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Abstract—The Cox Proportional Hazard (Cox-PH) model can
be segmented into two parts if there is an indication of a change
point. A method is developed to detect a change point through
the residuals of the Cox-PH model. These residuals are modified
to obtain the optimal estimate for the Cox-PH model with a
change point. The modification is carried out by calculating
the residuals based on the Kaplan-Meier estimator and the
Koziol-Green model instead of the Nelson-Aalen estimator.
The presence of a change point is tested by calculating the
empirical likelihood ratio of the residuals. The distribution of
the proposed test statistic is analyzed using P-P plots from the
simulation data. The performance of the Cox-PH model with
an estimated change point was evaluated through simulations.
For real data application, PBC data is analyzed using the
proposed method, and the results are compared with the results
of previous studies with the same dataset.

Index Terms—Cox-PH, Change point, Empirical likelihood
ratio, Residuals, Kaplan-Meier, Koziol-Green.

I. INTRODUCTION

IN survival analysis, the observed data is the time to event
and its censoring status. This allows for the estimation

of the hazard function that indicates the risk level at t. In
some cases, covariates are also analyzed. If so, the Cox-
Proportional Hazard (Cox-PH) Model is commonly used. In
practice, the hazard function can undergo drastic changes
due to changes in the covariate values. Failure to anticipate
these changes can lead to analysis results that may not
accurately reflect the actual conditions and could endanger
patients in care. On the other hand, determining life insurance
premiums must also consider these changes to ensure fairer
premiums for the patients. A similar issue has also been
discussed regarding the lifetime of components in an adjacent
parallel structure [1]. So, estimating the covariate value that
will change the hazard function drastically is essential. The
occurrence of these changes is referred to as change points.

Previous studies have explored the estimation of change
points in the Cox-PH model. The change point estimation
can be conducted for the time variable [2], [3]. The Cox-PH
model was upgraded to include a change point parameter
in both studies. Therefore, the partial likelihood function
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will also undergo adjustments. Estimations are those that
maximize the partial likelihood function. Liu et al. (2008)
performed a Monte Carlo simulation to detect change points
in the same model [4]. Modifications can also be made to
the Cox-PH model to allow the detection of change points
in its covariate [5], [6]. The estimation of the change point
parameters are those that maximize the partial likelihood
function. A further advanced study was carried out by Jensen
and Lütkebohmert (2008), enabling the detection of more
than one change point in a single covariate [7]. Change point
detection can also be conducted by performing a likelihood
ratio test [8]. This test relies on the partial likelihood function
of the Cox-PH model, which includes change point parame-
ters.

A common aspect of the previous studies is modifying the
Cox-PH model to include change point parameters before
estimating these parameters. Some modifications often have
complex forms. In this paper, we will attempt to estimate
the change point based on the basic form of the Cox-PH
model without needing to add a change point parameter. If
there is a sample consisting of time t, censoring status δ,
and a single covariate x, written as (ti, δi, xi)

n
i=1 such that

xi ≤ xi+1 and the suspected change point is xk, with i =
1, 2, ..., k, k+1, ..., n, then the model to be discussed in this
paper is

h(ti|xi) =

{
h0(ti)A exp(β1xi)|ki=1

h0(ti)B exp(β2xi)|ni=k+1

(1)

Because there is no change point parameter, the change
point is determined by trying each possible value of k in
the model (1). An empirical likelihood ratio test will test
whether xk is a change point. This procedure was inspired
by the studies by Liu and Qian (2010), who applied it to
a linear model with a single covariate [9]. Gamage and
Ning (2021) also used it in an autoregressive model [10].
In both studies, change point detection was performed by
calculating the likelihood ratio of the model’s residuals. The
empirical likelihood ratio is calculated because the residuals
are not assumed to follow a specific distribution. However,
the residuals in the Cox-PH model have a different formula.
There are several formulas for the Cox-PH residuals. In this
paper, the martingale residual formula will be discussed.
Therneau et al. (1990) have shown that martingale residuals
can detect the presence of outliers in a sample [11]. If there
are outliers, a specific Cox-PH model can be estimated. This
aligns with the idea of the change point. Farrington (2000)
indicates that the martingale residual is a modified version
of the Cox-Snell residuals [12]. Therefore, the Cox-Snell
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residual will also be discussed in this paper.
This study will attempt to detect and estimate a change

point in a single covariate using Cox-Snell and martingale
residuals. Both residuals are formed based on the Nelson-
Aalen estimator for the cumulative hazard function. Modifi-
cations will be made to the cumulative hazard function for
both residuals to obtain the best residuals for the change point
estimation. We will modify by changing Nelson-Aalen with
another estimator, such as Kaplan-Meier [13] and the Koziol-
Green model [14]. Modifying the estimator of the hazard
function using the Koziol-Green model can lead to a better
model [15]. On the other hand, the Kaplan-Meier estimator
has its strengths and weaknesses compared to Nelson-Aalen,
depending on the data characteristics[16]. Also, the Kaplan-
Meier is one of the most used techniques in survival analysis
[17].

