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Asymptotic Stability of Interactional Genetic
Regulatory Networks with Reaction-Diffusion
Terms

Zhigiang Lv, Chunyun Xu, Chengye Zou, Zhigang Xie

Abstract—This paper investigates the asymptotic stability of
interactional genetic regulatory networks with
reaction-diffusion terms, considering Dirichlet boundary
conditions. For both stable and unstable genetic regulatory
network interaction models, a new Lyapunov-KrasovskKii
functional is proposed. By applying Jensen's inequality, using
Green's second identity, and employing a reciprocally convex
combination, a delay-dependent stability criterion is derived,
which does not require upper bounds on the derivative of the
delays. Numerical simulations are conducted to validate the
accuracy and effectiveness of the proposed theory.

Index Terms—Interactional genetic regulatory networks;
Asymptotic  stability; Time-varying delays; Dirichlet
boundary

I. INTRODUCTION

The evolution of gene regulatory networks (GRNs) can be
traced back to the long-standing research in the fields of
molecular biology and genetics. Since the birth of genetics,
scientists have extensively explored genes, the basic units of
hereditary information. In examining how genes influence
the traits of organisms, scientists have found that the levels
and regulation of gene expression are closely connected to
cellular functions and characteristics. In recent years, the
study of GRNs has garnered growing interest from both
mathematicians and biologists. To further understand the
deeper, underlying changes in biological systems, it has
become essential to model GRNs using various techniques.
Currently, research on systems or networks [17,23,27,28] is
increasing.

In the characterization of GRNs, Boolean model [6-9],
Bayesian model [10-12], and differential equation model
[14-16] are among the most commonly used approaches and
have therefore received increasing attention from scholars.
Among these, differential equation models provide a better
description of the dynamic behavior of GRNs, making them a
key focus in the field of biology.
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In real GRNSs, there is a time delays issue [1-4] due to
factors such as the slower rates of cellular transcription and
translation. Accordingly, it is imperative to comprehend the
role of time lags and incorporate them into GRN models.

In earlier models of GRN structure, it was generally
assumed that the concentrations of mMRNA and proteins were
evenly distributed in space, which does not accurately reflect
the true dynamics. Since spatial diffusion is a widely
occurring phenomenon, it is crucial to incorporate it into
GRN models [5,13,14,16,22,23,24]. Ma [26] developed
asymptotic stability criteria for GRNs with reaction-diffusion
terms under the constraints of Dirichlet, Neumann, and Robin
boundary conditions, shedding light on the significant impact
of these terms on the system. Zhang [27] studied the
oscillatory behavior of GRNs incorporating terms that
describe reactions and diffusion, Song [24] and colleagues
have developed a state estimation approach for genetic
regulatory networks that incorporates reaction-diffusion
processes based on sampled-data and Han [5] proposed a
method for addressing upper bounds on delays in GRNs that
include reaction-diffusion terms.

Biological processes are the outcome of complex
interactions, rather than the sole product of a single genetic
regulatory networks (GRNs). GRNs are interconnected and
influenced by interactions with neighboring networks.
However, most existing studies primarily focus on analyzing
GRNs in isolation. In reality, many biological characteristics
result from the combined effects of multiple GRNs, such as
the interactions between viruses and hosts [19,21], tumors
and organisms [18,20]. Therefore, studying interacting
genetic regulatory networks is more practically relevant than
studying single GRNs in isolation. Therefore, it is necessary
to study the model of interacting gene regulatory networks
(GRNs) with reaction-diffusion terms, but it should be noted
that the stability criteria for the existing models of interacting
genetic regulatory networks that incorporate
reaction-diffusion components are similar to those in some
other articles, are valid only when the maximum value of the
delay derivative is confined to be below 1. To address this,
we have formulated criteria for the time-delay-related
asymptotic stability of certain gene regulatory networks
(GRNs), featuring time-varying delays and
reaction-diffusion components, under the constraints of
Dirichlet boundary conditions. This achievement was
accomplished by introducing a novel Lyapunov—Krasovskii
functional and leveraging the application of Green's second
identity along with the lemma of reciprocally convex
combination. This paper makes the following two key
contributions:

(i)  Unlike previous studies, we have eliminated the
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constraint that the maximum value of the delay derivative is
confined to be below 1.

(ii) Employing Green's second identity and the lemma
on reciprocally convex combinations to address the terms
introduced.

Notation
We now introduce some standard notations for use

throughout this paper. For real symmetric matrices X andY ,

X >Y(X >Y) denotes that X —Y is positive definite (or
positive semi-definite), * represents the symmetric part of a

symmetric matrix, A" represents the transpose of matrix A ,

Q represents a compact set with a smooth boundary oQ in
the vector space R" , and mesQ is the measure of Q) .
I1.MODEL DESCRIPTION AND PRELIMINARIES

Two distinct nonlinear delayed GRNs, as characterized by
Eq. (1) and Eq. (2):

dm, (t )
ml.( ) =—aym; (tX)+ Y o i (py (t=o(t), )

dp, (t A,
p;t( ) =—C, P, (t, X) +b;m, (t —z(t),x),i =1,2,..

dmé; (t) =—a, M, (t,X)+ > @,0,(p,{t—0c'(t), X)) o

% =—Cyy Py (1, X) + 1, M, (t=7'(1), X), U =1.2,....m,

m,; (t), p; (t) € R™, m,, (t), p,, (t) e R™  represent  the
concentrations of MRNA and protein for nodes i and u at
time t. a; and a,, are the rates at which mRNA degrades,
while ¢, and c,, represent the rates at which protein
degrades, b, and b,, indicate the rates of translation, while
f,(x) and g,(y) are the Hill form regulatory functions

describing the protein's feedback influence on transcription,
as outlined in equation (3)

(2
f.(x) :m.—
1+ (mi)“'
I (3).
"
9,(Y)=———
1+ (L)
r]V

where w, and w, serve as the Hill coefficients, m; and n,

are designated as positive constants, and z(t), z'(t), o(t),
o'(t), are time-varying delay term satisfying

0<r(t)<7 o(t)<p,
0<o() <o, o)<,
o(t) i c'f() Hy ).
0<7'(t)y <7, 7'(t) < s,
0<o't) <o, o'(t)< p,,
where le(a)u.)eR“lX“l and W, =(w,)eR™™ are

represented by Eqg. (4) and Eq. (5), respectively, «; and S,
represent the dimensionless transcription rates for gene i by

transcription factor j and for gene u by transcription factor
V.

a; If the factor j acts as an activator for gene i,

@, =4 0 ifthere exists no connection from gene j to i,
—ay if the factor j acts as a repressor for gene i,
),
B, 1t the factor v acts as an activator for gene u,
if there exists no connection from gene v to u,
—p,, if the factor v acts as a repressor for gene u.
(6).
Taking into account the diffusion term, Eq. (1) and Eq. (2)
can be rewritten as

dm,, (t) 10 om, (t,x)
1 = E —| D, ———=|—a,. m,(t,
dt k=1 8Xk [ ik axk J ay; ml.( X)

