𝑥 and 𝑦 separately 

we shall obtain the final expression in the form of equation 

(17). This result demonstrates the use of the series represen-

tation and convergence properties of Fox’s H-function in the 

context of integral transforms. 

 

V. CONCLUSION 

This article contributes to the theoretical framework of 

Double Integral Transforms (DITs), through the lens of Fox's 

H-Function, highlighting its crucial role in shaping and un-

derstanding these mathematical tools. Firstly, we have 

demonstrated the DIT, denoted as 𝜙(𝑡) = 𝐷𝑇[𝑓(𝑥, 𝑦)] is in-

tricately connected to established transforms such as the La-

place and Hankel transforms. The established theorems are 

based on certain conditions which are solved by making use 

of Fox’s H-function, defined as a Mellin-Barnes-type contour 

integral which is symbolically denoted as in equation (1). 

Next, we discussed the chain properties connecting the DIT 

as given in equation (2). Further, we established three key 

theorems that demonstrate the correlation between the DIT, 

the Laplace transform, the Hankel transform, and the special-

ized transforms given by Pathak and Narain. The established 

theorems one, two, and three are then proven analytically 

with corresponding examples. The three presented theorems 

provide valuable insights for researchers dealing with crack 

problems and working in integral transformation with special 

functions.  

The findings in this study lay a foundation for future re-

search to expand DIT applications. Future work could explore 

advanced transforms like Fourier-Bessel and Mellin, broad-

ening the theorems' reach in mathematical physics and engi-

neering. Developing numerical methods for these transforms 

would also enable practical use, especially for complex ap-

plied sciences.   
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