The structure of this paper is as follows. Section II
discusses Cox-Snell and martingale residuals for the Cox-
PH model with a single covariate. Section III provides the
detection and estimation of a change point by calculating the
empirical likelihood ratio of both residuals and then defining
a statistic to test for the presence of a change point. The
distribution of this statistic was examined through simulation.
In Section IV, modifications are made to the Cox-Snell
and martingale residuals by substituting their cumulative
baseline hazard functions with other estimators than Nelson-
Aalen. These modifications are used to detect and estimate
a change point. In Section V, we conduct simulations and
real data analysis. Also, we calculate the average remaining
lifetime based on covariate intervals constructed based on the
estimated change points to illustrate the implementation of
change point estimation in healthcare and insurance fields.
Section VI contains a discussion.

II. RESIDUAL FOR COX-PH MODEL

A. Cox-Snell Residual

Let ti and xi be time-to-event and covariate values for
i-th observations, respectively, for i = 1, 2, ..., n. A Cox-PH
regression model with a single covariate x can be formulated
as

h(ti|xi) = h0(ti) exp(βxi) (2)

h0(ti) is the baseline hazard before the covariate effect is
added into the model, and β is the Cox-PH’s parameter. The
cumulative of the baseline hazard is written as H0(t). The
distribution for the cumulative baseline hazard is exponential
(λ = 1). By estimating β and H0(t), the Cox-Snell residual
for Eq. (2) is

ε̂CSi = Ĥ0(ti) exp(β̂xi) (3)

Therefore we can see that E(ε̂CSi) = exp(β̂x̄). The estima-
tion for the cumulative baseline hazard is defined as [18]

Ĥ0(t) =
∑
ti≤t

di

W (ti, β̂)
(4)

di is the number of events at ti and W (ti, β̂) =∑
j∈R(ti)

exp
(
β̂xj

)
, with R(ti) is the number of objects

at risk, at ti. If there are no covariates, the Eq. (4) will take

the form of the Nelson-Aalen estimator for the cumulative
hazard function. Therefore, the Cox-Snell residual become

ε̂CSi =
∑
ti≤t

di
R(ti)

(5)

B. Martingale Residual
The martingale residual is calculated using a counting pro-

cess approach that counts the number of objects experiencing
the event in the interval [0, t). For i = 1, 2, ..., n and t ≥ 0,
we define the counting process Ni(t) = I[Ti ≤ t, δi = 1] so
that N(t) =

∑n
i=1 Ni(t) =

∑
ti≤t δi represents the number

of events at time t or before t. Let Yi(t) = I[Ti ≥ t] be
an indicator that object number i is at risk on t so that
Yi(t) = 1 for ti ≥ t. By looking at the Cox-PH model
with a single covariate, the intensity function for the counting
process Ni(t) is defined using the following equation [19]

λi(t) = Yi(t)h(t|x) (6)

The cumulative function for the intensity function is

Λi(t) =

∞∫
0

Yi(t)h(t|x)dt

=

∞∫
0

Yi(t) exp(βx)d(H0(t))

= H0(t) exp(βx) (7)

The difference between the counting process and the cumula-
tive intensity function is called the Martingale. By estimating
H0(t) and β, we will obtain the formula for the Martingale
residual.

ε̂Mi = Ni(t)− Ĥ0(ti) exp(β̂xi)

= δi − ε̂CSi (8)

Based on the estimated Cox-PH model, the Martingale
residual can be interpreted as the difference between the
actual number of events and the expected number of events.
Mathematically, the Martingale residual is the difference be-
tween the censoring indicator (δi) and the Cox-Snell residual
(ε̂CSi). Therefore, the expected value for the Martingale
residual is E(ε̂Mi) = E(δi) − exp(β̂x̄). Assuming that δi
is Bernoulli (θ), the value of E(δi) = θ is the proportion of
the uncensored objects.