+2. 0o f (py (t-o(),X)

@,=41 0

(M),
dpl. (t) op (X))
2k16X [ ik an j Cyj pli(tvx)
+b1im1i (t_T(t),X),i =12,..., n,
dm, () < @ [ om,(tx))
T - Zkzl an [dﬂk an ] aZu mZu (t’ X)
2 @00, (P, (=0 (1), %)) -

dp u(t) P, (t, X)
- Zk 16X ( uk Zaxk —Cyy Py (t'X)

+b2um2u (t_T (t),X),u :1, 2,...,n2

Q= {x||xk|£ L,,

D, =D, (t,x)>0 and
D, =D, (t,x) >0 represent the diffusion operators for
mRNA and protein along the i th gene, respectively, while
d, =d,{t,x)>0 and d; =d;(t,x)>0 represent the
diffusion operators for mRNA and protein along the u th

gene, respectively.
The initial condition is

where x =[x X,..x]" eQcR',

k=12..1} , L is constant,

rnli(s’x)zl//li(slx)’ Se(_ooio]vizlyzy---!nl
— H (9)7
Py (S, X) =y (s, X), Se(—OO,O],I—l,Z,...,nl
{m2u (5,X) =y, (5,X), se(—0,0],u=12,..,n,
. (10).
Po (8, X) =15, (5,X), se(—»0,0l,u=12,..,n,

Here, (s, %), vy (S, X), ¥, (S,X),¥,,(5,X) is bounded
and continuous with respect to (—oo,O]xQ .
Under Dirichlet boundary conditions

m,; (s, x) =0, Xe@Q,te[—K,+oo), an
Pi(s,X)=0, X €t e[-K,+x), ,
m,, (s,X) =0, XE@Q,te[—K,+oo), b
Py (5,X) =0, X €t e[-K,+x), (12).

Systems (7) and (8) can be expressed in matrix notation as:
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dMm, (t, x oM, (t, x
( ) zklax ( ) aik )j—AiMl(t,X)
+W,F (R (t—o(t), X)) (13),
dR, (t, x |
+B,M, (t—z(t), x),
dMm, (t, x oM, (t, x
( ) z“@x ( %j_AzMz(t,x)
+W,G (P, (t—o'(t), X)) (14).
dr, (t, x
( ) Zklax [ W{;T(:’X))—CZPZ(LX)
+B,M, (t—7'(t),X),
where
A =diag(a,,ay,,....a;,),
B, =diag(by,by,, ...y, ),
C, =diag(C,;,Cipr- Gy, ).
A, =diag(ay,,ay, ... 8, ) ,
_d|ag( 1s 22,...,b2n2),
=diag(C,,Cpp1-1Cap, ) »
_dlag( oo Do Do)
D; =diag(Dy,,D;,,...,D;,),
d, =diag(d,,,d,....d, ),
dy =diag(dy,dy,,...d;,),
M, (t, %) = (my, (t, X), My, (t, X), ..., m,, (t,X))",
P,(t,X) = (Pyy (6, X), Py (t, X), .., Py (X)),

M, (t, X) = (Myy (t, X), My, (t, X),...,m,, (£, X))",
P, (1, %) = (P,u (LX), Pyy (6 X), e Py, (6, X))
FR(t-o(t),x) = (f.(pu(t—o(t), X)), f,(p,(t-o(t), X)),
(P, =0 (), )"
G(Ry(t—o'(t), X)) = (9, (P, (t—0'(t), X)), 9, (P2, (t — o (1), X)),
ety O (Pgp, (=" (©), X)),
Since f,(+) and g, (+) are saturating monotonic increasing
functions, f,(<) and g, (+) satisfy Ineqg. (15) and Ineq. (16),
respectively

0< ) co v L0i=12,.0n, (15),
KI

03@3 VY, #0,Uu=12,.n, (16).

ie. u

£7(6)( (x) — K,x) <0 (17),

9" (M(g(N)-K,")<0 (18).

where
K, =diag(&,, &,
e, I and Y =[Y,, Y.,

£,)>0, K, =diag(,7;,...m,)" >0,

K =LK, Ky, Ynz]T.

Lemma 1 Let f(R)represent a function with real-valued
on [d,h]= R, where f(d)=f(h)=0.If f(R)eC'[d,h],
then

jd“[ FR)] v

Lemma 2 Assume that Q is an open set in R" and
@,¢ C?(Q) witha C* boundary and is bounded , then

IQ¢A(0dX - IQ¢A¢dX+ I&Q (¢Z_§

jd“ £2(R)dv <

(-3 (19),
v

—pPyds (20),
on

where Z—(f and Z—? represent the directional derivatives of
n n

@ and ¢, respectively, along the direction of the outward

normal vector n to the surface element dS .

Lemma 3 According to Green's formula and under the
constraints of Dirichlet boundary conditions, applying
Lemmas 1 and Lemmas 2 yields the following Ineq.

L o ,0om
2l m™y —(=—)dx <
Iﬂ g‘@xk (6xk)

Lemma 4 Z>0eR™ , p>0 is a positive scalar,

m' madx (21).
-z,

and x:[0, p] > R" is a vector function such that the related
integral is well-defined, and they exist:

(j: x(s)ds)T z (Jop x(s)ds) < p(j: x(s)Zx(s)ds)

Lemma 5 For every constant matrix 17 = I > 0 of suitable
size, any scalars h and | where h <1, and a vector function
x:[h,1]— R" such that the integrals below are well defined,

(22).

the following Ineq. is satisfied:
| | |
jh X" (s)dsl jh x(s)ds < (h—1) jh X" (s)Ix(s)ds
Lemma 6 For scalar ¢ , and vectors X,Y € R" are any
positive definite matrix, the following Ineq. is observed:
X' Y<eX X+e™'Y (24).
Lemma 7 For any vector XY eR" and scalar &>0, an
Ineq. of the following form is present:
2X HY <eX HX +&Y HY (25).
Lemma 8 Let Z, >0and Z, >0 are diagonal matrices;
there exists:

Lam (s, x)Z Z_(D om(t, X))d

(23).

ko1 OX, OX,
(26),
— [, x)ZZ [ 0 @omt, X))}dx
X, ot
J- op’ (s x)Z z (D apa(t x))d
27).

