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Abstract—We introduce a Pareto dominance-based heuristic
designed to address bi-objective optimization problems by
tracing the evolution from a random point to the Pareto
frontier. The heuristic consists of three main steps. First, a
feasible random approximation for the bi-objective problem
is established. Next, this point evolves towards the optimal
objectives and the Pareto frontier, leveraging trust regions
around each approximation. Additionally, at specific iteration
intervals, the current approximations optimizing the objectives
are integrated as new approximations to the Pareto frontier,
enriching the set of points along the frontier. This process
iterates until convergence is reached. We would also like to
propose an enhanced version of this method, which includes
multiple initial points while maintaining the original method’s
structure. In this work, we compare the performance of the
classic Weighted Sum (WS) method with both the EORP and
the improved EMRP methods for solving the energy efficiency
(EE) and spectral efficiency (SE) trade-off in optical code
division multiple access (OCDMA) communication systems. The
WS method is examined in two variants: one combined with
the Hill Climbing heuristic (WS-HC) and the other with the
Particle Swarm Optimization heuristic (WS-PSO).

Index Terms—Bi-objective optimization, Pareto frontier,
Heuristics, communication systems, Optimization, OCDMA

I. INTRODUCTION

IN this investigation, we delved into the realm of bi-
objective optimization (BOO), which presents a departure

from the paradigm of single objective optimization (SOO).
Unlike SOO, where a singular optimal solution can typically
be pinpointed, BOO poses a unique challenge as there is
typically no single solution that simultaneously maximizes
or minimizes both objectives. The essence of BOO lies in
acknowledging that both objectives hold equal significance,
leading to the pursuit of a solution set delineated by a curve
representing acceptable compromises between the objectives,
known as the Pareto frontier. The selection of an optimal
solution within this frontier is contingent upon the specific
characteristics of the problem.

While bi-objective optimization (BOO) methods often
incorporate single objective optimization (SOO) techniques
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of the State University of Maringá, Colombo Avenue, 5790, CEP 87020-900
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at certain junctures, such as weighted sum (WS), ϵ-constraint,
and Chebyshev scalarizations, these methods are fraught with
complexity [1] and [2]. In studies like [3], [4], and [5],
emphasis was placed on analyzing resource efficiency (RE)
metrics to strike a balance between energy efficiency (EE)
and spectral efficiency (SE) vis-à-vis total power consump-
tion and occupied bandwidth. In [3], the optimization of
the EE-SE trade-off was framed as a multi-objective opti-
mization (MOO) problem, wherein traditional nonlinear pro-
gramming (NLP) methods, such as Lagrangian Augmented
and Sequential Quadratic Programming (SQP), alongside the
WS method, were employed to identify potential solutions
along the Pareto frontier. Numerical analyses suggested that
iterative analytical techniques rooted in NLP exhibit promise
while maintaining a low computational overhead. Conversely,
[3] abstained from comparing these analytical NLP-based
solutions with heuristic methods, despite the latter’s potential
for simpler computational implementation in optimizing EE-
SE within OCDMA-PON systems.

In [6], the authors introduced and characterized efficient
and promising multi-objective heuristic algorithms, namely
the Dominance of Random Points (DRP), the Evolution from
the Dominance of Random Points (EDRP), and the Evolu-
tion of One Random Point to the Pareto frontier (EORP).
Additionally, they proposed and demonstrated a theorem
suggesting the equivalence between locally Pareto optimal
solutions and Pareto optimal solutions for specific problems.

In this article, we provide a detailed analysis of the
EORP method and introduce an enhanced version, EMRP.
Additionally, we compare these methods with the classical
Weighted Sum approach for identifying solutions on the
Pareto front. For this purpose, we consider two variants of
the WS method: one associated with Hill Climbing (WS-HC)
and the other with Particle Swarm Optimization (WS-PSO),
applied to the bi-objective optimization problem in optical
code division multiple access (OCDMA) communications
systems.
Contribution. The contribution of this work is threefold:

a) We propose and characterize efficient and promising
multi-objective heuristic algorithms, including the Evolution
of Multiple Random Points (EMRP), and provide detailed
definitions of the EORP method. These methods apply
equally to any multi-objective optimization (MOO) problem
arising in optical communication systems.

b) We demonstrate Theorem 1, proposing the equivalence
between locally Pareto optimal solutions and Pareto optimal
solutions for bi-objective optimization (BOO).

c) We analyze the methods’ performance in OCDMA
networks by also evaluating the classical WS method, in-
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corporating both its variants: WS-HC and WS-PSO.
The remainder of this paper is organized as follows:

Section II provides a detailed overview of BOO problem and
the EORP method, along with its key properties; Section III
delves into the specifics of the EMRP method; Section IV
presents a series of numerical analyzes to uncover efficient
solutions along the Pareto front using realistic OCDMA
networks; finally, Section V offers concluding remarks.

II. EORP - METHOD DETAILS

The development of BOO methods is important because
they help to find optimal solutions that can provide optimal
performance goals with a single algorithm. Unlike conven-
tional optimization methods, which are designed to find the
best solution for a single objective, BOO methods can eval-
uate two objectives at the same time, and the Pareto frontier
representation of solutions can help to identify solutions that
traditionally would not be possible to be found.

Usually BOO methods usually employ SOO methods in
certain steps, such as WS and Chebyshev methods; how-
ever, these scalarization methods can present a high degree
of complexity. In this section, we present a heuristic for
MOO problems, based on Pareto dominance, that explores
the EORP to the Pareto frontier to describe the promise
heuristic method EMRP needed to define a BOO problem
and introduce the concept of dominance. A BOO problem
presents two objective functions that must be maximized
simultaneously, and subject to a feasible set : Ω ⊂ Rn,
Ω ̸= ∅ , Ω in general, it is defined through equality
and inequality constraints. Consider the following form of
a BOO:

max
x∈Ω f(x) and max

x∈Ω g(x) (1)

The concept of dominance is paramount for understanding
optimality in the Pareto sense. It is essential for the evaluation
and analysis of the proposed heuristic methods. Thus, the
concepts of dominance and the Pareto frontier can be defined
as in [6] .

Definition (Dominance): One solution x1 dominates an-
other solution x2 (we denote x1 ≽ x2 ), with x1, x2 ∈ Ω ,
if the following conditions are satisfied:

(i) The solution x1 is better or equal to the solution x2

in all objectives, i.e., f
(
x1

)
≥ f

(
x2

)
and g

(
x1

)
≥

g
(
x2

)
;

(ii) The solution x1 is strictly better than the solution x2 ,
that is, if f

(
x1

)
> f

(
x2

)
or g

(
x1

)
> g

(
x2

)
.

Definition 1. (Efficient optimal solution): A solution x∗ ∈ Ω
is called efficient or optimal in the sense of Pareto, if there
is no other solution x ∈ Ω , so that x ≽ x∗ . The set of all
efficient optimal solutions in the sense of Pareto is called the
Pareto frontier.

Definition 2. (Locally Pareto optimal): A solution vector
x∗ ∈ Ω is called locally Pareto optimal if there exist
ε > 0 such that there is no other solution x ∈ Ω ∩
{x ∈ Rn; ∥ x − x ∥< ε} , so that x ≽ x∗ .

Note that a Pareto optimal solution is locally Pareto
optimal. The inverse is valid for convex multi-objective
optimization problems. In the paper [6] it was proved that a

locally Pareto optimal is the global Pareto optimal solution
in the EE-SE bi-objective trade-off optimization problem.

The results found in Theorem 1 and Theorem 2 in [6]
were inspired by the results of [7] and [8].

Theorem 1. Consider the bi-objective problem 1, where Ω ⊂
Rn is a convex subset, f is a quasiconcave function, and g is
a concave function. In this case, every locally Pareto optimal
solution is also globally Pareto optimal.

Proof: Consider x ∈ Ω to be locally Pareto optimal. This
implies the existence of ε > 0 such that for all x ∈ Ωx, we
have x ⪰ x, where Ωx = Ω ∩ {x ∈ RK ; ∥x − x∥ < ε}.
Assuming that x is not a Pareto optimal solution, there must
exist another solution x∗ ∈ Ω on the Pareto frontier such
that

f(x) ≤ f(x∗) and g(x) < g(x∗) (2)

Let us define xλ = λx∗ + (1 − λ)x, where 0 < λ < 1 is
selected such that xλ ∈ Ωx. The convexity of Ω implies that
xλ ∈ Ω.

Utilizing (2), exploiting the quasi-concavity property of
f(·) and the concavity of g(·), we derive

f(x) ≤ min{f(x), f(x∗)} ≤ f(xλ)

and
g(x) ≤ min{f(x), f(x∗)} < g(xλ)

Since the objective function g(·) is concave, the inequalities
above are strict. This contradicts the local optimality of x
in terms of Pareto optimality. Thus, x belongs to the Pareto
frontier.

□

The result found in the Theorem 1 motivated the construction
of the EORP and EMRP heuristics.

We can summarize the EORP heuristic method with the
following basic steps:

1. Choose a starting point x in the feasible region of the
BOO;

xf = xg = x

2. After k > 0 iterations, approximations
(
xf , xg

)
are

included as new approximations x i in the search for
the Pareto frontier;(

x1, · · · , xk, xf , xg
)

3. The method stops when it cannot obtain better solu-
tions in the trust regions.

The steps described show that in the first iterations, the
computational cost is lower and increases as new approxi-
mations are inserted x i for the Pareto frontier, see Figure 2.
Thus, starting with a 'distant' point from the Pareto frontier
should not significantly harm the method, that is, the method
is not dependent on the starting point.

The evolution of the method can be seen in Figure 1.
The value of x is important for the good development of
the method and the spreading of the solutions in the Pareto
frontier. So for a better approximation of the Pareto Frontier,
it may be necessary to adjust this parameter. In algorithm 1
we present a possible choice for this parameter; we suggest
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Fig. 1. Visualization of the Evolution of the EORP Method: One can
observe the initialization with a random starting point and the method’s
evolution towards the Pareto frontier.

considering the initial k as the dimension of the set Ω, ,
that is, 0 < k < n , the point increment occurs up to a
pre-set limit kmax. This value of k is increased by two
every k iteration, as detailed in the algorithm. We present
Algorithm 1 below, which details the EORP heuristic method
for implementation.

The development of heuristic methods for BOO is impor-
tant because they provide alternatives to determine fast and
effective solutions to high-level optimization problems. As
a result, the EORP algorithm as in [6] shown to be com-
petitive, surpassing the classical analytical methods in terms
of performance complexity trade-off. The methods compared
with EORP in [6] were tested and confirmed in works [5]
and [9], in these works, classic scalarization methods were
analyzed, such as weighted sum and e-Constraint.

III. EMRP - EVOLUTION OF RANDOM POINTS

This section introduces a method based on the EORP
approach, which incorporates multiple initial points. It is
expected that this approach will yield a more comprehensive
coverage of the Pareto Frontier.

The EORP method, initially proposed as a heuristic for
solving bi-objective optimization problems based on Pareto
dominance, has proven promising. However, aiming to en-
hance its effectiveness and convergence capability, we intro-
duce an improved version of EMRP, this method incorpo-
rates an evolution strategy to maximize both f and g from
better approximations while directing more points toward the
Pareto Frontier. Based on principles analogous to the original
EORP, this strategy aims to enhance the local search for
Pareto optima.

While the EORP method initializes from a single point
and gradually spreads points towards the Pareto front (this
approach incurs lower computational cost in the initial itera-
tions), on the other hand, the EMRP method, in its initial
iterations (requiring higher computational cost), generates
random points and verifies which ones are feasible, selecting
those not dominated by others to start. This higher-cost
approach to initializing the method tends to create a more
favorable condition for convergence and obtaining a greater
number of points with better spread on the Pareto front.

In EMRP, we introduce the strategy of evolving multiple
random points, and the best approximation for max f evolv-

Algorithm 1 EORP - Evolution of Random Points
1: Choose: randomly point x1 ∈ Ω ;
2: Define: xf = x1, xg = x1, iter = 0, k∈ N, 0 < k <

n, kmax > 0 , solution ∈ Rk+2 , solution = [0, · · · , 0]
and 1 ∈ Rk+2 , 1 = [1, · · · , 1] ;

3: While solution ̸= 1 do
4: iter = iter + 1;
5: For i = 1 to k
6: IF ∃x ∈ Ω ∩

{
x ∈ Rn; ∥ xi − x ∥< ε

}
with

x ⪰ xi do
7: solution(i) = 0;
8: xi = x;
9: Else

10: solution(i) = 1 ;
11: End (IF)
12: End (For)
13: IF ∃x ∈ Ω ∩

{
x ∈ Rn; ∥ xf − x ∥< ε

}
with

f(x) > f
(
xf

)
do

14: solution(n+ 1) = 0;
15: xf = x ;
16: Else
17: solution(n+ 1) = 1;
18: End (IF)
19: IF ∃x ∈ Ω ∩ {x ∈ Rn; ∥ xg − x ∥< ε} with

g(x) > g (xg) do
20: solution(n+ 2) = 0;
21: xg = x;
22: Else
23: solution(n+ 2) = 1;
24: End (IF)
25: IF iter = k and k < kmax do
26: iter = 0;
27: xk+1 = xf ;
28: xk+2 = xg;
29: k = k + 2;
30: 1 =

[
1 , 1, 1

]
;

31: 0 =
[
0 , 0, 0

]
;

32: End (IF)
33: End (While)
34: Output: xf , xg, xi, i = 1, · · · , k.

ing for the maximum of f . Similarly, we also consider the
evolution to maximize g. This search is carried out using the
EORP method. For the remaining points, we apply evolution
towards the Pareto Frontier.

The rationale behind this approach is grounded in Theorem
1, which suggests that by incorporating this local search, we
are locally seeking the Pareto optimum, under the same as-
sumptions as the EORP method. The local search terminates
when we fail to find any point that dominates the points xi.

Remark 1. In the bi-objective problem (1), we observe that
as we increase the value of g, the value of f decreases.
Therefore, the co-funding behavior between f and g indicates
that the Pareto frontier of the problem begins at the maximum
point of f and ends at the maximum point of g, as discussed
in [3].

As described in Observation 1, we are aware of the initial
and final points of the Pareto frontier, namely, it begins
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Fig. 2. Visualization of the Evolution of the EORP Method: Starting from a randomly chosen feasible point as the initial point, the method evolves and
spreads points towards the Pareto frontier until convergence.

at max f and ends at max g. Therefore, to enhance the
accuracy of the Pareto frontier approximation, we incorporate
a search for these points into the EMRP heuristic method.
This involves utilizing the best approximations for max g
and max f , denoted as xg and xf respectively, among the
vectors xi. Algorithm 2 outlines the pseudocode for the
EMRP method.

Theorem 2. Let x∗ be a limit point of the EORP or EMRP
Algorithm, then x∗ is on the Pareto frontier.

Proof: Let x∗ Algorithm limit 1 or 2, then x∗ ∈ Ω, for
ε > 0 defined in Algorithm no exist x ∈ Ω∩{x ∈ RK ; ∥x∗−
x∥ < ε} with x ⪰ x∗. So x∗ is locally Pareto optimal, it
follows from Theorem 1 that x∗ is also Pareto optimal.

□

IV. NUMERICAL RESULTS

This section presents numerical tests for the EORP, EMRP,
WS-PSO, and WS-HC methods, focusing on the EE-SE
trade-off optimization problem in optical networks. This
problem has been extensively studied and is important in
analyzing optical networks. Several authors have proposed
formulations for this problem, such as [10], [11], [12], and
[5]. Additionally, works like [9] introduce techniques for
solving the problem.

A. Defining the Bi-objective EE-SE Optimization Problem

In OCDMA systems, every information bit can be spread
spectrally over N time intervals using spreading sequences,
where each interval is known as a chip-time, denoted as Tc.
The signal-to-noise-plus-interference ratio (SINR) for the i-
th user can be expressed as follows, according to [9]:

γi =
Fi piGii∑K

j ̸=i pjGij + σ2
, (3)

where pi denotes the transmission power of the i-th user, K
represents the total number of users in the system, Gii signi-
fies the attenuation of the signal for the i-th user, reflecting

the attenuation along the optical code path. Additionally, Gij

denotes the attenuation between the j-th transmitting node
and the i-th receiving node, while σ2 represents the power
of the white Gaussian additive noise (AWGN) at the input of
the i-th receiver. Also, let us consider the spectral efficiency
(ηSE) figure of merit for the OCDMA system performance
measure.

ηSE =
1

rc

K∑
i=1

wi log2(1 + θiγi)

[
bits

s.Hz

]
, (4)

where rc represents the optical bandwidth occupied by the
system and the gap θi is typically defined as presented in
[9], [13], and [3].

The energy efficiency (EE) of OCDMA networks involves
determining the suitable transmission power allocated to each
user, which can be defined as:

ηEE =

∑K
i=1 wi log2(1 + θiγi)

ι
∑K

i pi + PC

[
bit

Joule

]
(5)

where PC represents the circuit power. By combining equa-
tions (4) and (5), the trade-off optimization problem between
energy efficiency (EE) and spectral efficiency (SE) can be
formulated as a bi-objective optimization (BOO) problem,
as stated in [5]:

maximize ηSE and maximize ηEE

s.t. (C.1) γi ≥ γ∗
i , ∀i (6)

(C.2) ri ≥ rservi,min

(C.3) pmin ≤ pi ≤ pmax

For the numerical evaluations conducted in this section,
realistic OCDMA networks, as described in [9], [13], [14],
and [15], were deployed within the OCDMA-PON system.
We considered groups of users denoted by i = 1, 2, . . .Kυ

and classes of service denoted by υ = 1, 2, . . . , C, following
the approach outlined in [9] and [6]. Consequently, the total
number of active OCDMA network users is K = ΣC

υKυ .
The bi-objective EE-SE optimization problem satisfies the
conditions of Theorem 1. We will carefully consider the
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Algorithm 2 EMRP – Evolution of Multiple Random Points
1: Choose: randomly points xn ∈ Ω, n = 1, ..., N ;
2:
3: Define: k=0; ε > 0.
4: For n = 1 to N
5: If xn ⪰ xm, ∀m ̸= n do
6: k=k+1;
7: xi = xn;
8: End(If)
9: End(For)

10: Choose: xf and xg in {xi, i = 1, ..., k}
11: Define: solution ∈ Rk+2, solution = [0, ... , 0] and 1 ∈

Rk+2, 1 = [1, ... , 1].
12: While solution ̸= 1 do
13: For i = 1 to k
14: If exist x ∈ Ω ∩ {x ∈ RK ; ∥xi − x∥ < ε} with

x ⪰ xi do
15: solution(i) = 0;
16: xi = x;
17: Else
18: solution(i) = 1;
19: End(IF)
20: End(For)
21: If exist x ∈ Ω ∩ {x ∈ RK ; ∥xf − x∥ < ε} with

f(x) > f(xf ) do
22: solution(k + 1) = 0;
23: xf = x;
24: Else
25: solution(k + 1) = 1;
26: End(IF)
27: If exist x ∈ Ω ∩ {x ∈ RK ; ∥xg − x∥ < ε} with

g(x) > g(xg) do
28: solution(k + 2) = 0;
29: xg = x;
30: Else
31: solution(k + 2) = 1;
32: End(IF) IF iter = k and k < kmax do
33: iter = 0;
34: xk+1 = xf ;
35: xk+2 = xg;
36: k = k + 2;
37: 1 =

[
1 , 1, 1

]
;

38: 0 =
[
0 , 0, 0

]
;

39: End (IF)
40: End(While)
41: Output: xf , xg , xi, i = 1, ..., k.

following properties of the functions involved in the problem
(6): X is a convex set, ηSE(·) is a continuous and concave
function, and ηEE(·) is a continuous and quasi-concave
fractional function [16].

B. Weighted Sum Method

The Weighted Sum (WS) method transforms the bi-
objective problem, which involves the objective functions
(ηEE and ηSE), into a single-objective optimization problem
by constructing a convex combination of the two objectives.
This re-scaling approach combines the objectives into a
single scalar function. Consequently, the original bi-objective

EE-SE trade-off problem (6) can be reformulated using the
WS method as the following single-objective optimization
(SOO) problem:

maximize
x∈RK

(1− λ)ηEE + λ · rc
ηSE

ι
∑K

i pmax
i + PC

s.t. (C.1) γi ≥ γ∗
i , ∀i (7)

(C.2) ri ≥ rservi,min

(C.3) pmin ≤ pi ≤ pmax

The weight factor λ ∈ [0, 1], with EE defined in eq. (7) and
SE in eq. (4). Since EE is measured in [bits/Joule] and SE in
[bits/s.Hz], it is unsuitable to directly add EE and SE due to
the unit difference. In optical systems, where the bandwidth
W ≈ rc is generally larger than the total transmission power
PT , a direct sum of EE and SE would prioritize EE, distorting
the balance between the two objectives. To correct this, we
divide ηSE by ιKpmax + PC, ensuring both EE and SE are
on the same scale for optimization.

The WS scalarization method for solving the EE-SE trade-
off optimization problem is outlined in Algorithm 3. One
of the drawbacks of the WS method is that it often leads
to repeated solutions, as highlighted in [4], [3], and [1].
Furthermore, as noted in [3], the global solutions to the
problem (7), when considering λ ∈ [0, 1], are guaranteed
to lie on the Pareto frontier of the original bi-objective
optimization problem. However, this approach may fail to
capture certain sections of the Pareto frontier, particularly
in non-convex regions, limiting its effectiveness in fully
exploring the trade-offs between EE and SE (6).

Algorithm 3 WS-PSO or WS-HC
1: Choose: δ ∈ (0, 1), randomly initialize x0 within the

bounds of pmin ≤ x ≤ pmax.
2: Define: λ = 0 and k = 0;
3: While λ ≤ 1 do
4: Solve the problem (7) using either the PSO or HC

method;
5: λ← λ+ δ;
6: k = k + 1;
7: Save xk;
8: End(while)
9: Output: x∗ = xk;

To solve the subproblem resulting from the WS approach,
we consider employing either Hill Climbing or Particle
Swarm Optimization methods, each offering distinct strate-
gies for exploring the solution space. Below, we briefly
describe these methods:

The HC algorithm is a greedy local search optimization
method that begins with an initial solution called the current
node and iterative searches for better solutions within its
neighborhood. A step size controls the distance between the
current solution and its neighbors. The algorithm updates the
current solution if a superior neighboring solution is found.
It repeats the process until either a better solution is no
longer found or a pre-defined stopping condition, such as
a maximum number of iterations, is met. Further details on
the HC algorithm can be found in [17], [18] and [19].

A pseudo-code for the HC algorithm adapted to the WS
is described in Algorithm 4. The cost function F deployed
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in the Algorithm 4 can be defined as:

F (p) = (1− λ)ηEE + λ · rc
ηSE

ι
∑K

i pmax
i + PC

+ (8)

+ρ{
∑
i

[max(0, γi−γ∗
i )]

2+
∑
i

[max(0, ri− rservi,min)]
2}.

where ρ is the penalty parameter associated with violating the
problem restrictions (C.1) and (C.2). The cost function (8)
with constant penalty parameter requires a high but limited
value to inhibit restrictions’ violation that makes up the
problem (7).

Algorithm 4 HC
1: Choose: Initial approximation x, such that pmin ≤ xi ≤ pmax.
2: Define: solution=0; It=0; Max-It > 0.
3: While solution=0 and It ≤ Max-It
4: It=It+1;
5: Generate neighbours;
6: if any neighboring point has a higher value of F than x

then
7: x is updated to the neighboring point with the best

value for F ;
8: else
9: solution=1;

10: End(if)
11: End(while)
12: Output: x.

The PSO algorithm, on the other hand, is a population-
based stochastic optimization technique inspired by the social
behavior of animals, such as birds flocking or fish schooling.
It initializes with a population of random solutions, called
particles, which move through the search space to find better
positions based on their individual experience (personal
best) and the experience of the group (global best). The
algorithm updates each particle’s position and velocity until
a termination condition is satisfied. For more details on PSO,
refer to [20], [21] and [22].

At each iteration of Algorithm (3), the PSO algorithm
is used to maximize the function (8) within the bounds
[pmin, pmax]. The method implemented for the tests follows
the approach presented in [22].

C. Hypervolume Evaluation metric

To evaluate the performance of the methods, the hyper-
volume evaluation metric (HvEM) will be used, as proposed
in the study [23], where the authors analyzed various evolu-
tionary methods based on specific performance metrics. This
metric will be used as a quantitative criterion to compare
the algorithms, enabling a detailed analysis of the results
obtained regarding the trade-off between EE and SE.

To define HvEM, we start by considering the set of non-
dominated solutions S that approximate the Pareto front
generated by a specific method, along with a reference point
R dominated by the points in S. The hypervolume H(S,R)
is then calculated as the sum of the volumes of hypercubes vi,
each representing the space dominated by a solution Si ∈ S,
with R serving as the limits, as shown in Figure 3 for the
EE-SE trade-off. In our scenario, we define the reference
point R as (min ηSE ,min ηEE) on the ηEE × ηSE plane. It
is important to note that R does not necessarily need to be a
feasible point for the problem 6; it simply acts as a reference
point for calculating HvEM.

156 158 160 162 164 166 168 170 172 174

SE

2.52

2.54

2.56

2.58

2.6

2.62

2.64

EE

1011

V4 V5 V6
V13

V12

R
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Fig. 3. Hypervolume calculation for the set S of non-dominated solutions
determined by the EMRP heuristic with K = 16, and a point R dominated
by all points of S. The hypervolume is obtained as the sum of the areas vi.
Note that the larger the hypervolume, the better the algorithm performance.

D. Numerical Results Comparison of EORP, EMRP, WS-HC,
and WS-PSO Methods

In this section, we present the numerical experi-
ments conducted. For the tests, we considered a net-
work where KCLASS = [4, 8, 16, 32, 48], and K ≡
KCLASS 1 ∪KCLASS 2 ∪KCLASS 3, with user configurations
such as [2; 1; 1], [4; 2; 2], [8; 4; 4], [16; 8; 8], [24; 12; 12]. The
algorithms were implemented in MATLAB 8.0, and the tests
were conducted on a computer running Windows 11 Home
Single Language, version 23H2, equipped with an Intel(R)
Core(TM) i7-7700HQ CPU @ 2.80GHz, 15.9GB of RAM,
and a 64-bit operating system. For the WS-HC and WS-PSO
methods, we considered δ = 1

19 , his way λ will assume the
following values λ = 0, 1

19 ,
2
19 , . . . , 1, resulting in 20 distinct

values. Specifically, we set the parameters for the HC method
as ρ = 108 and Max-It = 104.

Table I presents the performance of the EORP, EMRP, WS-
PSO, and WS-HC algorithms in addressing the EE-SE trade-
off problem. The table summarizes key metrics, including
execution time, convergence success rate, the number of
unique solutions on the Pareto frontier, function evaluations,
and the total number of iterations for the EE-SE OCDMA
algorithms across varying numbers of optical nodes. Specif-
ically, execution time (Time) is measured in seconds, the
number of distinct solutions on the Pareto frontier is denoted
as SPF, function evaluations are represented by FunC, and the
total number of external iterations for the EE-SE OCDMA
algorithms considering different optical node counts (K) is
given by Itot.

In Table I, we observe that both methods converged to the
Pareto front in all cases and exhibited many points on the
frontier. It is noteworthy that the EMRP method achieved
a significantly higher number of points on the Pareto fron-
tier and also showed slightly higher hypervolume values
see Figure 5, indicating that the EMRP method provides
better spread over the Pareto front, consequently offering a
better approximation of it. Regarding convergence time and
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the number of function evaluations, the EMRP and EORP
methods showed better values in most cases considered, as
shown in Figure 4.

Regarding the WS-HC and WS-PSO methods, both ob-
tained a smaller number of distinct points on the Pareto
front. Although we used 20 different values for λ, which
would allow a maximum of 20 distinct solutions, the reduced
number of solutions is due to a characteristic of the method.
When λ approaches 1, there is a tendency for solutions to
repeat, as discussed in [5]. Upon analyzing the variations of
the WS method considered, we observe that WS-HC demon-
strated superior performance, exhibiting behavior closer to
that of the EORP and EMRP methods concerning execution
time, number of function evaluations, and hypervolume. This
enhanced performance can be attributed to the characteristics
of the method, which employs a local search and benefits
from previous solutions as starting points for λ > 0. In
contrast, the WS-PSO requires the consideration of an initial
swarm for each value of λ, which may explain the higher
FuncC value observed in Table I.

TABLE I
PERFORMANCE OF THE CONSIDERED METHODS

K Algorithm Time SPF FunC Itot HvEM
4 EMRP 1.0884 21 33195 41 1.2995e+11
4 EORP 1.4275 17 49161 67 1.2760e+11
4 WS-PSO 5.1259 12 248920 20 1.2334e+11
4 WS-HC 1.3442 12 328980 20 1.2275e+11
8 EMRP 1.5913 25 79630 41 2.1282e+11
8 EORP 1.3036 17 46789 47 2.0032e+11
8 WS-PSO 10.8279 11 511720 20 2.0085e+11
8 WS-HC 1.8472 11 58724 20 2.0092e+11
16 EMRP 3.4201 21 196420 64 9.5635e+10
16 EORP 3.3531 18 176419 74 9.4583e+10
16 WS-PSO 21.4873 10 1016120 20 9.1460e+10
16 WS-HC 3.0299 10 154932 20 9.1062e+10
32 EMRP 6.3706 18 363917 61 2.2451e+11
32 EORP 7.7027 16 403648 83 2.1855e+11
32 WS-PSO 48.4683 10 2059320 20 2.1043e+11
32 WS-HC 8.1423 10 399348 20 2.1292e+11
48 EMRP 17.5633 27 1013806 78 2.8989e+12
48 EORP 12.3381 17 677029 91 2.8214e+12
48 WS-PSO 70.9465 15 3124920 20 2.7536e+12
48 WS-HC 23.9461 15 1112148 20 2.8101e+12

Fig. 4. Elapsed time for the four bi-objective optimization methods
evaluated.
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Fig. 5. Hypervolume achieved by the four evaluated bi-objective optimiza-
tion methods.

Figure 6 presents the approximations of the Pareto front
obtained using the EORP, EMRP, WS-HC, and WS-PSO
methods for the bi-objective EE-SE optimization problem
with K = 32. The EMRP method produces a greater number
of points and achieves a better distribution, as demonstrated
by the hypervolume metric in Table I.

Figures 7 and 8 show the evolution of ηEE and ηSE in
problem (7) for K = 32. As observed, EE decreases as λ
increases, while SE rises with the increase in λ. This is
because a higher λ places more emphasis on SE, shifting
the balance towards optimizing spectral efficiency. Also, EE
and SE stabilize and remain unchanged when the weighting
factor reaches λ ≥ 10

19 . A characteristic of the WS method is
the emergence of many repeated solutions as λ approaches
1. This characteristic of the method cannot be controlled, so
even using 20 different values for λ, we obtained between
10 and 15 distinct solutions in the Pareto front. However, the
solutions are the curve.

Figures 9 and 10 illustrate the iterative evolution of the
EORP and EMRP heuristics, respectively, as they converge
towards the Pareto frontier. Points marked with ◦’ represent
the path towards maximizing ηEE and ηSE , while points
marked with +’ denote the evolution of other points toward
the Pareto frontier. The EORP method starts from a single
point and gradually spreads points towards the Pareto front.
Notably, this approach tends to have lower computational
costs compared to the EMRP method, especially in the early
iterations. The EMRP method incurs a higher computational
cost for its initialization; indeed, the EORP method generates
random points until obtaining a feasible point to initiate the
method. On the other hand, the EMRP method generates
K random points. It selects the feasible points for the
problem, subsequently classifying them (checking which
ones dominate the others) to begin the method. However,
this approach for the EMRP method initializes the method in
a more favorable condition for convergence, and the method
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Fig. 6. Graph of the points obtained by the convergence of the EMRP,
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tends to achieve better spread on the Pareto front, as observed
in Figure 10.
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Fig. 9. Evolution achieved by the EORP method from initialization to the
Pareto front considering K = 32.

325 330 335 340 345 350 355 360

SE

2.62

2.64

2.66

2.68

2.7

2.72

2.74

2.76

E
E

1011 Evolution from Pareto front - EMRP - K=32

Evolution to the maximum SE value

Starting points

max EE

max SE

Pareto frontier

Evolution to the maximum EE value

Fig. 10. Evolution achieved by the EMRP method from initialization to
the Pareto front considering K = 32.
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V. CONCLUSION

This work presents a study and discussion of the method
proposed by [6], and we propose an enhanced version called
EMRP, which has proven to be as promising as the EORP
heuristic. The heuristic method described by EORP can, in
principle, be adapted and applied to various bi-objective or
multi-objective optimization problems. Motivated by these
results, we propose and introduce the EMRP method, which
is based on introducing additional initial points in the EORP
method.

Through the analysis of the results, the EMRP heuristic
has demonstrated the ability to achieve better solutions than
the EORP, WS-PSO, and WS-HC heuristics, determining
a greater number of points and better spreading along the
Pareto front. Since the computational cost of the EMRP
method tends to be higher due to its initialization, EMRP
may be particularly suitable for problems where determining
feasible points incurs a low average cost, meaning that
generating feasible points would not significantly impact the
method’s processing time. However, if determining feasible
points is highly costly, the EORP method should be consid-
ered a better option. In conclusion, using the EMRP method
implies improving the distribution and quality of the Pareto
frontier approximation.

REFERENCES

[1] O. Amin, E. Bedeer, M. H. Ahmed, and O. A. Dobre, “Energy
efficiency-spectral efficiency tradeoff: A multiobjective optimization
approach,” IEEE Transactions on Vehicular Technology, vol. 65, no. 4,
pp. 1975–1981, 2016.

[2] J. L. Jacob, C. A. Pendeza Martinez, A. L. M. Martinez, and T. Abrão,
“Non-linear biobjective ee-se optimization for noma-mimo systems
under user-rate fairness and variable number of users per cluster,” AEU
- International Journal of Electronics and Communications, vol. 138,
p. 153870, 2021.

[3] C. A. Pendeza Martinez and T. Abrão, “Spectral and energy efficiency
tradeoff in optical code division multiple access networks,” Transac-
tions on Emerging Telecommunications Technologies, vol. 32, no. 1,
p. e4107, 2021.

[4] J. Tang, D. K. C. So, E. Alsusa, and K. A. Hamdi, “Resource
efficiency: A new paradigm on energy efficiency and spectral efficiency
tradeoff,” IEEE Transactions on Wireless Communications, vol. 13,
no. 8, pp. 4656–4669, 2014.

[5] C. A. Pendeza Martinez, T. Abrão, and A. L. M. Martinez, “Energy
and spectral efficiency trade-off in ocdma-pon assisted by non-linear
programming methods,” Computer Networks, vol. 189, p. 107920,
2021.

[6] A. L. M. Martinez, C. A. Pendeza Martinez, and T. Abrão, “Random
point evolution-based heuristic for resource efficiency in ocdma net-
works,” Journal of Network and Systems Management, vol. 31, no. 1,
p. 25, 2023.

[7] Y. Censor, “Pareto optimality in multiobjective problems,” Applied
Mathematics and Optimization, vol. 4, no. 1, pp. 41–59, 1977.

[8] P. Rufz-Canales and A. Rufian-Lizana, “A characterization weakly
efficient points,” Mathematical Programming, vol. 68, no. 2, pp. 205–
212, 1995.

[9] C. A. Pendeza Martinez, F. R. Durand, and T. Abrao, “Energy-efficient
qos-based ocdma networks aided by nonlinear programming meth-
ods,” AEU- International Journal of Electronics and Communications,
vol. 98, pp. 144 – 155, 2019.

[10] X. Tian, Y. Huang, S. Verma, M. Jin, U. Ghosh, K. M. Rabie, and D.-
T. Do, “Power allocation scheme for maximizing spectral efficiency
and energy efficiency tradeoff for uplink noma systems in b5g/6g,”
Physical Communication, vol. 43, p. 101227, 2020.

[11] Q. Liu, F. Tan, T. Lv, and H. Gao, “Energy efficiency and spectral-
efficiency tradeoff in downlink noma systems,” in 2017 IEEE Interna-
tional Conference on Communications Workshops (ICC Workshops),
pp. 247–252, 2017.

[12] F. Heliot, M. A. Imran, and R. Tafazolli, “A very tight approxima-
tion of the siso energy efficiency-spectral efficiency trade-off,” IEEE
Communications Letters, vol. 16, no. 6, pp. 850–853, 2012.

[13] M. P. Marques, Durand, F.R., and T. Abrao, “WDM/OCDM Energy-
Efficient Networks Based on Heuristic Ant Colony Optimization,”
IEEE Systems Journal, vol. 10, pp. 1482–1493, 2016.

[14] H. Yin and D. J. Richardson in Optical code division multiple access
communication networks: theory and applications, Berlin: Springer-
Verlag and Tsinghua University Press, 2009.

[15] B. Lin, X. Tang, X. Shen, M. Zhang, and Z. G. C. Lin, “Experimental
demonstration of scma-ofdm for passive optical network,” Optical
Fiber Technology, vol. 39, pp. 1–4, 2017.

[16] T. Schaible, S. :and Ibaraki, “ Fractional programming,” European
Journal of Operational Research, vol. 12, no. 4, pp. 325–338, 1983.

[17] J. L. Jacob, C. A. Pendeza Martinez, A. L. Machado Martinez, and
T. Abrão, “Non-linear biobjective ee-se optimization for noma-mimo
systems under user-rate fairness and variable number of users per clus-
ter,” AEU - International Journal of Electronics and Communications,
vol. 138, p. 153870, 2021.

[18] S. Yendri, R. Soelaiman, and Y. Purwananto, “Hybrid algorithm to find
minimum expected escape time from a maze.,” Engineering Letters,
vol. 31, no. 1, pp. 346 – 357, 2023.

[19] A. Johnson and S. Jacobson, “On the convergence of generalized hill
climbing algorithms,” Discrete Applied Mathematics, vol. 119, no. 1,
pp. 37 – 57, 2002.

[20] Y. Hou, C. Wang, W. Dong, and L. Dang, “An improved particle
swarm optimization algorithm for the distribution of fresh products,”
Engineering Letters, vol. 31, no. 2, p. 494 – 503, 2023.

[21] H. Zhang, “An analysis of multiple particle swarm optimizers with
inertia weight for multi-objective optimization,” IAENG International
Journal of Computer Science, vol. 39, no. 2, pp. 190 – 199, 2012.

[22] C. A. P. Martinez, F. R. Durand, A. L. M. Martinez, and T. Abrão,
“Augmented lagrangian combined to evolutionary heuristic for energy
efficiency in ocdma networks,” Optical Switching and Networking,
vol. 36, p. 100542, 2020.

[23] E. Zitzler and L. Thiele, “Multiobjective optimization using evolution-
ary algorithms- a comparative case study,” in Parallel Problem Solving
from Nature — PPSN V (A. E. Eiben, T. Bäck, M. Schoenauer, and H.-
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