III. DETECTING CHANGE POINT VIA COX-PH RESIDUAL

Using the residual formula of Cox-PH, we propose the
procedure to estimate the change point at the covariate x.
The proposed method is inspired by the work of Liu and
Qian (2010), which calculates the empirical likelihood ratio
of the linear model’s residual to detect the existence of a
change point in a single covariate [9].

Let (ti, δi, xi)
n
i=1 is the observation sorted by x so that

xi ≤ xi+1. Then the observation is divided into two parts
so we will get (ti, δi, xi)

k
i=1 and (ti, δi, xi)

n
i=k+1. Then, the

segmented Cox-PH model we get is as in Eq. (1). For each
segment, the parameter β is estimated so that the Cox-Snell
residual for (1) is

ε̂CSi(k) =


[∑k

i=1
di

W (ti,β̂1)

]
exp(β̂1xi)

∣∣k
i=1[∑n

i=k+1
di

W (ti,β̂2)

]
exp(β̂2xi)

∣∣n
i=k+1

(9)
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When there is no change point, we will get β1 ≈ β2 ≈ β. If
so, the Eq. (9) can be written as

ε̃CSi(k) =


[∑k

i=1
di

W (ti,β̂2)

]
exp(β̂2xi)

∣∣k
i=1[∑n

i=k+1
di

W (ti,β̂1)

]
exp(β̂1xi)

∣∣n
i=k+1

(10)

Under the null hypothesis H0 : β1 = β2 the expected value
of ε̃CSi(k) would be E(ε̃CSi(k)) = E(ε̂CSi) = exp(β̂x̄).
When the null hypothesis is true, xk is not the change
point. We will use the empirical likelihood ratio to test the
hypothesis [9], [10].

Suppose the switched Cox-Snell residuals
(ε̃CS1, ..., ε̃CSn) are sample from population with unknown
distribution function so that pi = P (εCSi = ε̃CSi), then its
empirical likelihood function is

L(F ) =
n∏

i=1

pi (11)

Since pi is probability then it holds both pi ≥ 0 and
n∑

i=1

pi = 1. Since the Cox-Snell residual has an expected

value E(ε̂CSi) = exp(β̂x̄), the empirical likelihood ratio is
defined as [20],

−2 logℜ(k) = −2 sup

{
n∑

i=1

log(npi)

}
(12)

where
n∑

i=1

piε̃CSi(k) = exp(β̂x̄). To calculate −2 logℜ(k),
we need to estimate pi first. For that purpose, the Lagrange
function is formulated as,

R =

n∑
i=1

log npi − nα

(
n∑

i=1

piε̃CSi(k)− exp(β̂x̄)

)

− γ

(
n∑

i=1

pi − 1

)
(13)

α and γ are the Lagrange multiplier. The values of pi
that optimize

∑n
i=1 log(npi) can be obtained by solving

∂R/∂pi = 0 for i = 1, ..., n.

1− nαpiε̃CSi(k)− γpi = 0 (14)

By taking γ = n the estimation for pi is

p̂i =
1

n(αε̃CSi(k) + 1)
(15)

To determine p̂i, we need to estimate α. Substituting Eq. (15)
into Eq. (12) we will obtain

−2 logℜ(k) = 2

[
n∑

i=1

log(αε̃CSi(k) + 1)

]
(16)

The value of α that optimizes the empirical likelihood ratio
can be obtained by solving

∂(−2 logℜ(k))
∂α

= 2

[
n∑

i=1

ε̃CSi(k)

(αε̃CSi(k) + 1)2

]
= 0 (17)

The second derivative of −2 logℜ(k) for α will be negative,
so the estimated α will maximize −2 logℜ(k).