=1, p(tx)ZZ {

Lemma 9 Let h,h,,...,h, :R™ — R all take on positive

i ap(t x))}dx
xk ot

and finite values within an open set E of R™. Consequently,
the reciprocally convex combinations of h, on E satisfy:

min Z’%hi (t) = Zh‘ (t)+ rlne(11>)<ZIiyj (t)

(B:8>0Y A4S (28),
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subject to
h(t) 1;(t)
I :R™ >R, | =1 ' =
i RESRO “AD’{RAD h; (t)
Definition 1 Let C'(X xY,R") be a Banach space that

maps X xY to R" and is a function with continuous
first-order derivatives. We define ||+| and ||+||, as follows:

Iy x) = (_fQ y(t )"yt )dx)¥?, wy(t,X) € CH(0,+0) x 2, R")
Il'z(t,x) lly= (Iqup 2(t, %) z(t, x))¥?, vz(t, x) € C*([-d, 0] x Q, R")

Definition 2 The trivial solution of Eq. (30) and Eq. (31) is

}zoem.

asymptotically stable, if for any given ¢>0 , there
exist6,(¢) >0 and 6, (¢) > 0 such that:
(i)  when the initial conditions are satisfied:
w0l <6e), v @0 <),
ot 0l <5,(e), st x| <8,0e)
then
Mt x) IP<e,  [IR(X)IP<e,
IM,(t,X) IP<e,  [IREX)IP<e
(i) M (t,x) > 0,R(t,x) > 0,M,(t,x) > 0,R,(t,x) >0
whent —» .

I1l. MODEL OF INTERACTIONAL GRNS
As stated by Eq. (13) and Eq. (14), W, or W, represents the

interaction of expressed genes within a single GRN.
Assuming the interactions between different GRNs are
similar to those within a single GRN, consider the
bidirectional coupling models (30) and (31) of time-delay
GRNs incorporating reaction-diffusion terms, and investigate
the stability criteria under Dirichlet boundary conditions.

dM(tm M, (%))
Zk_lax[ T j AM, (t,%)
+W,F (P (t—of(t), x)) +W,"G(P, (t — o'(t), X)
[D:apl‘t'x))—cla(t,x)

X,

(30),
dR, (t X)

10
dt Zk lax
+BM (t—r(t) X),
dm (t X) z _15 aMa(t x)) AM, (t,%)
+W,G(P, (t—a(t) X) +W, F(P,(t—o(t), x)
dr, (t X) aP (t,x)
Zk 16x OX,
+B,M, (t-7'(t), %),
here W," = (@,) € R™™ ,
Eg. (32) and Eq. (33), a, and g, are the dimensionless
transcription rates of transcription factor v for gene i in Eq.
(30) and transcription factor u for gene j in Eq. (31),
respectively:

a,, if the factor v acts as an activator for gene i,
@, =4 0 ifthere exists no connection from gene v to i,

v
—a,, if the factor v acts as a repressor for gene i,

(31).
S0y C,p(tX)

W, = (@) € R™™ is given by

(32),

B, if the factor j acts as an activator for gene u,

@, =1 0 if there exists no connection from gene j to u,

—f, if the factor j acts as a repressor for gene u.
(33).
Theorem 1 For scalar z(t), o(t) ,z'(t), o'(t), 7, o, 7',
oy 1y, Uy, 4, thatsatisfies equation (4), if there exists
amatrix J' =J,>0, Al =A, >0, R =R >0(i =1,...,4),
Q] =Q,;>0(j=1..,10) a diagonal matrix N/ =N, >0,
(i=1,..,4) and a matrix G,(i=1...,4) of suitable size so

that the ensuing linear matrix inequality holds, then Eqg. (30)
and Eq. (31) are robustly stable under Dirichlet boundary
conditions:

{% Gﬂzo,{% Gﬂzo,{% Gﬂzo, (34),
Gl R Gz R, Gs Rs
R G = = = =
{ . 4}20,51:{11 H”}<o,:2:{ “ Hﬂ}<o.
G, R, *omg ¥ mgy
(35).
where
Hl Gl R1 - G1 _N1A1 ‘]1W1
* I, R-G 0 0
E,=| * * I, 0 0
* * * I1, N1W1
| * * * * Hs
0o 00 0 W
0 00 0 0
E,=| 0 00 O 0
0 00 0 NW
JW, 0 0 NW, 0 |
M, G, R,-G, -N,A, 0
+ T, R,-G, 0 0
Eg=| * % I, 0 0
* * * Hg N3W2
L * * * * Hlo
Q G, R-G, -N,C KA,]
+ Q, R,-G, 0 0
E,=|x * Q 0 0
* * * Q, 0
* * * * Q5
00 0 0 JW, ]
0 00O 0
E,=/0 000 0
0 00O 0
0000 O |
[Q, G, R,-G, -N,C, K,A,]
+ Q R-G, 0 0
Ep=| * * Q, 0 0
* * * Qg 0
i * * * * QIO ]
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2
M=-2 9D, ~20A+Q,+0, R viem Py =7 [, Mg M) g
(40),
I, =—Q, - — !
,=-Q,-R o T ol 0] R (S X) RGN g
IT, = (14, -1)Q,— 2R +G, + G + B J,B, + B/ N,B, t s
N _ T
M,=r R —2N, Vs (t,M,P) _jQM2 (t,x)J3M2(t,x)dx+IQ P, (t,X)J,P, (t, x)dx
I, = (/”2 —1)Q5 _Az +IZJ- GMZT (t,X) N3dk aMz(t, X) dx
i k=1 OX, OX,
I, = —7 J,d, —2J,A, +Q, +Q, —R, + &I W,
| T
M, =-Q,-R, o3[ PN g R
M, = (1, ~1)Q, —2R, + G, +G] + B J,B, + B/ N,B, Ea %
—, (41),
I, =7 R,—2N t
o s 3 . V,(t,M,P) = jﬂ L_m'\"; (s,X)Q,M, (s, x)dsdx
= (1, ~1)Qy - =
10 4 10 +J' jt,M;(S,X)Q7M2(S,X)d5dX
ﬂ_z * Q t;‘r' (42),
Q= _7‘]2DL 23,6, +Q;+Q, ~R, +J, +.|.Q-"tf 70 P, (3, X)Q;P (s, X)dsdx
Q,=-Q,-R, +_[Qj:j Py (s, X)Q, P, (s, X)dsdx

Q, = (1, -)Q, - 2R, +G, + G, + KA, K, 1
V(M. P) = [ GT(R(s.0)QuG(Py(s, x)dsdx  (43),

Q,=0cR,—N,
0, =Q, - 2A, M P =7 [ oM, (5 Xg, M (S X) dsd o
2
T *
Q, :_7‘]4d|_ -2J,C+Q+Q —R, +J, —J- J- J-t oP (S X) 0P2(S,X) dsdodx
=-Q,-R t 0s
9 4 (44)
; .
Qg = (1 ~1)Q —2R, + G, + G, + KA K, Upon performing the differentiation of V,(t,M,P)
Q,=0"R,—N, (i=1..,8), we obtain:
Q =Qy —2A, oV, (t,M, P) ; L9 oM, (t, x)
Proof Construct the Lyapunov-Krasovskii functional for ot :ZIQMI ()9, ;a(Dk X, ]'AlMl(t’X)
the system (13) and (14): S WE (R (- (1), ) +W, G (P, (t - /(1) ) | ¢
V(t’M'P):i;Vi(t’M’P) o +2j P’ (t,x)J, {Zi[D* apl(t’x)}-c P,(t, x)
At this point, the following terms are introduced into our Sox | x o
Lyapunov—Krasovskii function +B,M, (t - 7(t), x)]dx
a|v| (t x) oM (t, x) | T
V,(t,M) = dx oM, (t,x) 0 [ aM,(t,x)
ZI D ox, +2Z ng_ N,D, -~ —(;Xk dx
Where T
oP, (t X) OP, (t, x)
Vl(t,M,P)zj‘ M. (t, x)J,M (t,x)dx+jﬂ P (t, x)J,P,(t, X)dx + Zj N, D axk[ ox, j
lef oM (t X\ o M)
o O X, (45),
v, (t, M, P)
| T 2 _ T
Z ) Pa(t ,X) N, D apla(t, X) dx T _J-QM]' (t,X)(Q1 +Q2)M1(t,X)dX
&= X, X, _ _
37, —.[QMlT(t—z-, X)Q, M, (t — 7, X)dx
t .
Va(tMP) = [ [ M (5, 0Q M (5, x)dsclx (= O) ], M] (=), QM (t—(t), x)dx
[ 1M (50QM, (s, x)dsdx + [ P76 )(Q + Q)R (¢ X)dx
- (38), _ _
+J‘QJ‘:7 o P (s, X)Q,P,(s, x)dsdx _IQ R’ (t-0,x)Q,R(t—o, x)dx
+ Lz J.:: P (5,x)Q, P, (s, )dsdx - G(t))JQ R (t-o(t), QR (t-o(t). x)dx

t (46),
VM. P) = [ FT(R(s,x)QF (R(s.x)dsdx  (39),
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SOMD) [ F B 0RF (B 0
(-0 ®)], FT(R(t-o), X)QF (Rt - (), ))dx
(47)1
6V4(t,M,P)_;zJ 6M1T(t,x)Q16M1(t,x) dx
ot et ot
J~jt 6M (S X) 6M1(S,X)dsdx
t 0s
o[ “’X)Rz RN
o ot at
—J‘ J.: 8PT (S X) 6P(S X)de (48),

oV, (t,M,P)
ot

~2[ M1, [Zai [dk aMz(t’X)]-AzMz(t,x)

=y OX,

+W,G (P, (t—o'(t), X) +W, F (B, (t - or(t), X)) | dx

+2[ P (%)), l:i%[dk ap;it' X)J-czpz (t,x)

k=1 Kk k

+B,M, (t—7'(t), x)]dx
+22f alvl (t X) N 1[5'\" (t, x)j

K ox
* i 2 (t, X) dX
“ox | ox,

ZZJ- 6P (t X)
(49),
oV, (t,M, P
SLEMP)_ [ M (€20(@, + Q)M (4 0K
[ M (t=7",)Q,M, (t—7', x)dx
(A=) M] (t-7'(), )QM, (t ~ 7'(t), X)dx
+ [ P )(Q, + Q)P (t X)dx
—jQ P (t—o", X)Q,P, (t— o, x)dx
-0 ()], P} (t-0'(1), OQP, (t— (1), )
(50),
MOMP) [ 67 (Rt 0)QuG(P, (. )X
ot Q
- &'(t))jQGT (B, (t—0'(t), \)QuG (P, (t - o(t), X)) dx
(51)1
8V8(t,M,P)_?zJ- aMzT(t,x)Q 8M2(t,x)dx
ot e et P &t
T
_;J- _rf,aMZ(S'X) R, aMz(s,x)deX
e 0s 0s
)
;,zj- OP, (t,x)R4 oR, (t, X) dx
@ ot ot
T
—J- t aP (s X) aPz(s,x)dst
0s
(52).

According to Lemma 3, there are:

Lo (oM, X)
2f M (t,x)3,> —| D, ——"-~ dx
R

2
T
< 77I9Mf(t,x)JlDLM1(t,x)dx

(53),

AP (t, X)

L0
2| PT(t,%)9,> —| Dy —1~~
JLR¢ u;axk[k o

2
v *
< —7jﬂ R (t,x)3,D;P,(t, x)dx

(54),

oM, (t, x)

Iy
.
2[ M (t,x)J3kZ;an[dk

2
sfif M (t, x)J,d, M, (t, X)dx

2], PT(tx)Jz { ap(tx)}d

< —7jg P (t,x)J,D; P, (t, X)dx

(56).
where

(55),

L
oMl(t,x)j :[MI(tYX)Jle M, (t, x)
OX, . X,

M/ (t,X)3,D,
L OR(t, %) : PRt x)
PT (t,x)J,D; L P’ (t,x)J,D;
[1(><)H3XK JH[(X) ox
L OP(t,x
 PT(t,X)J,D; %L)J
L
oM, (t, ) M, (t,x)
M (t, x)J,d, 202 =| M (t,x)3,d, 22t
[Z(X):ik ox, ]k1(2(X)3k ox,
M )9,0, M X)J
o

L
L
[P; (t,x)J,d; apz(t’X)J =[P2T (t,x)J3,d; o (t, ) ,
OX, o ox,

[Mf(t,x)Jle

oM, (t, x)
OX,

L

L, OP,(t, X
P (t,%)3,d; %J
From Lemma 5 and Lemma 9, we have:

J' j: aM (S X) oM a(S X)deX

B j It 7(t) aM (S X) aMl(SIX)deX
t os

- aMl(s,x) oM, (s,X)
r_[ L I R = dsdx

S
| R

< J‘Q ! {GlT

where

o, =[M] (t-2(®.0-M] t-7.%) M (t0)-M] (t-0,%)]

_ T
o[ BN RNy,

G
Ri })f dx (57),

_j jt () aP (s X) aPl(s,x)deX
‘ > (58)

_ T
S e R, RO
te)  0Os 0s

R, G
Sj —uy| 2 % pydx
@ GZ RZ

where
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v, =[R (t=o®0—F (-7 R (- (t-o.0)]
_T—,j ,[:,faMZTiS,X) R, 8M2(s,x)dsdx

=, j“WM 2 (5,%) a'\"z(s'x)dsdx
. s (59),

_T—,J-J- aMz(s,x)R 6M2(s,x)dsdx
SO o 0s

S
R, G
< IQ -] [Gi R3 }u; dx
3 3
where

U3 =

[MI (-7, -M] (t-7"%) lvlg(t,x)—lvg(t—r'(t),x)]T

dsdx

—J- t 6PT(s x) aPz(s,x)

—j It () 6PT (s X) aPZ(s,x)dst
t 0s

(60).
_O—_,J' j aPz (S,X) R aPZ(S'X)deX
t-o'(t) as 4 S
£J —u) R G, v} dx
q 4 GI R4 4
where
v, =

[P t-0'(), )~ P (t-0",%) F’;(t,x)—P;(t—a'(t),x)]T
For diagonal matrices N,, N,, N;, N, are all positive
definite, it can be seen that:

aMlT(S,X) L0 oM, (t, x)
2.[9 ot N, {ZQ[DK oX, )

k=1

(61),
-AM, (t, X)+ W,F (P, (t— o (t), X) —aMlT(t’X)}dx =0

R (s,%) 0 [ RN
= ot {Zaxk(k X, ]

k=1

(62),
-C,R(t, )+ B,M, (t—z(t), ) _%} dx=0

Lo (|, aM,(tx)
Zak[dk 24 }

ZJ- 8M;(s,x)N
Q =
oM, (t, x) dx = 0

ot

ot 3

(63),

A M, (6 X)+ W,G(R,(t-o'(t), X) -

P (s, ) {' ? ( *6P2(t,x)J
o Fel8My 15 0 [ 020
at & ox, ox, ).
P, (t, x)}

-C,R (1, X)+ B,M, (t—7'(t), ) — dx=0

From Lemma 8, the imposition of Dirichlet boundary
conditions and Green formula, we deduce that:

oM/ (sx ! oM, (t, x)
2], M3 o, M

=2[ M (t,x)NlZa{Dk %(a'\"l@(:’x)ﬂdx

_22':.[ aMlT(t,x)Nlei[é‘Ml(t,x)jdX
@ 0%, OX, ot
Similarly
. OR(t,x)

1T
o . ox,
_zj P (t,x)N, Z { o (Wﬂdx
ZI aPT(t x) N, k@)(k(apétt x)j y

g, g o (o,

=2[ M] (XN, Z { GXk(aMZait,X)ﬂdx
e e
o[ P oP; (s )y Zaxk( apaitk x)]) i

=2[ Pt XN, Z { *an(aP(g X)H

T
:_ZZJ- oP, (t’X)NAd;—(aPZ(t’X) dx
@ OX OX, ot

From Ineq. (17) and Ineq. (18), for diagonal matrices
A >0, A,>0, A;>0, A, >0 ,the following Inegs.
holds:
2FT (Rt ))AF (R (L X)) - 2R (L, ) KA F (R (X)) <0

(69),

(65),

(66),

(67),

(68).

2FT (R (t—o(t), )A,F (R (t—o(t), X))
2P (t—o(t), KA, F(P(t-o(t),x) <0
2G" (P, (t, X)) A,G(P, (t, X)) — 2P, (t, X) K, A,G(P, (t, X)) <0

(71),
2GT (P, (t—o'(t), X)A,G(P,(t - o'(t), x) 72)
—-2R (t—o'(t), X)K,A,G(P,(t—o'(t),x) <0
From Lemma 6, the subsequent Inegs. can be derived:
2R (t-o(t), KA F (R (t-o(t).x)

(70),

<P (t-o(t), )KAKP (t—a(t),x) (73),
+FT (R (t—o(0), ))A,F (R (t—o(t),x)
2P (t—o'(t), X)K,A G(P, (t - o'(t), X))
<P (t—o'(t), )K,A,K,P, (t—o'(t),x) (74),

+G' (P, (t—-o'(t), X))A,G(P,(t— (), X))
2P (t,x)J,BM, (t—z(t),x)
<P (t,x)J,P(t,x) + M, (t —7(t), X)B] J,B,M, (t — z(t), X)
(75),
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2P/ (t,x)J,B,M, (t—7'(t),x)
<P} (t,%x)J,P,(t,x)+ M, (t—7'(t), x)B; J,B,M, (t — '(t), X)

(76)1
ZaPlT(t’X) NZBlMl(t_T(t)vX)
g P (t,X) N, RX) M, (t—7(t), X)B N,B,M, (t —7(t), X)
ot ot
(77),
ZaPZTa(t'[,X) N,B,M, (t—7'(t), x)
P a(tt' N, ang’ 9 Mt/ (0, 0BIN,BM, (- (0. %)

(78).
¢ is a positive scalar and from Lemma 7, it is known that
there exists:
2M, (t, X) IW,G (P, (t — &' (t), X)
< eMI (6 X)W, M, (t,X)+ 2 GT (P, (t—o"(t), X) I W,G (P, (t - o”(t), X)
&

(79).
By combining Eq. (45) to Eq. (79), we can obtain:
oV (t,M,P) _iavi(t, M,P)
ot =} ot
< [ [ @020+ 27 €02, 2, (%) Jox
<~ Ayin CEDU M (G X) [P+ TR X) 1)
= Zain G2 M, (6 X) 1 + 11 Py (8 %) 1)
<0
where

2= [M] (), M] (t=7,),M] (t-(t),x),

(80),

WT“X) FT (R (t-o(t), X)),

aMzT(t,x)

M (t,%),M] (t=7',x), M (t=7'(t), ), G (R(t-0'(t), X))}

:[PJ (t,x), P’ (t-0,%), B (t—o(t),x), 6PT (t X) JFT(R(t,x)),

oP) (t X)

P (6, %), B (t-o",%), P} (t=o"(t), ), == GT(Pz(t,X))}

From Eqg. (80), it can be seen
w < _;{lmin (_El) ” Ml(tv X) ”2
oV (t,M,P)

ot
oV (t,M,P)
ot

< A CED IR0 IP

< _ﬂ’Zmin (_Ez) H Mz(t! X) HZ

ov(t,M,P —_
% <4, (-2,) 1Pt X) |

By integrating the aforementioned Inegs., we derive:

[ s < [ (-2 1M, (5.0 s
JHE B g5 < [1 7, (21 R0 I

Itwdssj Zmln( _‘Z)HM (S X)” dS
0 oS

X wds < [ Doin (E5) 1P, (5. %) s

Then
V(6M,P) < [ ~ie (21 [ My(5, %) s
+V (0,M (0, x), P(0, x))
V(t,M,P) < j; —~imin (ZE4) | P.(s, %) |[Pds
+V(0,M (0, x), P(0, x))
VM, P) < [ =2 (-5,) M, (5, %) I7ds
+V (0, M (0, x), P(0, X))
2m|n( E‘Z) ” Pz (51 X) ||2d5
+V(0, M (0, X)1 P(Ov X))

(81),
(82),

(83),

V(EM.P)< | - (84).

Therefore
IIM,(t,x)IP=0, [[R(t,x) -0,
IIM,(t,x)|>= 0, || P,(t,x) |F— O(t — )

From Inegs. (81)-(84), it can be observed that
V(t,M,P) <V (0,M(0,x),P(0,x)) (85).

For vy, vy, wa o Wy, in Eq. (9) and Eq. (10), there are
non-negative real numbers that exist 9, ¢, £, ", &, 8",
v, 7", such that

oy (S, %) <9 oy, (s,%) <9
ot |7 x|
Wi o (ot
ot |77 x|
al//Zu(SlX) <5 al//2u(six) <5
ot | x|
O (5, %) <y Oy (8:X)|
ot ’ x|
Hence
om,; (0, x LI
Z [, Nl.ZD.k< T )> dx < mes(@)Y. Y N, D, (')
i=1 k=1
and

- oM/ s oM, (s, 1 _
T-[QJ.—O;J.: L6 X)Rl 13(: 9 deedXSEﬂimax(Rl)gzrsmes(Q)
Similarly

YIS X)) dx < mes() 3T Y N, D3 ()’

i=1 k=1
and

_J.QJ.-U.[O 6PT (s X) 6P (S X) dsd@dx < = /11max (R )éz o mES(Q)

j NauZduk(

and

— T .
T’LJOf,J.O oM, (s,x)R3 6M2(s,x) dsdedxslimx(&)&zr’smes(g)

amZu ©, X)) dx < mes(Q)ZzNau uk (5 )

u=1 k=1

ZJ. N4u zduk(ap2u (O X)) dX< meS(Q)ZZN4u uk (7/ )

u=1 k=1
and
J— T JR—
=N jwp (5:9)p aPZéS’X) dsd@dxS%lzmax(R4)yza’3mes(Q)
S
It is easy to see that there exist non-negative non-complex
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numbers M,, M,, M,, M,, such that the following Inegs.

holds
Mo s )
mes((X Y NuDy (8') + 2 o (RIS 7 mes(@) = M, [y 0 9
L —3 2
meS(Q(Y. YN, DL (L) + 5 A (R mes(@) = M, [y 0],

Kl

mES(Q)(ZZNauduk(5) + ﬁqmax(R )6%7" mes(€2)) = My (t, )

u=1 k=1

mes(@)(3 N, 03, () + ﬂmm )r*o" mes(@) =M, |w; ¢, %)

u=1 k=1

From these, it follows that
V (0, M (0, X), P(0,x)) = jQMf (0,%)J,M, (0, x)dx

+jQ RT(0,%)J,P.(0, X)dx

Hongo 7)o

k= Xy

+ZI Nz. (apl.(o x)] .

+, L(o) 'V'J (s, X)QM, (s, )dsdx
+.[QJ‘,O;M1T(S, X)Q,M, (s, x)dsdx

+[, fi,(o) P (s, X)Q,R,(s, X)dsdx

<[ 7R (5 0QuR (s, )dscle

+ [ FT(R(s 0)QF (R(s, )dsdx

—¢ (0 0OM, (s,%x) . OM,(s,X)
+TJ‘QJ.—;J‘H R os dsddax

_ T

+GJ. JO—IoaPl (s,x)R OP, (s, X) dsd0dx
al-slo 2 5s

+jQM;(o,x)J3Mz(o,x)dx

+ [P (0,%)3,P,(0,x)dx

+ZJ‘ NBUZduk[amZU(O X)]
+ZI Nu Y u(ang(f X)]

+, Lm) M; (s, X)QsM, (s, X)dsdx
+LJ,O; M (5, X)Q; M, (s, X)dsdx

+[, fi,,(o) P} (5, X)QsP, (s, X)dsdx

+[, I_O; PJ (3, X)Q, P, (s, X)dsdx

+.[Q I,oc,,(o) G (P, (5, X))QuG (P, (s, X))dsdx

_ T
+7[ j°,j°aM2 (6. X)p M:(%) gedoax
QJ-r'Jo 3 65

—¢ 0 (90R, (s,X), OP,(s,X)
o[ [, R, == dsddx

< A At O + 4 v & 0]

“(t, x)||f1 (86).

o |, O + 2
where

Ay = P (31) + Ty (Q) + T, (Q) + M,
Py = e (35) + O (Q) + 0t (Q,)

+ 01 (Q5) A (KT K + M,
Tt = Ao (33) 4+ T 2 (Q) + 7' () + M
Do = e (30) + 0 A (Qa) + 0 2y (Qy)

+ 0 Drma (Quo) Ao (K3 K;) + M,

In other words

V(M. P) 2 A, (3,) M (6 ) I (87),
V (M, P) 2 A, (3) 1R X) P (88),
V(t,M,P) = 2,0, (33,) | M, (&, X) I (89),
V(M. P)= A, (35) 1 P (6 X) I (90).
Here, A,.,(J;,) represents the smallest eigenvalue of
diag(J,,J,) , and A,.,(J,,) represents the smallest

eigenvalue of diag(J,,J,).
From Egs. (85)-(90), it can be derived that

M, (t, %) |P< Ay "‘//1(t,X)||d + 2, (t’x)"d
ﬂimin (‘]1'2)
| P,(t, %) IP< Ay "‘//1('[,X)"d + 4, (t'x)"d
ﬂlmin (‘]1'2)
1M, (t,x) < Ao |2 (4 )] + 2z ||t//2 (t,x)||d
/,{'Zmin (‘]34)
Il P, (t,X) |2< Zon 72 () + 2 s 4]
ﬂ?min (‘]3,4)

Forany ¢ >0, it is found that

51 = min {gﬁlmin (‘]1,2) gﬂlmin (le)} ,

22, 24
5, = min{gﬂzmin (J34) , & min (‘]3,4)}.
270, 22,
such that
IM, (&) P<e, IREX)IP<s,
IM,(t,x) IP<e, IIPX)IP<e

The proof is completed. therefore, according to Definition
2, it can be known that the trivial solutions of Eq. (30) and Eq.
(31) exhibit asymptotic stability under the constraints of
Dirichlet boundary conditions.

IVV. NUMERICAL SIMULATION

The following numerical simulations are presented. In
these simulations, Eq. (1) is stable, while Eqg. (2) is unstable.
For the time-delayed Eg. (30) and Eg. (31), which
incorporate reaction-diffusion dynamics, are considered
under the constraints of Dirichlet boundary conditions, here
are the specified parameters:
A =diag(3.0,3.0,3.0,3.0,3.0),

B, = diag(0.8,0.8,0.8,0.8,0.8),
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C, =diag(2.5,2.5,25,25,2.5),
D, =diag(0.1,0.1,0.1,0.1,0.1),
D; =diag(0.2,0.2,0.2,0.2,0.2) ,
d, =diag(0.1,0.1,0.1),

d, =diag(0.2,0.2,0.2),

A, =diag(0.1,0.1,0.1),

B, =diag(1.8,1.8,1.8),

C, =diag(2,2,2),

K,=K, =065, L=100,5, =0.1,5,=0.3,
0 0 11 -1
-1 1 00 0
W,={0 -1 01 0
0 -110 0
0 0110

24 24 0
W,=|24 -24 0

2.4 -2.4

n 0 0

7 0 0
W'=l0 0 -y

0 0 O

0 0 O

7, 72 O 0
W, =| 0 72 V. 0

0 03 O -7,

When r=c=7=0'=04 ,

M=ty =y =, =3,
feasible solutions are obtained by solving the LMIs (34) and

(35) using the MATLAB toolbox YALMIP as follows

7.2280 -0.3610 1.4951 0.4995
-0.3610 8.3553 2.3601 1.2862
J, =] 14951 23601 8.6715 0.8269
0.4995 1.2862 0.8269 9.2097
-0.9653 -0.2790 -0.5334 -0.5960
[13.9802 2.6467 4.1458  3.3775
2.6467 16.8137 5.1989 4.0631
J,=| 41458 5.1989 16.5531 4.9409
33775 4.0631 4.9409 16.5521
| -0.7600 -0.8795 -1.0252 -1.0036
[ 9.7555 0.3556 1.6919 1.1166
0.3556 10.3407 1.7113 1.1340
R =| 1.6919 1.7113 10.1745 1.1499
1.1166 1.1340 1.1499 10.7837
| -0.2407 -0.1795 0.0125 -0.1005
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—0.9653
-0.2790
—0.5334
—0.5960
8.1313

—0.7600
—0.8795
-1.0252
-1.0036
11.8595

—0.2407
—0.1795
0.0125
—0.1005
9.4409

[ 7.6289
1.1243
1.6735
1.4058
| -0.2091

[-5.2991
-1.8516
~1.2719
~1.4550
| 0.0165

[-4.4525
~2.1521
~2.2533
~2.1460

| 0.0807

[2.3125

0

0

0

0

3.4027
0

7.3292
-0.4411
0.0814
—-0.1769
—-0.1995

[25.0499
11.0239
12.3984
11.8912
| -0.3849

[ 0.7421
—0.3734
0.1047
-0.1710

| -0.2822

13.2514
—0.9036
29773
0.7180
—2.4834

1.1243 1.6735 1.4058 —0.2091
8.8153 1.9698 15190 -0.3167
1.9698 8.4293 2.0138 -0.3783
15190 2.0138 85187 -0.3645
-0.3167 -0.3783 -0.3645 6.5798
-1.4803 -0.8576 —1.2057 —0.2906 |
-5.8076 -0.9995 -1.2765 -0.0651
-1.1073 -5.3827 -1.7869 0.0079
-1.1747 -1.6530 -5.1603 -0.0770
0.2135 0.3365 0.2536 —3.6032 |
-1.9180 -1.9060 -1.9653 —0.0684]
—-6.1130 -2.1953 -1.9638 0.3329
—2.4801 -5.2680 -3.1160 0.4796
—-2.0096 -3.0456 -5.1481 0.3977
0.4693 0.6400 05386 -—2.3075 |
0 0 0 0
23125 0 0 0

0 23125 0 0

0 0 23125 0

0 0 0 2.3125

0 0 0 0
3.4027 0 0 0

0  3.4027 0 0

0 0 34027 0

0 0 0  3.4027
-0.4411 0.0814 -0.1769 -0.1995
7.3061 0.1492 -0.0410 -0.0160
0.1492 7.5480 —-0.3003 0.0450
—-0.0410 -0.3003 7.7210 -0.0165
-0.0160 0.0450 -0.0165 7.9281
11.0239 12.3984 11.8912 —0.3849]
34.8026 14.5091 11.9886 —2.6848
145091 30.8677 18.0024 —3.4466
11.9886 18.0024 30.0667 —2.9312
-2.6848 -3.4466 -2.9312 13.5172 |
-0.3734 0.1047 -0.1710 -0.2822]
0.8371 0.2752 0.0281 0.0237
0.2752 0.8990 -0.2628 -0.0716
0.0281 -0.2628 1.1297 -0.0928
0.0237 -0.0716 -0.0928 1.2632 |
—-0.9036 2.9773 0.7180 —2.4834
16.1015 5.1400 2.7518 —0.6383
5.1400 16.4631 1.4325 —1.4272
2.7518 1.4325 17.6073 -1.5025
-0.6383 -1.4272 -1.5025 15.6923
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Q3=

Q4=

[0.7946 02783 -0.0297 -0.1721
02783 0.6885 —0.0055 —0.0765
~0.0297 -0.0055 0.8322 -0.3199
01721 -0.0765 -0.3199 0.9554
|-0.1249 0.0316 0.0557 0.0170
(156371 4.0355 65243 52312
40355 202651 81885 6.2976
6.5243 81885 10.8344 7.7985
52312 62976 7.7985 19.8121
|-1.2106 -1.4248 -16443 —16160
(16363 -0.4965 —-0.0927 -0.3493
~0.4965 13656 —-0.0547 -0.1289
~0.0927 -0.0547 17733 —-0.6789
03493 -0.1289 -0.6789 1.9507
|—0.2727 00756 0.1473  0.0561
[114.2547 -113.8970 —7.6670
~113.9870 121.4814  0.5420
| 76670 05420  8.1165
(11002 -05812 -0.5888]
05812 11843 -0.4962
|-0.5888 —0.4962 1.2078 |
(25211 -0.7915 -0.6733]
~0.7915 24549 —0.6962
| -0.6733 —0.6962 2.4249 |
(00461 -0.0073 —0.0070]
~0.0073 0.0469 —0.0066
|-0.0070 -0.0066 0.0471 |
[-1.6867 05396 0.4992 |
05250 -1.6510 0.4743
| 04804 04796 -1.6635
[-0.0328 —0.0026 —0.0022]

0.0034 -0.0306 0.0015
| 0.0019 -0.0002 —0.0310|
[0.3066 0 0

0 03066 0
0 0  0.3066
[0.0103 0 0

0 00103 0
|0 0  0.0103]
(42340 -22952 -2.4446
22952 46262 —2.0432
| 24446 20432 4.8299
[0.1492  0.0004  0.0063

0.0004 0.1190 -0.0065

10.0063 -0.0065 0.1261

—0.1249 |
0.0316
0.0557
0.0170
1.1923

~1.2106]
~1.4248
~1.6443
~1.6160
12.4402 |

-0.2727 |
0.0756
0.1473
0.0561

Qs

Q

Q,

Q,

[ 0.3617
-0.2030
| -0.1996

[9.1716

~4.7118
| -5.4090
[ 0.0164
—-0.0092
| -0.0093
[1.8350
~1.0066
| -0.9609

2.4071

—-0.2030
0.3889
—-0.1641

-4.7118
9.3881
—4.0764
—0.0092
0.0190
—0.0080
-1.0066
1.9775
—0.8287

-1.1878

Q, =|-1.1878 26156

~0.1996]
-0.1641
0.3894 |

~5.4090]
~4.0764
10.2703 |

—0.0093]
—-0.0080
0.0190 |
~0.9609]
-0.8287
1.9585 |

-1.5939
-1.2284

2.4855

—-1.5939

-1.2284 3.0582

Using the MATLAB toolbox YALMIP, feasible solutions
can be obtained; From the numerical simulations mentioned
above, it can be seen that our theory has eliminated the
restriction of the upper bound being less than 1 for the
time-delay derivative. After that, we have plotted the
trajectories for Eq. (1) and Eq. (2), as shown below

(b)
Fig. 1 The trajectories of my,(t,X) and p;;(t,x), @ my(t, x),

P (t, %)

(b)
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(b) (b)
Fig. 2 The trajectories of M, (t,X) and p;,(t,X), (@ my,(t,X), (b)  Fig. 4 The trajectories of My, (t,X) and p;,(t,X), (& M, (t,X), (b)
P (6,%) Pra (6,%)

M {Lx)

m, 5(t,x)

B 5t %)

(b) (b)
Fig. 3 The trajectories of My, (t,X) and p;;(t,X), (@ M5 (t,X), (b)  Fig. 5 The trajectories of M5 (t, X) and p;s(t,X), (&) M (t,X), (b)
Pis (LX) Pis (£, X)
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(b) (b)
Fig. 6 The trajectories of M, (t,X) and p,,(t,X) , @ M, (t,X), ()  Fig. 8 The trajectories of My, (t,X) and Py, (t,X) , (@) My, (L, X), (b)

P (t. %) P23 (t, %)

As can be seen from Figs. 1-8, in the absence of interaction
terms, Eq. (1) is stable, while Eqg. (2) is unstable. This
manuscript also presents the asymptotic stability analysis for
mRNA and protein levels, as delineated within the
framework of Dirichlet boundary conditions, across Figs.
9-16.

(b)
Fig. 7 The trajectories of M., (t,X) and Py, (t,X), (@) My, (t,x), (b)

Py, (t, %)
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P yy(tx)

(b) (b)
Fig. 9 The trajectories of m,, (t,X) and p,, (t,X) , (8 my(t,x), (b)

Fig. 11 The trajectories of My, (t, X) and Py, (t, X) , (@) M, (t, X), (b)
Py (. X) Pia (t, X)

m, ‘(t. x)

Patx)

(b) (b)
Fig.10 The trajectories of m,, (t,X) and p,,(t,X), (& my,(t,X), (b)

Fig. 12 The trajectories of M, (t, X) and p,, (t,X), (&) M, (t,X), (b)
Pi (t,X) P4 (t,X)

m(Lx)
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(b) (b)
Fig. 13 The trajectories of M. (t, X) and p5(t, X), @) my(t,X), (b)  Fig. 15 The trajectories of M,, (t, X) and P, (t,X), (@) m,, (t,X), (b)
Pis (t, X) P2 (t, X)

P,s(tx)

(b) (b)
Fig. 14 The trajectories of M, (t,X)and P,, (t,X), (@ M, (t,X), (b)  Fig. 16 The trajectories of My, (t, X) and Py, (t, X) , (8) My (L, X) , (b)
P (t,X) Pas (t, X)

Obviously, due to the presence of interaction terms, both
systems are stable at this time. From Figs. 9-16, it is evident

that the theoretical framework we have put forward is viable.

Tab 1. Upper bounds on 7 =0 =1 =o' with different 7
Case 0.7 0.93 1.0 2.0
[26, Theorem 1] 0 - -
[13, Theorem 1] 0

w - -
Theorem 1 5.3855 0.6267 0.6267 0.6267

(1) When x=0.7, the LMI conditions given by [26,

Theorem 1], [13, Theorem 1], and Theorem 1 all have
feasible solutions.
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(2) When 0.93< <1, initially there is no feasible

solution under the LMI conditions given in [26, Theorem 1],
and then there is also no feasible solution under the LMI
conditions given in both [26, Theorem 1] and [13, Theorem
1].
(3) When w4 >1, a feasible solution exists only under the
LMI conditions given in Theorem 1.

From Tab 1, it can be seen that when the derivative of the
time delay is greater than 1, a feasible solution exists under
the theorem we proposed. It can be intuitively observed that
we have expanded the upper bound of the time delay
derivative, thereby addressing the problem we are studying.

Iterative number 4(x!?equired time for stable

m 350

300
42

250

Z 40 -
200
38
150
3% 100
34 50
0.1 0.2 03 04 0.1 0.2 03 0.4

Fig. 17 Iterative number and required time for stable with different 7, .

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2

0.1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1,
Fig. 18 Determining the stability of Eq. (30) and Eq. (31) under different
coupling coefficients.
4

35
3L
251 _
2—0.4
o 2
v2=0.7
150 |v,=05 v2=0-6\ /szo.s
1
05
0 . .
50 100 150 200

t
Fig. 19 The evolution of ®(t) with y,

Since this paper is based on the gene regulatory network
with interactions, in order to gain a deeper understanding of
the changes in interactions, we studied the stability of the
system under different coupling strengths. From Figure 17, it
can be observed that when y, =0.1,y, €(0.1,0.2,0.3,0.4)

as the coupling strength y, increases, the number of

iterations required to solve the feasible solution of the LMI
grows, and the time for the system to reach stability also
becomes longer. Both metrics exhibit the same trend of
change as the coupling strength increases, indicating that
these two indicators can reflect the system's variation to some
extent. Therefore, it can be concluded that within a certain
range, an increase in coupling strength y,,, prolongs the
stabilization time of the interacting GRN, and y,, 7, has a

significant impact on the system's stabilization time.

As shown in Fig. 18, if the parameter values fall within
Region I, the proposed gene regulatory network model is
stable. However, if the parameter values fall within Region I1,
the system becomes unstable.

We defined the criteria for evaluating the stabilization time
of the interactive GRN as follows:

()= J (w0 |my (83) =m (=00 + [ (8,X) = py (£ 1%)
+ W, [ My, (£, X) =My, (t=2,X)|[+w,"| Py (1. X) = Py (t—1, x)‘)dx

Where w, >0, w >0(i=1..,n); w, >0, w, >0(u=
1,...,n,) are the weights of m;;, p;, m,, and p,,.
{@(t)=1, 7(t)>1

ot)-2 7(t)=s

I, is a small positive value, and ©(t) serves as a metric
for evaluating stability. If ©(t)=2, the interactive gene
regulatory network is considered stable; if @(t):l, the
network is deemed unstable. The evolution of ©(t) with
where

respect to y, is shown in

7, €{0.4,05,0.6,0.7,0.8} ,
1/16, 4, =0.1. It is observed that the stability duration of the
interacting GRNSs increases as y, increases.

By combining the provided images, we can understand the
dynamic behavior of the system more comprehensively from
different perspectives.

Figure 19,

’ ’
7/120_]_7 W, =W =W, =W, =

V.DISCUSSION

Under Dirichlet boundary conditions, this paper explores
the stability conditions of interacting GRNSs. It focuses on the
asymptotic behavior of the trivial solution. The study
considers terms that describe both reactions and diffusion.
The asymptotic stability criteria were established by
constructing a novel Lyapunov functional and utilizing the
results of the provided lemmas. Notably, Theorem 1 in this
paper removes a restrictive requirement. The condition that
the maximum magnitude of the delay derivative must be
below 1 is no longer necessary. This change significantly
enhances the generality of the theoretical findings. It also
improves their applicability in various contexts. Moreover,
the effectiveness and practicality of the theoretical results
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have been visually demonstrated through carefully designed
numerical simulation experiments. These simulations not
only corroborate the theoretical analysis. They also introduce
a fresh perspective. This perspective is valuable for studying

the

stability of genetic regulatory networks. This study

represents significant advancements and breakthroughs in the
investigation of stability dynamics in GRNSs.
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