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Abstract—In this paper, we give the concepts of essential
interior ideals in semigroups. We proved properties and rela-
tionships between essential fuzzy interior ideals and essential
interior ideals in semigroups. Finally, we extend essential fuzzy
n-interior ideals and essential n-interior ideals.

Index Terms—Essential interior ideal, Essential n-interior
ideals, Essential fuzzy interior ideals, Essential fuzzy n-interior
ideals.

I. INTRODUCTION

THE THEORY of fuzzy sets was published by L. A.
Zadeh in 1965 [1]. In 1979 N. Kuroki [2] investigated

fuzzy left (right) ideals and fuzzy bi-ideals in semigroups.
Tiprachot et al. discussed the notion of n-interior ideals as
a generalization of interior ideals and characterized many
classes of ordered semigroups in terms of (m,n)-ideals and
n-interior ideals [3]. In 2023, Tiprachot et al. [4] extend
n-interior ideals and (m,n)-ideals to hybrid in ordered
semigroups.

In 1971 U. Medhi et al. [5] discussed the essential fuzzy
ideals of ring. In 2013, U. Medhi and H.K. Saikia [6] studied
the concept of T-fuzzy essential ideals and the properties
of T-fuzzy essential ideals. In 2017 S. Wani and K. Pawar
[7] extended the concept of essential ideals in semigroups
to ternary semiring and studied essential ideals in ternary
semiring. In 2020, S. Baupradist et al. [8] studied essential
ideals and essential fuzzy ideals in semigroups. Together with
0-essential ideals and 0-essential fuzzy ideals in semigroups.
Later, in 2021, R. Chinram and T. Gaketem [9] extend essen-
tial (m,n)-ideals and fuzzy essential fuzzy (m,n)-ideals in
semigroups. In 2022 T. Gaketem et al. [10] studied essential
bi-ideals and fuzzy essential bi-ideals in semigroups. More-
over, T. Gaketem and A. Iampan [11], [12] used knowledge
of essential ideals in semigroups go to study essential ideals
in UP-algebra. In the same year P. Khamrot and T. Gaketem,
[13], [14] studied essential ideals in an interval valued fuzzy
set and bipolar fuzzy set. In 2023, R. Rittichuai et al. [15]
studied essential ideals and essential fuzzy ideals in ternary
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semigroups. Recently, N. Kaewmanee and T. Gaketem [16]
studied essential hyperideals and essential fuzzy hyperideals
in hypersemigroups.

This paper studies essential interior ideals and n-interior
ideals semigroups. We proved properties and relationships
between essential fuzzy essential interior ideals and essential
fuzzy interior ideals in semigroups. Finally, we study prop-
erties relationships between essential fuzzy n-interior ideals
and essential n-interior ideals.

II. PRELIMINARIES

In this section, we review the concept’s basic definitions
and the theorem used to prove all results in the next section.

In this topic, we review basic definitions and theorems
used in the next section.

A non-empty subset I of a semigroup S is called a
subsemigroup (SSG) of S if I2 ⊆ I. A non-empty subset
I of a semigroup S is called a left ideal (LID) of S if
SI ⊆ I. A non-empty subset I of a semigroup S is called
a right ideal (RID) of S if IS ⊆ I. An ideal (ID) I of S
is a non-empty subset which is both a LID and a RID of S.
A subsemigroup I of a semigroup S is called an interior
ideal (IID) of S if SIS ⊆ I. A non-empty subset I of a
semigroup S is called a weakly interior ideal (WIID) of S
if SIS ⊆ I, [17].

It is well-known, that every ID of a semigroup S is an
IID of S and every IID of a semigroup S is a WIID of S.

A SSG I of a semigroup S is called an n-interior ideal
(n-IID) of S if SInS ⊆ I where n is an integer number.

For any t, r ∈ [0, 1], we have

t ∨ r = max{t, r} and t ∧ r = min{t, r}.

A fuzzy set (FS) ω of a non-empty set T is function from
T into unit closed interval [0, 1] of real numbers, i.e., ω :
T → [0, 1].

For any two FSs of ω and τ of a non-empty set of
T, we defined the support of ω instead of supp(ω) =
{t ∈ T | ω(t) ̸= 0}, ω ≤ τ if ω(t) ≤ τ(t), (ω ∨
τ)(t) = max{ω(t), τ(t)} = ω(t) ∨ τ(t) and (ω ∧ τ)(t) =
min{ω(t), τ(t)} = ω(t) ∧ τ(t) for all t ∈ T.

For two FSs ω and τ in a semigroup S, define the product
ω ◦ τ as follows : for all t ∈ S,

(ω ◦ τ)(t) =


∨

(w,d)∈Ft

{{ω(w) ∧ τ(d)}} ifFt ̸= ∅,

0 ifFt = ∅,

where Ft := {(w, d) ∈ S×S | t = wd}.
Let ω be a FS of a semigroup. Then

(1) A fuzzy subsemigroup (FSSG) ω of S if ω(tr) ≥ ω(t)∧
ω(r) for all t, r ∈ S.
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(2) A fuzzy left ideal (FLID) ω of S if ω(tr) ≥ ω(r) for
all t, r ∈ S.

(3) A fuzzy right ideal (FRID) ω of S if ω(tr) ≥ ω(t) for
all t, r ∈ S.

(4) A fuzzy ideal (FID) ω of S if it both FLID and FRID
of S.

(5) A FSSG ω of S is called a fuzzy interior ideal (FIID)
of S if ω(trm) ≥ ω(r) for all t, r,m ∈ S.

(6) A fuzzy weakly interior ideal (FWIID) ω of S if
ω(trm) ≥ ω(r) for all t, r,m ∈ S.

(7) A FFSG ω of a semigroups S is said to be a fuzzy
n-interior ideal (F n-IID) of S if

ω(tdn1w) ≥ ω(d1) ∧ ω(d2) ∧ ... ∧ ω(dn)

for all t, di, w ∈ S and i ∈ {1, 2, ..., n}.

It is well-known, that every FID of a semigroup S is a FIID
of S and every FIID of a semigroup S is a FWIID of S.

The characteristic function χI of a subset I of a non-empty
set T is a FS of S

χI(t) =

{
1 if t ∈ I

0 if t /∈ I.

for all t ∈ T.
The following theorems are true.

Theorem 2.1. [17] Let S be a semigroup. Then I is a
SSG (LID, RID, IID, IID, WIID, n-IID) of S if and only
if characteristic function χI is a FSSG (FLID, FRID, FIID,
FWIID, F n-IID) of S.

Lemma 2.2. Let χL and χL be any two FSs of a semigroup
S. Then, the following properties hold:

(1) χK∩L = χK ∧ χL.
(2) χKL = χK ◦ χL.

Theorem 2.3. [17] Let ω be a nonzero FS of a semigroup
S. Then ω is a FSSG (FLID, FRID, FWIID, FIID, F n-IID)
of S if and only if supp(ω) is a SSG (LID, RID, IID, IID,
WIID, n-IID) of S.

Next, we will review essential ideals and fuzzy essential
ideals in a semigroup and their properties.

Definition 2.4. [8] An essential ideal (EID) I of a semigroup
S if I is an ID of S and I ∩ J ̸= ∅ for every ID J of S.

Theorem 2.5. [8] Let I be an EID of a semigroup S. If I1
is an ID of S containing I, then I1 is also an EID of S.

Theorem 2.6. [8] Let I and J be EIDs of a semigroup S.
Then I ∪ J and I ∩ J are EIDs of S.

Definition 2.7. [8] An essential fuzzy ideal (EFID) ω of a
semigroup S if ω is a nonzero FID of S and ω ∧ τ ̸= 0 for
every nonzero FID τ of S.

Theorem 2.8. Let ω be an EFID of a semigroup S. If ω1

is a FID of S such that ω ≤ ω1, then ω1 is also an EFID
of S.

Theorem 2.9. Let ω1 and ω2 be EFIDs of a semigroup S.
Then ω1 ∨ ω2 and ω1 ∧ ω2 are EFIDs of S.

Theorem 2.10. [8] Let I be an ID of a semigroup S. Then
I is an EID of S if and only if χI is an EFID of S.

Theorem 2.11. [8] Let ω be a nonzero FID of a semigroup
S. Then ω is an EFID of S if and only if supp(ω) is an
EID of S.

III. ESSENTIAL SUBSEMIGROUPS AND ESSENTIAL FUZZY
SUBSEMIGROUPS

In this section, we will study concepts of essential sub-
semigroups in a semigroup and fuzzy essential subsemi-
groups in a semigroup and their properties.

Definition 3.1. An essential subsemigroup (ESSG) I of a
semigroup S if I is a SSG of S and I ∩ J ̸= ∅ for every
SSG J of S.

Example 3.2. (1) Let E be set of all even integers. Then
(E,+) and (N,+) are SSGs of (Z,+). Thus (E,+)∩
(N,+) ̸= ∅. Hence, (E,+) is an ESSG of (Z,+).

(2) Let A = {2n | n ∈ Z} and B = {3n | n ∈ Z}. Then
(A, ·) and (B, ·) are SSGs of (Z, )̇. Thus (A, ·)∩(B, ·) ̸=
∅. Hence (A, ·) is an ESSG.

Theorem 3.3. Let I be an ESSG of a semigroup S. If I1 is
an SSG of S with I ⊆ I1, then I1 is also an ESSG of S.

Proof: Suppose that I1 is a SSG of S such that I ⊆
I1 and let J be any SSG of S. Thus, I ∩ J ̸= ∅. Hence,
I1 ∩ J ̸= ∅. Therefore I1 is an ESSG of S.

Theorem 3.4. Let I and J be ESSGs of a semigroup S.
Then I ∪ J and I ∩ J are ESSG of S.

Proof: Since I ⊆ I∪J and I is an ESSG we have I∪J
is an ESSG of S, by Theorem 3.3.

Since I and J are ESSGs of S we have I and J are ESSGs
of S. Thus, I ∩ J is a SSG of S. Let K be a SSG of S.
Then I∩K ̸= ∅. Thus there exists t, d ∈ I∩K. Let t, d ∈ J.
Then td ∈ (I∩ J)∩K. Thus, (I∩ J)∩K ̸= ∅. Hence, I∩ J
is an ESSG of S.

Definition 3.5. An essential fuzzy subsemigroup (EFSSG) ω
of a semigroup S if ω is a nonzero FSSG of S and ω∧τ ̸= 0
for every nonzero FSSG τ of S.

Theorem 3.6. Let ω be an EFSSG of a semigroup S. If ω1

is a FSSG of S such that ω ≤ ω1, then ω1 is also an EFSSG
of S.

Proof: Let ω1 be a FSSG of S such that ω ≤ ω1 and
let τ be any FSSG of S. Thus, ω ∧ τ ̸= 0. So ω1 ∧ τ ̸= 0.
Hence ω1 is an EFSSG of S.

Theorem 3.7. Let ω1 and ω2 be EFSSGs of a semigroup S.
Then ω1 ∨ ω2 and ω1 ∧ ω2 are EFSSGs of S.

Proof: Let ω1 and ω2 be EFSSGs of S. Then by
Theorem 3.6, ω1 ∨ ω2 is an EFSSG of S. Since ω1 and
ω2 are EFSSGs of S we have ω1 ∧ ω2 is a FSG of S. Let
τ be a nonzero FSG of S. Then ω1 ∧ τ ̸= 0. Thus, there
exists t ∈ S such that ω1(t) ̸= 0 and τ(t) ̸= 0. Since
ω2 ̸= 0 and let d ∈ S such that ω2(d) ̸= 0. Since ω1 and
ω2 are FSGs of S we have ω1(td) ≥ ω1(t) ∧ ω1(d) > 0
and ω2(td) ≥ ω2(t) ∧ ω2(d) > 0. Thus, (ω1 ∩ ω2)(td) =
ω1(td)∧ω2(td) ̸= 0. Since τ is a FSG of S and τ(t) ̸= 0 we
have τ(td) ̸= 0 for all t, d ∈ S. Thus, [(ω1∧ω2)∩τ ](td) ̸= 0.
Hence, [(ω1 ∩ ω2) ∧ τ ] ̸= 0. Therefore, ω1 ∩ ω2 is an EFSG
of S.
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Theorem 3.8. Let I be a SSG of a semigroup S. Then I is
an ESSG of S if and only if χI is an EFSSG of S.

Proof: Suppose that I is an ESSG of S and let ω be
a nonzero FSSG of S. Then by Theorem 2.3, supp(ω) is a
SSG of S. Since I is an ESSG of S we have I∩supp(ω) ̸=
∅. Thus, there exists t, d ∈ I∩ supp(ω) such that ω(td) ̸= 0
and χI(td) ̸= 0. So (ω∧χI)(td) ̸= 0 implies that χI∧ω ̸= 0.
Therefore, χI is an essential FWIID of S.

Conversely, assume that χI is an EWFIID of S and let
J be a WIID of S. Then by Theorem 2.1, χJ is a nonzero
FWIID of S. Since χI is an EWFIID of S we have χI ∧
χJ ̸= 0. Thus, by Lemma 2.2, χI∩J ̸= 0. Hence, I∩ J ̸= ∅.
Therefore, I is an EWIID of S.

Theorem 3.9. Let ω be a nonzero FSSG of a semigroup S.
Then ω is an EFSSG of S if and only if supp(ω) is an ESSG
of S.

Proof: Assume that ω is an EFSSG of S. Then ω is a
FSSG of S. Thus, by Theorem 2.3, supp(ω) is a SSG of
S. Let I be a SSG of S. Then by Theorem 3.8, χI is a
FSSG of S. By assumption, ω ∧ χI ̸= 0. So, there exists
t ∈ S such that (ω ∧ χI)(t) ̸= 0. It implies that ω(t) ̸= 0
and χI(t) ̸= 0. Hence, t ∈ supp(ω)∩I so supp(ω)∩I ̸= ∅.
Therefore, supp(ω) is an ESSG of S.

Conversely, assume that supp(ω) is an ESSG of S. Then
supp(ω) is a SSG of S. Let τ be a FSSG of S. Then
by Theorem 2.3, supp(τ) is a SSG of S. By assumption,
supp(ω) ∩ supp(τ) ̸= ∅. So, there exists t ∈ supp(ω) ∩
supp(τ), this implies that ω(t) ̸= 0 and τ(t) ̸= 0. Hence,
(ω ∧ τ)(t) ̸= 0. Therefore, ω ∧ τ ̸= 0. We conclude that ω
is an EFSSG of S.

IV. ESSENTIAL INTERIOR IDEALS THEIR FUZZIFICATION

In this section, we defined essential interior ideals and
essential fuzzy interior ideals in semigroup and integrated
properties of its.

Definition 4.1. An essential interior ideal (EIID) I of a
semigroup S if I is an IID of S and I ∩ J ̸= ∅ for every
IID J of S.

Theorem 4.2. Let I be an EIID of a semigroup S. If I1 is
an IID of S with I ⊆ I1, then I1 is also an EIID of S.

Proof: Suppose that I1 is an IID of S such that I ⊆ I1
and let J be any IID of S. Thus, I∩J ̸= ∅. Hence, I1∩J ̸= ∅.
Therefore, I1 is an EIID of S.

Theorem 4.3. Let I and J be EIIDs of a semigroup S. Then
I ∪ J and I ∩ J are EIIDs of S.

Proof: Since I and J are EIIDs of S we have I and J
are essential subsemigroups of a S. Thus by Theorem 3.8,
I ∪ J and I ∩ J are ESSGs of S. Since I ⊆ I ∪ J and I is
an EIID we have I ∪ J is an EIID of S.

Let K be an IID of S. Then I ∩ K ̸= ∅. Thus, there
exists t, d and w ∈ I ∩ K. Let t, d and w ∈ J. Then tdw ∈
(I∩ J)∩K. Thus, (I∩ J)∩K ̸= ∅. Hence I∩ J is an EIID
of S.

The following theorem we will use the basic knowledge
of ID and IID in semigroups to prove EIID in semigroup.

Theorem 4.4. EID of semigroup S is an EIID of S.

Proof: The proof is obvious.

Definition 4.5. An essential fuzzy interior ideal (EFIID) ω
of a semigroup S if ω is a nonzero FIID of S and ω∧τ ̸= 0
for every nonzero FIID τ of S.

Theorem 4.6. Let ω be an EFIID of a semigroup S. If ω1

is a FIID of S such that ω ≤ ω1, then ω1 is also an EFIID
of S.

Proof: Let ω1 be a FIID of S such that ω ≤ ω1 and
let τ be any FIID of S. Thus, ω ∧ τ ̸= 0. So ω1 ∧ τ ̸= 0.
Hence, ω1 is an EFIID of S.

Theorem 4.7. Let ω1 and ω2 be EFIIDs of a semigroup S.
Then ω1 ∨ ω2 and ω1 ∧ ω2 are EFIIDs of S.

Proof: Let ω1 and ω2 be EFIIDs of S. Then by Theorem
4.6, ω1 ∨ω2 is an EFIID of S. Since ω1 and ω2 are EFIIDs
of S we have ω1 and ω2 is an EFSSG of S. Thus ω1 ∧ ω2

is an EFSSG of S. Let τ be a nonzero FIID of S. Then
ω1 ∧ τ ̸= 0. Thus there exists t, d ∈ S such that ω1(td) ̸= 0
and (τ)(td) ̸= 0. Since ω2 ̸= 0 and let w ∈ S such that
ω2(w) ̸= 0. Since ω1 and ω2 are FSSGs of S we have
ω1(tdw) ≥ ω1(d) > 0 and ω2(tdw) ≥ ω2(d) > 0. Thus,
(ω1∧ω2)(tdw) = ω1(tdw)∧ω2(tdw) ̸= 0. Since τ is a FSSG
of S and τ(d) ̸= 0 we have τ(tdw) ̸= 0 for all t, d, w ∈ S.
Thus [(ω1 ∧ ω2) ∧ τ ](tdw) ̸= 0. Hence [(ω1 ∧ ω2) ∧ τ ] ̸= 0.
Therefore, ω1 ∧ ω2 is an EFIID of S.

The following theorem we will use the basic knowledge
of ID and IID in semigroups to prove EIID in semigroup.

Theorem 4.8. Every EFID of semigroup S is an EFIID of
S.

Proof: The proof is obvious.

Theorem 4.9. Let I be an IID of a semigroup S. Then I is
an EIID of S if and only if χI is an EFIID of S.

Proof: Suppose that I is an EIID of S and let ω be a
nonzero FIID of S. Then by Theorem 2.3, supp(ω) is a IID
of S. Since I is an EIID of S we have I ∩ supp(ω) ̸= ∅.
Thus, there exists t, d, w ∈ I∩ supp(ω) such that ω(tdw) ̸=
0 and χI(tdw) ̸= 0. So (ω ∧ χI)(tdw) ̸= 0 implies that
χI ∧ ω ̸= 0. Therefore, χI is an essential FIID of S.

Conversely, assume that χI is an EFIID of S and let J be
an IID of S. Then by Theorem 2.1, χJ is a nonzero FIID of
S. Since χI is an EFIID of S we have χI ∧χJ ̸= 0. Thus,
by Lemma 2.2, χI∩J ̸= 0. Hence, I ∩ J ̸= ∅. Therefore, I
is an EIID of S.

Theorem 4.10. Let ω be a nonzero FIID of a semigroup S.
Then ω is an EFIID of S if and only if supp(ω) is an EIID
of S.

Proof: Assume that ω is an EFIID of S. Then ω is a
FIID of S. Thus, by Theorem 2.3, supp(ω) is an IID of S.
Let I be an IID of S. Then by Theorem 2.1, χI is a FIID
of S. By assumption, ω ∧ χI ̸= 0. So, there exists t ∈ S
such that (ω ∧ χI)(t) ̸= 0. It implies that ω(t) ̸= 0 and
χI(t) ̸= 0. Hence, t ∈ supp(ω) ∩ I so supp(ω) ∩ I ̸= ∅.
Therefore, supp(ω) is an EIID of S.

Conversely, assume that supp(ω) is an EIID of S. Then
supp(ω) is a IID of S. Let τ be a FIID of S. Then by
Theorem 2.3, supp(τ) is an IID of S. By assumption,
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supp(ω) ∩ supp(τ) ̸= ∅. So, there exists t ∈ supp(ω) ∩
supp(τ), this implies that ω(t) ̸= 0 and τ(t) ̸= 0. Hence,
(ω ∧ τ)(t) ̸= 0. Therefore, ω ∧ τ ̸= 0. We conclude that ω
is an EFIID of S.

Definition 4.11. An EIID I of a semigroup S is called
(1) a minimal (MiEIID) if for every EIID of J of S such

that J ⊆ I, we have J = I,
(2) a maximal (MaEIID) if for every EIID of J of S such

that I ⊆ J, we have J = I,

Definition 4.12. An EFIID ω of a semigroup S is called
(1) a minimal (MiEFIID) if for every EFIID of τ of S such

that τ ≤ ω, we have supp(τ) = supp(ω),
(2) a maximal (MaEFIID) if for every EFIID of τ of S such

that ω ≤ τ , we have supp(ω) = supp(τ).

Theorem 4.13. Let I be a non-empty subset of a semigroup
S. Then the following statement holds.
(1) I is a MiEIID of S if and only if χI is a MiEFIID of

S,
(2) I is a MaEIID of S if and only if χI is a MaEFIID of

S.

Proof:
(1) Suppose that I is a MiEIID of S. Then I is an

EIID of S. By Theorem 4.9, χI is an EFIID of S.
Let τ be an EFIID of S such that τ ≤ χI. Then
supp(τ) ⊆ supp(χI). Thus, supp(τ) ⊆ supp(χI) = I.
Hence, supp(τ) ⊆ I. Since τ is an EFIID of S
we have supp(τ) is an EIID of S. By assumption,
supp(τ) = I = supp(χI). Hence, χI is a MiEFIID
of S.
Conversely, χI is a MiEFIID of S. Then χI is an EFIID
of S. By Theorem 4.9, I is an EIID of S. Let J be an
EIID of S such that J ⊆ I. Then J is an IID of S.
Thus by Theorem 4.9, χJ is an EFIID of S such that
χJ ≤ χI. Hence, J = supp(χJ) ⊆ supp(χI) = I. By
assumption, J = supp(χJ) = J = supp(χI) = I. So,
J = I. Hence, I is a MiEIID of S.

(2) Suppose that I is a MaEIID of S. Then I is an
EIID of S. By Theorem 4.9, χI is an EFIID of S.
Let τ be an EFIID of S such that χI ≤ τ . Then
supp(χI) ⊆ supp(τ). Thus, I = supp(χI) ⊆ supp(τ).
Hence, I ⊆ supp(τ). Since τ is an EFIID of S
we have supp(τ) is an EIID of S. By assumption,
supp(τ) = I = supp(χI). Hence, χI is a MaEFIID
of S.
Conversely, χI is a MaEFIID of S. Then χI is an EFIID
of S. By Theorem 4.9, I is an EIID of S. Let J be an
EIID of S such that I ⊆ J. Then J is an IID of S.
Thus by Theorem 4.9, χJ is an EFIID of S such that
χI ≤ χJ. Hence, I = supp(χI) ⊆ supp(χJ) = J. By
assumption, J = supp(χJ) = J = supp(χI) = I. So,
J = I. Hence, I is a MaEIID of S.

Definition 4.14. An EIID I of a semigroup S is called a
0-minimal (0-MiEIID) if for every EIID of J of S such that
J ⊆ I, we have J = I,

Definition 4.15. An EFIID ω of a semigroup S is called
a 0-minimal (0-MiEFIID) if for every EFIID of τ of S such
that τ ≤ ω, we have supp(τ) = supp(ω),

Theorem 4.16. Let I be a non-empty subset of a semigroup
S. Then the following statement holds. I is a 0-MiEIID of
S if and only if χI is a 0-MiEFIID of S.

Proof: Suppose that I is a 0-MiEIID of S. Then I
is an EIID of S. By Theorem 4.9, χI is an EFIID of
S. Let τ be an EFIID of S such that τ ≤ χI. Then
supp(τ) ⊆ supp(χI). Thus, supp(τ) ⊆ supp(χI) = I.
Hence, supp(τ) ⊆ I. Since τ is an EFIID of S we have
supp(τ) is an EIID of S. By assumption, supp(τ) = I =
supp(χI). Hence, χI is a 0-MiEFIID of S.

Conversely, χI is a 0-MiEFIID of S. Then χI is an EFIID
of S. By Theorem 4.9, I is an EIID of S. Let J be an EIID
of S such that J ⊆ I. Then J is an IID of S. Thus by
Theorem 4.9, χJ is an EFIID of S such that χJ ≤ χI.
Hence, J = supp(χJ) ⊆ supp(χI) = I. By assumption,
J = supp(χJ) = J = supp(χI) = I. So, J = I. Hence, I
is a 0-MiEIID of S.

Definition 4.17. An EIID I of a semigroup S. Then I is
said to be:
(1) prime (PEIID) if td ∈ I implies t ∈ I or d ∈ I, for all

t, d ∈ S.
(2) semiprime (SPEIID) if t2 ∈ I implies t ∈ I, for all

t ∈ S.

Definition 4.18. Let ω be an EFIID of a semigroup S. Then
ω is said to be:
(1) prime (PEFIID) if ω(td) ≤ ω(t)∨ω(d) for all t, d ∈ S.
(2) semiprime (SPEFIID) if ω(t2) ≤ ω(t) for all t, d ∈ S.

It is clear, every PEFIIDs of is SPEFIIDs in semigroup.

Theorem 4.19. Let I be a non-empty subset of a semigroup
S. Then the following statement holds.
(1) I is a PEIID of S if and only if χI is a PEFIID of S,
(2) I is a SPEIID of S if and only if χI is a SPEFIID of

S,

Proof:
(1) Suppose that I is a PEIID of S and let t, d ∈ S. Then

I is an EIID of S. By Theorem 4.9, χI is an EFIID of
S.
Case 1: td ∈ I, then t ∈ I or d ∈ I. Thus, χI(td) =
1 = χI(t) = χI(d). Hence, χI(td) ≤ χI(t) ∨ χI(d).
Case 2: td /∈ I, then χI(td) ≤ χI(t) ∨ χI(d).
From two cases, we have χI is a PEFIID of S.
Conversely, χI is a PEFIID of S. Then χI is an EFIID
of S. By Theorem 4.9, I is an EIID of S. Let t, d ∈ S
and td ∈ I. Then χI(td) = 1. If t /∈ I and d /∈ I,
then χI(t) = 0 = χI(d). Thus, 0 = χI(t) ∨ χI(d) ≤
χI(td) = 1. By assumption, χI(td) ≤ χI(t)∨χI(d). It
is a contradiction, so t ∈ I or d ∈ I. Thus, I is a PEIID
of S.

(2) Suppose that I is a SEIID of S and let t ∈ S. Then I
is an EIID of S. By Theorem 4.9, χI is an EFIID of
S.
Case 1: t2 ∈ I, then t ∈ I. Thus, χI(t

2) = 1 = χI(t).
Hence, χI(t

2) ≤ χI(t).
Case 2: t2 /∈ I, then χI(t

2) ≤ χI(t).
From two cases, we have χI is a SEFIID of S.
Conversely, χI is a SEFIID of S. Then χI is an EFIID
of S. By Theorem 4.9, I is an EIID of S. Let t ∈ S
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and t2 ∈ I. Then χI(t
2) = 1. If t /∈ I, then χI(t) =

0. Thus, 0 = χI(t) ≤ χI(t
2) = 1. By assumption,

χI(t
2) ≤ χI(t). It is a contradiction, so t ∈ I. Thus, I

is a SEIID of S.

V. ESSENTIAL WEAKLY INTERIOR IDEALS THEIR
FUZZIFICATION

In this section, we defined essential weakly interior ideals
and essential fuzzy weakly interior ideals in semigroup and
integrated properties of its.

Definition 5.1. An essential weakly interior ideal (EWIID)
I of a semigroup S if I is a WIID of S and I ∩ J ̸= ∅ for
every WIID J of S.

Theorem 5.2. Let I be an EWIID of a semigroup S. If I1
is a WIID of S with I ⊆ I1, then I1 is also an EWIID of
S.

Proof: Suppose that I1 is a WIID of S such that I ⊆ I1
and let J be any WIID of S. Since I is an EWIID of S
we have I ∩ J ̸= ∅. By assumption, we have I1 ∩ J ̸= ∅.
Therefore, I1 is an EWIID of S.

Theorem 5.3. Let I and J be EWIIDs of a semigroup S.
Then I ∪ J and I ∩ J are EWIIDs of S.

Proof: Since I and J are EWIIDs of S such that I ⊆
I∪ J and I is an EWIID we have I∪ J is an EWIID of S.

Let K be a WIID of S. Since I is an EWIID of S we
have I ∩ K ̸= ∅. Thus, there exists t, d and w ∈ I ∩ K.
Since J is an EWIID of S, there exists t, d and w ∈ J. Then
tdw ∈ (I ∩ J) ∩ K. Thus, (I ∩ J) ∩ K ̸= ∅. Hence, I ∩ J is
an EWIID of S.

The following theorem we will use the basic knowledge of
ID and WIID in semigroups to prove EWIID in semigroup.

Theorem 5.4. Every EID of semigroup S is an EWIID of
S.

Proof: The proof is obvious.

Definition 5.5. An essential fuzzy weakly interior ideal
(EFWIID) ω of a semigroup S if ω is a nonzero FWIID
of S and ω ∧ τ ̸= 0 for every nonzero FWIID τ of S.

Theorem 5.6. Let I be a WIID of a semigroup S. Then I
is an EWIID of S if and only if χI is an EFWIID of S.

Proof: Suppose that I is an EWIID of S and let ω
be a nonzero FWIID of S. Then by Theorem 2.3, supp(ω)
is a WIID of S. Since I is an EWIID of S we have I ∩
supp(ω) ̸= ∅. Thus, there exists t, d, w ∈ I ∩ supp(ω) such
that ω(tdw) ̸= 0 and χI(tdw) ̸= 0. So (ω ∧ χI)(tdw) ̸= 0
implies that χI∧ω ̸= 0. Therefore, χI is an essential FWIID
of S.

Conversely, assume that χI is an EWFIID of S and let
J be a WIID of S. Then by Theorem 2.1, χJ is a nonzero
FWIID of S. Since χI is an EWFIID of S we have χI ∧
χJ ̸= 0. Thus, by Lemma 2.2, χI∩J ̸= 0. Hence, I∩ J ̸= ∅.
Therefore, I is an EWIID of S.

Theorem 5.7. Let ω be a nonzero FWIID of a semigroup
S. Then ω is an EFWIID of S if and only if supp(ω) is an
EWIID of S.

Proof: Assume that ω is an EFWIID of S. Then ω is
a FWIID of S. Thus, by Theorem 2.3, supp(ω) is a WIID
of S. Let I be a WIID of S. Then by Theorem 5.6, χI is
a FWIID of S. By assumption, ω ∧χI ̸= 0. So, there exists
t ∈ S such that (ω ∧ χI)(t) ̸= 0. It implies that ω(t) ̸= 0
and χI(t) ̸= 0. Hence, t ∈ supp(ω)∩I so supp(ω)∩I ̸= ∅.
Therefore, supp(ω) is an EWIID of S.

Conversely, assume that supp(ω) is an EWIID of S. Then
supp(ω) is a WIID of S. Let τ be a FWIID of S. Then
by Theorem 2.3, supp(τ) is a WIID of S. By assumption,
supp(ω) ∩ supp(τ) ̸= ∅. So, there exists t ∈ supp(ω) ∩
supp(τ), this implies that ω(t) ̸= 0 and τ(t) ̸= 0. Hence,
(ω ∧ τ)(t) ̸= 0. Therefore, ω ∧ τ ̸= 0. We conclude that ω
is an EFWIID of S.

Theorem 5.8. Let ω be an EFWIID of a semigroup S. If
ω1 is a FWIID of S such that ω ≤ ω1, then ω1 is also an
EFWIID of S.

Proof: Let ω1 be a FWIID of S such that ω ≤ ω1 and
let τ be any FWIID of S. Thus ω ∧ τ ̸= 0. So ω1 ∧ τ ̸= 0.
Hence, ω1 is an EFWIID of S.

Theorem 5.9. Let ω1 and ω2 be EFWIIDs of a semigroup
S. Then ω1 ∨ ω2 and ω1 ∧ ω2 are EFWIIDs of S.

Proof: Let ω1 and ω2 be EFWIIDs of S. Then by
Theorem 5.8, ω1∨ω2 is an EFWIID of S. Let τ be a nonzero
FWIID of S. Then ω1 ∧ τ ̸= 0. Thus, there exists t, d ∈ S
such that ω1(td) ̸= 0 and τ(td) ̸= 0. Since ω2 ̸= 0 and let
w ∈ S such that ω2(w) ̸= 0. Since ω1 and ω2 are FWIID
s of S we have ω1(tdw) ≥ ω1(d) > 0 and ω2(tdw) ≥
ω2(d) > 0. Thus (ω1∧ω2)(tdw) = ω1(tdw)∧ω2(tdw) ̸= 0.
Since τ is a FWIID of S and τ(d) ̸= 0 we have τ(tdw) ̸= 0
for all t, d, w ∈ S. Thus, [(ω1 ∧ ω2) ∧ τ ](tdw) ̸= 0. Hence
[(ω1 ∧ω2)∧ τ ] ̸= 0. Therefore, ω1 ∧ω2 is an EFWIID of S.

The following theorem we will use the basic knowledge
of FIID and FWIID in semigroups to prove EFWIID in
semigroup.

Theorem 5.10. Every EFIID of semigroup S is an EFWIID
of S.

Proof: The proof is obvious.

Definition 5.11. An EWIID I of a semigroup S is called
(1) a minimal (MiEWIID) if for every EWIID of J of S such

that J ⊆ I, we have J = I,
(2) a maximal (MaEWIID) if for every EWIID of J of S

such that I ⊆ J, we have J = I,

Definition 5.12. An EFWIID ω of a semigroup S is called
(1) a minimal (MiEFWIID) if for every EFWIID of τ of S

such that τ ≤ ω, we have supp(τ) = supp(ω),
(2) a maximal (MaEFWIID) if for every EFWIID of τ of S

such that ω ≤ τ , we have supp(ω) = supp(τ).

Theorem 5.13. Let I be a non-empty subset of a semigroup
S. Then the following statement holds.
(1) I is a MiEWIID of S if and only if χI is a MiEFWIID

of S,
(2) I is a MaEWIID of S if and only if χI is a MaEFWIID

of S.

Proof:
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(1) Suppose that I is a MiEWIID of S. Then I is an
EWIID of S. By Theorem 5.6, χI is an EFWIID of
S. Let τ be an EFWIID of S such that τ ≤ χI. Then
supp(τ) ⊆ supp(χI). Thus, supp(τ) ⊆ supp(χI) = I.
Hence, supp(τ) ⊆ I. Since τ is an EFWIID of S
we have supp(τ) is an EWIID of S. By assumption,
supp(τ) = I = supp(χI). Hence, χI is a MiEFWIID
of S.
Conversely, χI is a MiEFWIID of S. Then χI is an
EFWIID of S. By Theorem 5.6, I is an EWIID of S. Let
J be an EWIID of S such that J ⊆ I. Then J is an WIID
of S. Thus by Theorem 4.9, χJ is an EFWIID of S such
that χJ ≤ χI. Hence, J = supp(χJ) ⊆ supp(χI) = I.
By assumption, J = supp(χJ) = J = supp(χI) = I.
So, J = I. Hence, I is a MiEWIID of S.

(2) Suppose that I is a MaEWIID of S. Then I is an EWIID
of S. By Theorem 5.6, χI is an EFWIID of S. Let τ be
an EFWIID of S such that χI ≤ τ . Then supp(χI) ⊆
supp(τ). Thus, I = supp(χI) ⊆ supp(τ). Hence, I ⊆
supp(τ). Since τ is an EFWIID of S we have supp(τ)
is an EWIID of S. By assumption, supp(τ) = I =
supp(χI). Hence, χI is a MaEFWIID of S.
Conversely, χI is a MaEFWIID of S. Then χI is an
EFWIID of S. By Theorem 5.6, I is an EWIID of S. Let
J be an EWIID of S such that I ⊆ J. Then J is a WIID
of S. Thus by Theorem 4.9, χJ is an EFWIID of S such
that χI ≤ χJ. Hence, I = supp(χI) ⊆ supp(χJ) = J.
By assumption, J = supp(χJ) = J = supp(χI) = I.
So, J = I. Hence, I is a MaEWIID of S.

Definition 5.14. An EIID I of a semigroup S is called a
0-minimal (0-MiEWIID) if for every EIID of J of S such
that J ⊆ I, we have J = I,

Definition 5.15. An EFIID ω of a semigroup S is called
a 0-minimal (0-MiEFWIID) if for every EFIID of τ of S
such that τ ≤ ω, we have supp(τ) = supp(ω),

Theorem 5.16. Let I be a non-empty subset of a semigroup
S. Then the following statement holds. I is a 0-MiEWIID of
S if and only if χI is a 0-MiEFWIID of S.

Proof: Suppose that I is a 0-MiEWIID of S. Then I
is an EWIID of S. By Theorem 5.6, χI is an EFWIID of
S. Let τ be an EFWIID of S such that τ ≤ χI. Then
supp(τ) ⊆ supp(χI). Thus, supp(τ) ⊆ supp(χI) = I.
Hence, supp(τ) ⊆ I. Since τ is an EFWIID of S we have
supp(τ) is an EWIID of S. By assumption, supp(τ) = I =
supp(χI). Hence, χI is a 0-MiEFWIID of S.

Conversely, χI is a 0-MiEFWIID of S. Then χI is an
EFIID of S. By Theorem 4.9, I is an EWIID of S. Let
J be an EWIID of S such that J ⊆ I. Then J is a WIID
of S. Thus by Theorem 5.6, χJ is an EFWIID of S such
that χJ ≤ χI. Hence, J = supp(χJ) ⊆ supp(χI) = I.
By assumption, J = supp(χJ) = J = supp(χI) = I. So,
J = I. Hence, I is a 0-MiEWIID of S.

Definition 5.17. An EWIID I of a semigroup S. Then I is
said to be:

(1) prime (PEWIID) if td ∈ I implies t ∈ I or d ∈ I, for
all t, d ∈ S.

(2) semiprime (SPEWIID) if t2 ∈ I implies t ∈ I, for all
t ∈ S.

Definition 5.18. Let ω be a EFWIID of a semigroup S. Then
ω is said to be:
(1) prime (PEFWIID) if ω(td) ≤ ω(t) ∨ ω(d) for all t, d ∈

S.
(2) semiprime (SPEFWIID) if ω(t2) ≤ ω(t) for all t ∈ S.

It is clear, every PEFWIIDs is SPEFWIIDs in semigroups.

Theorem 5.19. Let I be a non-empty subset of a semigroup
S. Then the following statement holds.
(1) I is a PEWIID of S if and only if χI is a PEFWIID of

S,
(2) I is a SEWIID of S if and only if χI is a SPEFWIID

of S,

Proof:
(1) Suppose that I is a PEWIID of S and let t, d ∈ S. Then

I is an EWIID of S. By Theorem 5.6, χI is an EFWIID
of S.
Case 1: If td ∈ I, then t ∈ I or d ∈ I. Thus, χI(td) =
1 = χI(t) = χI(d). Hence, χI(td) ≤ χI(t) ∨ χI(d).
Case 2: If td /∈ I, then χI(td) ≤ χI(t) ∨ χI(d).
From two cases, we have χI is a PEFWIID of S.
Conversely, χI is a PEFWIID of S. Then χI is an
EFWIID of S. By Theorem 5.6, I is an EWIID of
S. Let t, d ∈ S and td ∈ I. Then χI(td) = 1. If
t /∈ I and d /∈ I, then χI(t) = 0 = χI(d). Thus,
0 = χI(t) ∨ χI(d) ≤ χI(td) = 1. By assumption,
χI(td) ≤ χI(t) ∨ χI(d). It is a contradiction, so t ∈ I
or d ∈ I. Thus, I is a PEWIID of S.

(2) Suppose that I is a SPEWIID of S and let t ∈ S. Then
I is an EWIID of S. By Theorem 5.6, χI is an EFWIID
of S.
Case 1: If t2 ∈ I, then t ∈ I. Thus, χI(t

2) = 1 = χI(t).
Hence, χI(t

2) ≤ χI(t).
Case 2: If t2 /∈ I, then χI(t

2) ≤ χI(t)..
From two cases, we have χI is a SPEFWID of S.
Conversely, χI is a SPEFWIID of S. Then χI is an
EFWIID of S. By Theorem 5.6, I is an EWIID of S.
Let t ∈ S and t2 ∈ I. Then χI(t

2) = 1. If t /∈ I,
then χI(t) = 0. Thus, 0 = χI(t) ≤ χI(t

2) = 1. By
assumption, χI(t

2) ≤ χI(t). It is a contradiction, so
t ∈ I. Thus, I is a SPEWIID of S.

VI. ESSENTIAL n-INTERIOR IDEALS AND ESSENTIAL
FUZZY n-INTERIOR IDEALS

In this section, we will study concepts of essential fuzzy
n-interior ideals in a semigroup and properties of those.

Definition 6.1. An essential n-interior ideal (E n-IID) I of a
semigroup S if I is an n-IID of S and I ∩ J ̸= ∅ for every
n-IID J of S.

Theorem 6.2. Let I be an E n-IID of a semigroup S. If I1
is an n-IID of S with I ⊆ I1, then I1 is also an E n-IID
of S.

Proof: Suppose that I1 is an n-IID of S such that I ⊆
I1 and let J be any n-IID of S. Thus, I ∩ J ̸= ∅. Hence,
I1 ∩ J ̸= ∅. Therefore, I1 is an E n-IID of S.
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Theorem 6.3. Let I and J be E n-IIDs of a semigroup S.
Then I ∪ J and I ∩ J are E n-IIDs of S.

Proof: Since I and J are E n-IIDs of S we have I and
J are ESSGs of a S. Thus by Theorem 3.8, I∪ J and I∩ J
are ESSGs of S. Since I ⊆ I ∪ J and I is an E n-IID we
have I ∪ J is an E n-IID of S.

Let K be an n-IID of S. Then I ∩ K ̸= ∅. Thus, there
exists t, d and w ∈ I ∩ K. Let t, d and w ∈ J. Then tdw ∈
(I ∩ J) ∩ K. Thus, (I ∩ J) ∩ K ̸= ∅. Hence I ∩ J is an E
n-IID of S.

Theorem 6.4. EID of semigroup S is an E n-IID of S.

Proof: The proof is obvious.

Definition 6.5. An essential fuzzy n-interior ideal (EF n-
IID) ω of a semigroup S if ω is a nonzero F n-IID of S
and ω ∧ τ ̸= 0 for every nonzero F n-IID τ of S.

Theorem 6.6. Let ω be an EF n-IID of a semigroup S. If
ω1 is a F n-IID of S such that ω ≤ ω1, then ω1 is also an
EF n-IID of S.

Proof: Let ω1 be a F n-IID of S such that ω ≤ ω1 and
let τ be any F n-IID of S. Thus, ω ∧ τ ̸= 0. So ω1 ∧ τ ̸= 0.
Hence, ω1 is an EF n-IID of S.

Theorem 6.7. Let ω1 and ω2 be EF n-IIDs of a semigroup
S. Then ω1 ∨ ω2 and ω1 ∧ ω2 are EF n-IIDs of S.

Proof: Let ω1 and ω2 be EF n-IIDs of S. Then by
Theorem 4.6, ω1∨ω2 is an EF n-IID of S. Since ω1 and ω2

are EF n-IIDs of S we have ω1 and ω2 is an EFSSG of S.
Thus ω1∧ω2 is an EFSSG of S. Let τ be a nonzero F n-IID
of S. Then ω1 ∧ τ ̸= 0. Thus there exists t, d ∈ S such that
ω1(td) ̸= 0 and τ(td) ̸= 0. Since ω2 ̸= 0 and let w ∈ S such
that ω2(w) ̸= 0. Since ω1 and ω2 are FSSGs of S we have
ω1(td

nw) ≥ ω1(d) > 0 and ω2(tdw) ≥ ω2(d) > 0. Thus,
(ω1 ∧ ω2)(td

n
i w) = ω1(td

n
i w) ∧ ω2(td

n
i w) ̸= 0 where i ∈

{1, 2, ..., n}. Since τ is a FSSG of S and τ(d) ̸= 0 we have
τ(tdni w) ̸= 0 for all t, dni , w ∈ S where i ∈ {1, 2, ..., n}.
Thus [(ω1 ∧ω2)∧ τ ](tdn1w) ̸= 0. Hence [(ω1 ∧ω2)∧ τ ] ̸= 0.
Therefore, ω1 ∧ ω2 is an EF n-IID of S.

Theorem 6.8. Let I be an n-IID of a semigroup S. Then I
is an E n-IID of S if and only if χI is an EF n-IID of S.

Proof: Suppose that I is an E n-IID of S and let ω be a
nonzero F n-IID of S. Then by Theorem 2.3, supp(ω) is a n-
IID of S. Since I is an E n-IID of S we have I∩supp(ω) ̸=
∅. Thus, there exists d1, d2, ..., dn, t, w ∈ I ∩ supp(ω) such
that ω(tdn1w) ̸= 0 and χI(td

n
1w) ̸= 0. So (ω∧χI)(td

n
1w) ̸=

0 implies that χI ∧ ω ̸= 0. Therefore, χI is an essential F
n-IID of S.

Conversely, assume that χI is an E n-FIID of S and let J
be a n-IID of S. Then by Theorem 2.1, χJ is a nonzero F n-
IID of S. Since χI is an E n-FIID of S we have χI∧χJ ̸= 0.
Thus, by Lemma 2.2, χI∩J ̸= 0. Hence, I∩J ̸= ∅. Therefore,
I is an E n-IID of S.

Theorem 6.9. Let ω be a nonzero F n-IID of a semigroup
S. Then ω is an EF n-IID of S if and only if sup(ω) is an
E n-IID of S.

Proof: Assume that ω is an EF n-IID of S. Then ω is
a F n-IID of S. Thus, by Theorem 2.3, supp(ω) is a n-IID

of S. Let I be an n-IID of S. Then by Theorem 6.8, χI

is a F n-IID of S. By assumption, ω ∧ χI ̸= 0. So, there
exists d1, d2, ..., dn, t, w ∈ S such that (ω∧χI)(td

n
1w) ̸= 0.

It implies that ω(tdn1w) ̸= 0 and χI(td
n
1w) ̸= 0. Hence,

tdn1w ∈ supp(ω)∩I so supp(ω)∩I ̸= ∅. Therefore, supp(ω)
is an E n-IID of S.

Conversely, assume that supp(ω) is an E n-IID of S.
Then supp(ω) is an n-IID of S. Let τ be a F n-IID
of S. Then by Theorem 2.3, supp(τ) is an n-IID of S.
By assumption, supp(ω) ∩ supp(τ) ̸= ∅. So, there exists
d1, d2, ..., dn, t, w ∈ supp(ω) ∩ supp(τ), this implies that
ω(tdn1w) ̸= 0 and τ(tdn1w) ̸= 0. Hence, (ω∧ τ)(tdn1w) ̸= 0.
Therefore, ω ∧ τ ̸= 0. We conclude that ω is an EFn-IID of
S.

Definition 6.10. An E n-IID I of a semigroup S is called
(1) a minimal (MiE n-IID) if for every E n-IID of J of S

such that J ⊆ I, we have J = I,
(2) a maximal (MaE n-IID) if for every E n-IID of J of S

such that I ⊆ J, we have J = I,

Definition 6.11. An EF n-IID ω of a semigroup S is called
(1) a minimal (MiEF n-IID) if for every EF n-IID of τ of

S such that τ ≤ ω, we have supp(ω) = supp(τ),
(2) a maximal (MaEF n-IID) if for every EF n-IID of τ of

S such that τ ≥ ω, we have supp(τ) = supp(ω),

Theorem 6.12. Let I be a non-empty subset of a semigroup
S. Then the following statement holds.
(1) I is a MiE n-IID of S if and only if χI is a MiEF n-IID

of S,
(2) I is a MaE n-IID of S if and only if χI is a MaEF

n-IID of S,

Proof:
(1) Suppose that I is a MiE n-IID of S. Then I is an

essential ideal of S. By Theorem 6.8, χI is an EF
n-IID of S. Let τ be an EF n-IID of S such that
τ ≤ χI. Then supp(τ) is an E n-IID of S such that
supp(τ) ⊆ supp(χI). Thus, supp(τ) ⊆ supp(χI) = I.
Hence, supp(τ) ⊆ I. By assumption, supp(τ) = I =
supp(χI). Hence, χI is a MiEF n-IID of S.
Conversely, χI is a MiEF n-IID of S. Then χI is an EF
n-IID of S. By Theorem 6.8, I is an E n-IID of S. Let J
be an E n-IID of S such that J ⊆ I. Then J is an n-IID
of S. Thus by Theorem 6.8, χJ is an EF n-IID of S such
that χJ ≤ χI. Hence, J = supp(χJ) ⊆ supp(χI) = I.
By assumption, J = supp(χJ) = J = supp(χI) = I.
So, J = I. Hence, I is a MiE n-IID of S.

(2) Suppose that I is a MaE n-IID of S. Then I is an E n-
IID of S. By Theorem 6.8, χI is an EF n-IID of S. Let
ω be an EF n-IID of S such that χI ≤ ω. Then supp(ω)
is an E n-ID of S such that supp(ω) ⊆ supp(χI). Thus,
supp(ω) ⊆ supp(χI) = I. Hence, supp(ω) ⊆ I. By
assumption, supp(J) = I = supp(χI). Hence, χI is a
MaEF n-IID of S.
Conversely, χI is a MaEF n-IID of S. Then χI is an EF
n-ID of S. By Theorem 6.8, I is an E n-IID of S. Let J
be an E n-IID of S such that I ⊆ J. Then J is an n-IID
of S. Thus by Theorem 6.8, χJ is an EF n-IID of S such
that χI ≤ χJ. Hence, I = supp(χI) ⊆ supp(χJ) = IJ.
By assumption, J = supp(χJ) = J = supp(χI) = I.
So, J = I. Hence, I is a MaE n-IID of S.
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Definition 6.13. An E n-IID I of a semigroup S is called
a 0-minimal (0-MiE n-IID) if for every EIID of J of S such
that J ⊆ I, we have J = I,

Definition 6.14. An EF n-IID ω of a semigroup S is called
a 0-minimal (0-MiEF n-IID) if for every EFIID of τ of S
such that τ ≤ ω, we have supp(τ) = supp(ω),

Theorem 6.15. Let I be a non-empty subset of a semigroup
S. Then the following statement holds. I is a 0-MiE n-IID
of S if and only if χI is a 0-MiEFIID of S.

Proof: Suppose that I is a 0-MiE n-IID of S. Then
I is an EIID of S. By Theorem 6.8, χI is an EF n-IID
of S. Let τ be an EFIID of S such that τ ≤ χI. Then
supp(τ) ⊆ supp(χI). Thus, supp(τ) ⊆ supp(χI) = I.
Hence, supp(τ) ⊆ I. Since τ is an EF n-IID of S we have
supp(τ) is an E n-IID of S. By assumption, supp(τ) = I =
supp(χI). Hence, χI is a 0-MiEF n-IID of S.

Conversely, χI is a 0-MiEF n-IID of S. Then χI is an
EF n-IID of S. By Theorem 4.9, I is an E n-IID of S.
Let J be an E n-IID of S such that J ⊆ I. Then J is an
n-IID of S. Thus by Theorem 6.8, χJ is an EF n-IID of S
such that χJ ≤ χI. Hence, J = supp(χJ) ⊆ supp(χI) = I.
By assumption, J = supp(χJ) = J = supp(χI) = I. So,
J = I. Hence, I is a 0-MiE n-IID of S.

Definition 6.16. An E n-IID I of a semigroup S. Then I is
said to be:

(1) prime (PE n-IID) if td ∈ I implies t ∈ I or d ∈ I, for
all t, d ∈ S.

(2) semiprime (SPE n-IID) if t2 ∈ I implies t ∈ I, for all
t ∈ S.

Definition 6.17. Let ω be an EF n-IID of a semigroup S.
Then ω is said to be:

(1) prime (PEF n-IID) if ω(td) ≤ ω(t)∨ω(d) for all t, d ∈
S.

(2) semiprime (SPEF n-IID) if ω(t2) ≤ ω(t) for all t ∈ S.

It is clear, every PE n-IIDs is PEF n-IIDs in semigroups

Theorem 6.18. Let I be a non-empty subset of a semigroup
S. Then the following statement holds.

(1) I is a PE n-IID of S if and only if χI is a PEF n-IID
of S,

(2) I is a SPE n-IID of S if and only if χI is a SPEF n-IID
of S,

Proof:

(1) Suppose that I is a PE n-IID of S and Let t, d ∈ S.
Then I is an E n-IID of S. By Theorem 6.8, χI is an
EF n-IID of S.
Case 1: If td ∈ I, then t ∈ I or d ∈ I. Thus, χI(td) =
1 = χI(t) = χI(d). Hence, χI(td) ≤ χI(t) ∨ χI(d).
Case 2: If td /∈ I, then χI(td) ≤ χI(t) ∨ χI(d).
From two cases, we have χI is a PEF n-IID of S.
Conversely, χI is a PEF n-IID of S. Then χI is an EF
n-IID of S. By Theorem 6.8, I is an E n-IID of S. Let
t, d ∈ S and td ∈ I. Then χI(td) = 1.
If t /∈ I and d /∈ I, then χI(t) = 0 = χI(d). Thus, 0 =
χI(t)∨ χI(d) ≤ χI(td) = 1. By assumption, χI(td) ≤

χI(t) ∨ χI(d). It is a contradiction, so t ∈ I or d ∈ I.
Thus, I is a PE n-IID of S.

(2) Suppose that I is a SPE n-IID of S and t ∈ S. Then I
is an E n-IID of S. By Theorem 6.8, χI is an EFn-IID
of S.
Case 1: If t2 ∈ I, then t ∈ I. Thus, χI(t

2) = 1 = χI(t).
Hence, χI(t

2) ≤ χI(t).
Case 2: If t2 /∈ I, then χI(t

2) ≤ χI(t).
From two cases, we have χI is a SPEF n-IID of S.
Conversely, χI is a SPEF n-IID of S. Then χI is an
EF n-IID of S. By Theorem 6.8, I is an E n-IID of
S. Let t ∈ S and t2 ∈ I. Then χI(t

2) = 1. If t /∈ I,
then χI(t) = 0. Thus, 0 = χI(t) ≤ χI(t

2) = 1. By
assumption, χI(t

2) ≤ χI(t). It is a contradiction, so
t ∈ I. Thus, I is a SPE n-IID of S.

VII. CONCLUSION

In Section IV, we define essential interior ideals and
essential fuzzy interior ideals. We present that the union
and intersection of essential interior ideals are also essential
interior ideals of semigroups. Moreover, we prove some
relationship between essential interior ideals and essential
fuzzy interior ideals. In Section V, we define essential weakly
interior ideals and essential fuzzy weakly interior ideals.
We present that the union and intersection of essential
interior ideals are also essential interior ideals of semigroups.
Moreover, we prove some relationship between essential
weakly interior ideals and essential weakly fuzzy interior
ideals. In Section VI, we define essential n-interior ideals and
essential fuzzy n-interior ideals. We present that the union
and intersection of essential fuzzy n-interior ideals ideals are
also essential n-interior ideals of semigroups. Moreover, we
prove some relationship between essential n-interior ideals
and essential fuzzy n-interior ideals. In the future work, we
can discuss essential i-ideals and essential fuzzy i-ideals in
n-ary semigroups and algebraic systems.
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