Now, we will explain the change point detection using
martingale residual. For each segment of the Cox-PH model,
the martingale residual is

ε̂Mi(k) =


(
δi −

[∑k
i=1

di

W (ti,β̂1)

]
exp(β̂1xi)

) ∣∣k
i=1(

δi −
[∑n

i=k+1
di

W (ti,β̂2)

]
exp(β̂2xi)

) ∣∣n
i=k+1

(18)
Then, when there is no change point, the martingale residual
can be written as

ε̃Mi(k) =


(
δi −

[∑k
i=1

di

W (ti,β̂2)

]
exp(β̂2xi)

) ∣∣k
i=1(

δi −
[∑n

i=k+1
di

W (ti,β̂1)

]
exp(β̂1xi)

) ∣∣n
i=k+1

(19)
Using similar steps, the empirical likelihood ratio for the
martingale residual is

−2 logℜ∗(k) = −2 sup

{
n∑

i=1

log(np∗i )

}
(20)

where
n∑

i=1

p∗i ε̃Mi(k) = θ− exp(β̂x̄), p∗i ≥ 0,
n∑

i=1

p∗i = 1, and

p∗i is the distribution for (ε̃M1, ..., ε̃Mn). Using the Lagrange
method, we can obtain that

p̂∗i =
1

n(α∗ε̃Mi(k) + 1)

Thus, the empirical likelihood ratio for (ε̃M1, ..., ε̃Mn) will
become

−2 logℜ∗(k) = 2

[
n∑

i=1

log(α∗ε̃Mi(k) + 1)

]
(21)

with α∗ is the Lagrange multiplier that can be estimated.
If the empirical likelihood ratio is not sufficiently large,

then hypothesis H0 is not rejected, indicating that xk is not
the change point. Under the null hypothesis not rejected,
the ratio will be sufficiently small. The empirical likelihood
ratio is calculated for every possible value of k. To test the
hypothesis, a test statistic called ”Change-Point Test (CPtest)”
is determined using both residuals. Based on Liu and Qian
(2010), the test statistics are [9].

CPtest(Cox-Snell) =
√

max
LB≤k≤UB

(−2 logℜ(k)) (22)

CPtest(Martingale) =
√

max
LB≤k≤UB

(−2 logℜ∗(k)) (23)

LB and UB are the lower bound and upper bound for k
respectively. There are no specific rules to determine LB and
UB. We decide that LB = (log n)2 and UB = n− LB. If
the test result shows that H0 is not rejected for all k within
the interval k ∈ [LB,UB] then there is no change point
within observation (ti, δi, xi)

n
i=1.

A. The Distribution of the CPtest

The CPtest statistic has been obtained by calculating the
maximum value of the residual’s empirical likelihood ratio.
To utilize the CPtest statistic, the distribution of the CPtest

should be known. As for the linear model, the statistic to
detect the change point is Gumbel extreme value distributed
[9]. The Gumbel extreme value distribution is a case of the
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generalized extreme value distribution (gev). The probability
distribution function for gev is given by

f(x;µ, σ, ζ) = exp

{
−
[
1 + ζ

(
x− µ

σ

)]−1/ζ
}

(24)

with −∞ < x < ∞ and 1 + (x− µ)ζ/σ > 0. The location,
scale, and shape parameters are µ ∈ (−∞,∞), σ > 0,
and ζ ∈ (−∞,∞) respectively. When the shape parameter
is close to zero, the gev will become Gumbel extreme
value distribution. The residuals for the Cox-PH model are
formulated differently, so it needs to be investigated whether
the statistic still has the same distribution in the linear model.
We will simulate whether the CPtest statistic follows the
generalized extreme value distribution. The simulation is
designed to include a time variable T , a censoring status
δ, and a covariate X . Additionally, some observations will
be censored in the simulation to mimic real observations
in survival analysis. The algorithm for the simulation is as
follows.

1) Generating data using the following model: T =
2X + ϵ. There is no particular reason to use that
linear model except to generate data. X is generated
from an exponential distribution with λ = 1/5, and ϵ
is generated from normal distribution with µ = 10
and σ = 3. We also need a censor status variable
(δ) to have (T, δ, x). δ is generated from a Bernoulli
distribution with p = 0.7. The generated sample size
is n = 200, resulting in (Ti, δi, xi)

200
i=1.

2) Resampling via the bootstrap method with 600 itera-
tions for (Ti, δi, xi)

200
i=1. The sample size for each iter-

ation is 200 to have (Tij , δij , xij)
200
i=1; j = 1, 2, ..., 600.

3) For each iteration, the CPtest statistics is calculated to
have (CPtestj)

600
j=1. Then, the parameters of the gev dis-

tribution are estimated using the maximum likelihood
method.

4) Creating the P-P plots of (CPtestj)
600
j=1 to investigate

whether CPtestj follow the gev distribution. P-P Plot
can show the cumulative relationship between CPtestj
and the theoretical distribution, making it more sensi-
tive to small differences that may not be visible in a
histogram.

The P-P plots of the calculated CPtest using Cox-Snell
and Martingale residuals are presented on Fig. 1 and Fig.
2. The P-P plot indicates that the observed probability of
the CPtest approximates the expected probability using gev
distribution. Thus, the CPtest is a generalized extreme value
distributed. Let GEVα represent the critical value for the
CPtest at significance level α, denoted as P (CPtest ≥
GEVα) = α. If the statistics CPtest exceeds GEVα, then
the null hypothesis is rejected at the significance level α,
indicating the presence of a change point for covariate x.
For k∗ ∈ [LB,UB], if CPtest =

√
−2 logℜ(k∗) then the

estimation for the covariate change point is the corresponding
value to xk∗ . So, the model will be

h(ti|xi) =

{
h0(ti)A exp(β1xi);xi ≤ xk∗

h0(ti)B exp(β2xi);xi > xk∗
(25)

IV. MODIFICATION OF THE COX-PH RESIDUAL

The Cox-Snell and Martingale residuals are calculated
using the Nelson-Aalen estimator for the cumulative hazard

Fig. 1: the P-P plot of the CPtest using Cox-Snell residuals

Fig. 2: the P-P plot of the CPtest using Martingale residuals

function. When covariates are not present, the Cox-Snell
residual can be calculated by estimating the Nelson-Aalen
cumulative hazard function as in Eq (5). Meanwhile, the
Martingale residual can be calculated by taking the dif-
ference between the censoring status of each observation
and the Cox-Snell residual. In addition to Nelson-Aalen,
there are other estimators for the cumulative hazard function.
In this article, the Cox-Snell and Martingale residuals will
be calculated by modifying the estimation of its baseline
cumulative hazard function (Ĥ0(t)). This modification is
executed by estimating (Ĥ0(t)) using estimators other than
Nelson-Aalen, which are Kaplan-Meier and Koziol-Green.
The results of these modifications will be compared to
determine a better estimation for the change point.

A. Modification using Kaplan-Meier

Given t1, ..., tn with ti ≤ ti+1 representing the times of
occurred event for n objects. For tn ≤ t, the Kaplan-Meier
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(KM) estimator for the survival probability is [13]

Ŝ(t)KM =
∏
ti≤t

(
1− di

R(ti)

)
(26)

By knowing that H(t) = − logS(t), the Kaplan-Meier
estimator for the cumulative hazard function is

Ĥ(t)KM = −
∑
ti≤t

log

(
1− di

R(ti)

)
(27)

To modify the cumulative baseline hazard Ĥ0(t), we have to
recall that in the absence of covariates, the Cox-Snell residual
can be calculated using Eq. (5), that is the Nelson-Aalen’s
hazard cumulative. Suppose we modify by replacing the
Nelson-Aalen with the Kaplan-Meier estimator. In that case,
when there are no covariates, the formula for the Cox-Snell
residual will be the same as the Eq. (27). Both equations
(5) and (27) share the same characteristics as both of them
consist of di and R(ti). By looking at the original formula of
the baseline hazard cumulative in Eq. (4), then the formula
of the baseline hazard cumulative using the Kaplan-Meier
estimator can be written as

Ĥ0(t)KM = −
∑
ti≤t

log

(
1− di

W (ti, β̂)

)
(28)

with W (ti, β̂) =
∑

j∈R(ti)

exp
(
β̂xj

)
.

B. Modification using Koziol-Green

Modifications will also be made using the estimation of
cumulative hazard function based on the Koziol-Green (KG)
model. Let Y denote the duration until an object experiences
an event, and C represents the censoring time for each
object. The cumulative distribution functions for Y and C are
denoted F (t) and G(t), respectively. Let Ti = min(Yi, Ci)
be a random variable representing the survival data. If
Ti = Yi, then the i-th observation is uncensored; conversely,
if Ti = Ci, the i-th observation is right censored. The
cumulative distribution for T is

K(t) = P (T ≤ t) = 1− (1− F (t))(1−G(t)) (29)

If δ = 1, then T = Y or Y ≤ C. Let the cumulative
distribution function for T under the condition T = Y be
F1(t) = P (T ≤ t|Y ≤ C). The probability density function
for (T = Y |Y ≤ C) is

dF1(t) = lim
∆t→0

P (t ≤ Y ≤ t+∆t)

∆tP (Y ≤ C)
(30)

Since T = Y and according to Eq.(29)

P (T ≤ t) = P (Y ