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Abstract—In this study, an extensive review of nonlinear
systems and their stability analysis is given. In particular, this
paper attempts to explore the differences between closed-loop
and open-loop systems and demonstrates how each plays a
different function in control theory. The idea of hyperbolic
equilibria is investigated, along with the stable and unstable
manifolds that go along with it. This exploration sheds light on
the behavior of dynamical systems both locally and globally. A
solid foundation for assessing the stability of nonlinear systems
is provided by discussing several forms of stability, such as
exponential, asymptotic, and input-to-state stability (ISS).

Index Terms—Nonlinear systems, Stability analysis, Control
theory, Hyperbolic equilibria, Exponential stability, Asymptotic
stability, Input-to-state stability.

I. INTRODUCTION

Nonlinear systems encompass a range of
equations—algebraic, differential, integral, functional,
or operator-based—that describe physical processes or
devices not adequately represented by linear equations.
When such systems involve equations depicting the evolution
of solutions over time, often with varying parameters or
control inputs, they are termed dynamical systems [1]–[6].

Since the 19th century, there has been a major evolution
in the study of nonlinear systems (dynamical in this con-
text), sometimes known as nonlinear control systems when
the control inputs are taken into account. This theoretical
framework is now crucial in understanding and modeling
a vast array of phenomena across multiple disciplines, in-
cluding life sciences, social sciences, and engineering [7]–
[11]. Applications are found in fields as diverse as physics,
chemistry, biology, medicine, economics, and various engi-
neering sectors. In order to see the application of the stability
on the fractional-order systems, the reader may refer to the
references [12]–[22].
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A core aspect of system engineering, especially within
control systems and automation, is stability theory. This
theory is vital for ensuring that a system’s outputs and
internal signals remain within acceptable bounds (bounded-
input/bounded-output stability) or, more rigorously, that they
tend to a specific equilibrium state (asymptotic stability).
Stability in nonlinear dynamics and control systems can be
categorized into three main types: stability relative to equi-
librium points, orbital stability of trajectories, and structural
stability of the system.

The origins of stability theory trace back to 1644 with
E. Torricelli’s investigation of a rigid body’s equilibrium
under gravity. The classical stability theorem formulated
by G. Lagrange in 1788 remains a pivotal result, stating
that a conservative system’s equilibrium is stable if its
potential energy is at a minimum. The concepts of system
and trajectory stability have been refined over centuries,
leading to A. M. Lyapunov’s landmark 1892 dissertation,
”The General Problem of Motion Stability.” Lyapunov’s
work laid the foundation for modern stability analysis and
controller design, influencing both theoretical research and
practical applications in dynamical systems. This article aims
to provide a concise overview of Lyapunov’s stability theory,
its criteria, methodologies, and associated stability concepts
relevant to nonlinear dynamical systems.

II. PRELIMINARIES OF NONLINEAR SYSTEM

A. Control System as Nonlinear

To understand nonlinear control systems, consider a sys-
tem described by the continuous-time differential equation:

ẋ = f(x, t, u), t ∈ [t0,∞).

The system’s state vector, x(t) in this case, is limited to
a normally bounded area Ωx ⊂ Rn. Within yet another
restricted area Ωu ⊂ Rm—typically m ≤ n—lies the
control input vector u. With respect to any valid control
input and initial condition x(t0) = x0 ∈ Ωx, there exists
a unique solution for the nonlinear function f , which is
either Lipschitz continuous or continuously differentiable.
The temporal evolution and dependence on the starting state
x0 are displayed by the trajectory of the state x(t), often
written as ϕ(t, x0).

Systems are referred to as autonomous when the time vari-
able t does not exist independently of the state vector in f .
Using a state feedback control, for instance, u(t) = h(x(t)),
we can write this as:

ẋ = f(x), x(t0) = x0 ∈ Rn.

If the time variable t appears independently, the system is
nonautonomous. This terminology also applies to discrete-
time systems, although their characteristics might differ.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 4, April 2025, Pages 873-878

 
______________________________________________________________________________________ 



A nonlinear control system in a discrete-time setting is
expressed by the difference equation:{

xk+1 = f(xk, k, uk),

yk = g(xk, k, uk)
.

Here, the notations are defined similarly to the continuous-
time case. This article primarily focuses on the control
system defined by ẋ = f(x, t, u), or the first equation of
the discrete-time system. For simplicity, the state x is also
considered the system output. An equilibrium or fixed point
x∗ of the autonomous system ẋ = f(x) (or xk+1 = f(xk)
in discrete time) satisfies:

f(x∗) = 0.

This implies that at equilibrium, the state vector x remains
constant. In the discrete-time case, the equilibrium is a
solution of:

x∗ = f(x∗).

A control system is termed deterministic if each change
in system parameters or initial states results in a unique
outcome. Conversely, it is stochastic if changes lead to
multiple possible outcomes according to some probability
distribution. This discussion is confined to deterministic
systems. In control systems, an observation or measurement
equation often accompanies the state evolution equation:

y = f(x, t, u),

where the system output is represented by y(t) ∈ Rℓ with
1 ≤ ℓ ≤ n. A continuous or smooth nonlinear function is rep-
resented by the function f . Single-input/single-output (SISO)
systems have n = ℓ = 1, whereas systems with multiple
inputs and outputs (MIMO) have both n, ℓ > 1. Accordingly,
systems that are multi-input/single-output (MISO) or single-
input/multi-output (SIMO) are also specified. The initial time
is usually taken as t0 = 0 unless specified otherwise. The
state space Rn encompasses all possible states of the system.

B. Study of Open-Loop/Closed-Loop Systems

Let us consider a Multiple-Input Multiple-Output (MIMO)
control system S. This system might have continuous time
or discrete time, be deterministic or stochastic, and be linear
or nonlinear. Over the temporal domain D = [a, b], the per-
missible input and matching output signals are determined,
where −∞ < a < b < ∞. In general, a = t0 = 0 and
b = ∞ apply to control systems. An open-loop map may be
used to illustrate this relationship:

S : u → y or y(t) = S(u(t)).

This map is illustrated in Figure 1’s block diagram. This kind
of map may basically be used to any control system that can
be explained by differential or difference equations. In these
instances, the equation and starting conditions implicitly
determine the map S.

Control systems denoted by equations (1) or (3) can be
implemented in a closed-loop configuration if the control
inputs are functions of the state vectors, u = h(x, t). A
typical closed-loop system is shown in Figure 3, where S1

represents the plant that is described by f and S2 represents

Fig. 1: The block diagram of an open-loop system.

the controller that is described by h. They can, however, play
different roles.

Examining the example of a discrete-time system in Figure
2 can help you comprehend the distinctions between open-
loop and closed-loop systems better. Let u1(k) = 1 for all
k = 0, 1, . . . and assume that S−1

1 and S−1
2 exist. Even if S1

and S2 could each be BIBO-stable (Bounded Input Bounded
Output), it can be shown that when k rises, y1(k) will diverge
to infinity. This highlights the need for a more rigorous
criterion that takes into consideration the interaction between
S1 and S2, demonstrating that the stability of individual
components does not ensure the stability of the closed-loop
system.

In summary, both open-loop and closed-loop configura-
tions have their distinct roles and implications in control
systems. Open-loop systems are simpler and rely on a direct
mapping from input to output, whereas closed-loop systems
use feedback to dynamically adjust the control inputs, often
leading to more robust performance in the face of distur-
bances and uncertainties.

Fig. 2: Typical closed-loop control system.

C. Study of Hyperbolic Equilibria and Their Manifolds

Consider the autonomous differential system:

ż = g(z), z(t0) = z0 ∈ Rn. (1)

The Jacobian matrix J(z) of this system is defined by:

J(z) =
∂g

∂z
. (2)

This matrix depends on time and becomes a constant when
evaluated at specific states like z∗ or z0, determined by g and
these states. An equilibrium z∗ is classified as hyperbolic if
the Jacobian matrix’s eigenvalues at z∗ have nonzero real
parts. For a periodic solution z̃(t) with period T > 0, the
Jacobian J(z̃(t)) is T -periodic:

J(z̃(t+ T )) = J(z̃(t)) for all t ∈ [t0,∞). (3)

In this scenario, there exists a T -periodic nonsingular matrix
N(t) and a constant matrix P such that the fundamental
solution matrix associated with J(z̃(t)) is:

Φ(t) = N(t)etP . (4)
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Here, Φ(t) consists of n linearly independent solution vectors
of the linear differential equation:

ż = J(z̃(t))z, z(t0) = z0. (5)

The Floquet multipliers of the Jacobian are the eigenvalues
of the matrix eTP . If every Floquet multiplier associated with
the periodic solution z̃(t) has nonzero real portions, then the
orbit is called a hyperbolic periodic orbit. Now examine an
equilibrium z∗ and its neighborhood D. z∗’s local stable and
unstable manifolds are described as follows:

W s
loc(z

∗) = {z ∈ D | φt(z) ∈ D : φt(z) → z∗ as t → ∞}
(6)

for all t ≥ t0, and

Wu
loc(z

∗) = {z ∈ D | φt(z) ∈ D : φt(z) → z∗ as t → −∞}
(7)

for all t ≤ t0. An equilibrium is stable if nearby trajectories
approach it and unstable if they move away. The stable and
unstable manifolds of z∗ are further defined as:

W s(z∗) = {z ∈ D | φt(z) ∩W s
loc(z

∗) ̸= ∅}, (8)

and

Wu(z∗) = {z ∈ D | φt(z) ∩Wu
loc(z

∗) ̸= ∅}. (9)

For instance, the system:{
ż1 = z2

ż2 = z1(1− z21)
(10)

has a hyperbolic equilibrium at (z∗1 , z
∗
2) = (0, 0). Figures

3a and 3b illustrate the local and global stable and unstable
manifolds of this equilibrium, respectively.

Fig. 3: Difference between stable and unstable manifolds

A hyperbolic equilibrium features only stable and/or un-
stable manifolds due to its Jacobian having exclusively stable
and/or unstable eigenvalues. The behavior near a hyperbolic
equilibrium is typically straightforward, either converging

(stable) or diverging (unstable), and thus, complex dynamics
like chaos are seldom linked with isolated hyperbolic equi-
libria.

III. DIFFERENT TYPES OF STABILITIES

A. Stability in the Sense of Input-to-State Stability (ISS)

Consider this non-autonomous system:

x(t) = f(x, t); x(t0) = x0 ∈ Rn.

If, for any initial state x(t0) and any bounded input u(t),
the system state x(t) remains bounded and converges to a
bounded neighborhood of the equilibrium as t → ∞, then
this system is stable in the sense of Input-to-State Stability
(ISS) with respect to the equilibrium x∗ = 0. In particular,
γ and β are class K functions such that

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0) + γ(∥u∥∞),

for all t ≥ t0, where ∥u∥∞ denotes the essential supremum
of the input u(t).

Unlike Lyapunov stability, ISS explicitly considers the
effect of external inputs on the system’s state. This is par-
ticularly important for practical systems where disturbances
and control inputs cannot be ignored. For instance, consider
the linear time-varying system:

ẋ(t) = A(t)x(t) +B(t)u(t),

where A(t) and B(t) are time-varying matrices. The system
is ISS if there exist positive constants c and λ such that the
following holds:

V (x(t)) ≤ e−λ(t−t0)V (x(t0)) +
c

λ
∥u∥∞,

for some Lyapunov function V (x). This definition empha-
sizes that the system’s response to initial conditions and
external inputs is crucial for determining its stability. As
such, ISS provides a more comprehensive framework for
analyzing the stability of nonlinear systems subjected to
external disturbances.

The concept of ISS extends naturally to systems with
time-varying inputs and non-autonomous systems, offering a
robust method for stability analysis in practical applications.
This approach ensures that the system not only remains
stable in the presence of bounded inputs but also recovers
its equilibrium state once the disturbances diminish.

B. Study of Asymptotic and Exponential Stabilities

Assume that the system in question is asymptotically
stable with respect to its equilibrium point x∗ = 0. This
indicates that it is stable in the sense of Lyapunov. Moreover,
a constant δ = δ(t0) > 0 exists such that:

∥x(t0)∥ < δ =⇒ ∥x(t)∥ → 0 as t → ∞.

Uniform asymptotic stability occurs when the constant δ is
independent of t0 over the interval [0,∞). Furthermore, the
stability is considered global if the convergence ∥x(t)∥ → 0
holds irrespective of the initial state x(t0) across the entire
spatial domain where the system is defined, such as when
δ = ∞. Additionally, if the system satisfies:

∥x(t0)∥ < δ =⇒ ∥x(t)∥ ≤ ce−st.
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If c and s are positive constants, the equilibrium is considered
exponentially stable.

It is evident that asymptotic stability follows from expo-
nential stability, and that stability in the Lyapunov sense
follows from this. The opposite isn’t always true, though.
As an illustration, a system with the output trajectory
x1(t) = x0 sin(t) is not asymptotically stable, although it
is Lyapunov stable around 0. Asymptotically stable (and
thus Lyapunov stable) if t0 < 1, a system with the output
x2(t) = x0(1 + t− t0)

−1 is not exponentially stable around
0. On the other hand, a system with x3(t) = x0e

−t is Lya-
punov stable and asymptotically stable due to its exponential
stability.

C. Orbital Stability

Orbital stability focuses on the stability of a system’s
trajectory under small disturbances, differing from Lyapunov
stability. Consider a periodic solution ϕ(t) with period T > 0
for the autonomous system:

ẋ(t) = f(x), x(t0) = x0 ∈ Rn.

Let Γ denote the closed orbit of ϕ(t) in the state space:

Γ = {y | y = ϕ(t), 0 ≤ t ≤ T}.

If for any ϵ > 0, there exists a δ = δ(ϵ) > 0 such that for
any x0 satisfying

dist(x0,Γ) = inf
y∈Γ

∥x0 − y∥ < δ.

so that the system’s solution ϕ(t) satisfies

dist(ϕ(t, x0),Γ) < ϵ for all t ≥ t0,

for which ϕ(t) is considered orbitally stable at that point.
Figure 7 provides an illustration of this idea. For example,
a stable periodic solution is orbitally stable because, similar
to a stable equilibrium, it converges to adjacent trajectories,
preserving proximity even in the face of tiny disturbances.

A more sophisticated definition is provided by the
Zhukovskij stability. If, for each ϵ > 0, there exists a
δ = δ(ϵ) > 0 such that, for any y0 inside a ball of radius δ
centered at x0, there exist homeomorphisms t1(t) and t2(t)
with t1(0) = t2(0) = 0, guaranteeing Zhukovskij stability
for ϕ(t) in which

∥ϕ(t1(t), x0)− ϕ(t2(t), x0)∥ < ϵ for all t ≥ t0.

Furthermore, a Zhukovskij stable solution ϕ(t) is asymp-
totically stable in the sense of Zhukovskij if, for any ϵ > 0,
there exists a δ = δ(ϵ) > 0 such that if y0 is anywhere within
a ball of radius δ centered at x0, there exist homeomorphisms
t1(t) and t2(t) guaranteeing

∥ϕ(t1(t), x0)− ϕ(t2(t), x0)∥ → 0 as t → ∞,

where t1 and t2 are continuous mappings with continuous
inverses. Asymptotic Zhukovskij stability implies asymptotic
Lyapunov stability, although the converse is not necessarily
true. If ϕ(t) is an equilibrium, both types of stability are
equivalent. This comprehensive approach provides a nuanced
understanding of orbital stability and its implications for
system behavior under perturbations.

D. Structural Stability
The concept of topological orbital equivalence defines two

systems as equivalent if a homeomorphism exists that maps
the trajectory families of one system onto those of another
while preserving the direction of motion. This essentially
means that the geometric configuration of the trajectory
families in both systems should be similar, without any
additional features such as knots, sharp corners, or branching.
For example, the systems described by ẋ = x and ẋ = 2x are
topologically orbitally equivalent, whereas the systems ẋ = x
and ẋ =

√
x are not. Figure 8 illustrates the trajectories of

these three systems.
Returning to the autonomous system described by ẋ =

f(x), if the system’s behavior in state space is significantly
altered by minor external disturbances, such as the emer-
gence of a new equilibrium or a new periodic orbit, the
system is deemed structurally unstable. To be more specific,
consider a set of functions defined as:

S =

{
g(x) | ∥g(x)∥ < 1 and

∥∥∥∥∂g(x)∂x

∥∥∥∥ < 1

}
,

for all x ∈ Rn.
An autonomous system ẋ = f(x) is structurally stable if,

for any g ∈ S, there exists an ϵ > 0 such that the systems
ẋ = f(x) and ẋ = f(x) + ϵg(x) are topologically orbitally
equivalent. For instance, the system ẋ = x is structurally
stable, whereas ẋ = x2 is not near the origin. This instability
arises because a small perturbation, like ẋ = x2 + ϵ where
ϵ > 0, results in a system with two equilibria, x =

√
ϵ

and x = −
√
ϵ, contrasting the original system which has

only one equilibrium at x = 0. In summary, if minor
external perturbations lead to a drastic change in the sys-
tem’s dynamics in the state space, such as the creation of
new equilibria or periodic orbits, the system is considered
structurally unstable. Systems like ẋ = x maintain their
structural stability, whereas those like ẋ = x2 do not, due to
their sensitivity to such perturbations.

IV. BIBO STABILITY

This section examines bounded-input/bounded-output
(BIBO) stability, which is a basic but less rigorous kind of
stability. Any bounded input to the system will always result
in a bounded output thanks to BIBO stability. Consider a
linear system represented by:

ż = Cz +Du.

If the matrix C is asymptotically stable, then this system
is BIBO stable. In this case, we look at the input-output
map (17), which is shown in Figure 2. When there are non-
negative constants bi and bo for each admissible input u ∈ U
and the corresponding output z ∈ Z, then a system Q is said
to be BIBO stable from an input set U to an output set Z.
This means that

∥u∥U ≤ bi =⇒ ∥z∥Z ≤ bo.

Given that all norms are equivalent for finite-dimensional
vectors, the specific norms used for input and output sig-
nals to define and achieve BIBO stability are generally
inconsequential. However, it’s crucial to recognize that a
system remains BIBO stable even if bi is minimal and bo is
substantial, which may limit the practicality of this stability
criterion in certain applications.
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A. Study of Small-Gain Theorem

A helpful criteria for confirming the BIBO stability of
a closed-loop control system is provided by the small-
gain theorem. Given that the system is formally constructed
to satisfy the theory’s requirements, this theorem may be
applied to nearly any kind of system, including nonlinear
and linear, discrete and continuous-time, with delays, and of
any dimension. But this standard has a tendency to be too
cautious. Examine the standard closed-loop system depicted
in Figure 3, where internal signals, outputs, and inputs are
connected by:

Q1(e1) = e2 − u2,

and
Q2(e2) = u1 − e1.

It is important to remember that the BIBO stability of the
closed-loop system as a whole is not guaranteed by the BIBO
stability of Q1 and Q2. For instance, both Q1 and Q2 are
BIBO stable independently in a discrete-time setting with
Q1 = 1 and Q2 = −1, and u1(k) = 1 for all k = 0, 1, . . ..
However, as k increases, z1(k) = k → ∞ throughout the
discrete-time setting. Consequently, a more robust condition
characterizing the interplay between Q1 and Q2 is required.

Theorem 1: (Small-Gain Theorem) If there exist con-
stants L1, L2,M1,M2 with L1L2 < 1 such that:

∥Q1(e1)∥ ≤ M1 + L1∥e1∥

and
∥Q2(e2)∥ ≤ M2 + L2∥e2∥.

Then:

∥e1∥ ≤ (1− L1L2)
−1(∥u1∥+ L2∥u2∥+M2 + L2M1)

and

∥e2∥ ≤ (1− L1L2)
−1(∥u2∥+ L1∥u1∥+M1 + L1M2).

The signal spaces are where the norms ∥·∥ are defined. Thus,
if u1 and u2 are bounded inputs, then Q1(e1) and Q2(e2)
are correspondingly bounded outputs.

B. Contraction Mapping Theorem

Contraction mapping theorems are basically what the
small-gain theorem is. With the right system formulation,
this theorem may determine the BIBO stability of a system
defined by a map. A global contraction mapping theorem is
as follows: The contraction mapping theorem: In the event
that ∥Q∥ < 1 is satisfied by the operator norm of the input-
output map Q, which is specified on Rn, then the system
mapping:

z(t) = Q(z(t)) + c

has a unique solution (not trivial) for any constant vector
c ∈ Rn. This solution satisfies:

∥z∥ ≤ (1− ∥Q∥)−1∥c∥.

Particularly, the solution of:

zk+1 = Q(zk), z0 ∈ Rn, k = 0, 1, . . .

satisfies:
∥zk∥ → 0 as k → ∞.

V. CONCLUSION

In this research, a comprehensive overview of nonlinear
systems and their stability analysis has been provided. The
exploration began with an introduction to nonlinear dynam-
ical systems, highlighting their significance across various
fields such as physics, biology, and engineering. A detailed
examination of control systems, both in continuous and
discrete time, was presented, emphasizing the importance of
equilibrium points and their classification. The study delved
into the distinction between open-loop and closed-loop sys-
tems, illustrating their respective roles in control theory.
The concept of hyperbolic equilibria and their associated
stable and unstable manifolds was explored, providing insight
into the local and global behavior of dynamical systems.
Different types of stability, including Input-to-State Stability
(ISS), asymptotic stability, and exponential stability, were
discussed, offering a robust framework for analyzing the
stability of nonlinear systems. The research underscored the
importance of considering external inputs and disturbances
in practical applications, highlighting the relevance of ISS
in real-world scenarios. By integrating classical stability
concepts with modern approaches, this research contributes
to a deeper understanding of nonlinear systems and their
control. This knowledge is crucial for developing effective
control strategies and ensuring the reliable operation of
various systems in engineering and applied sciences.
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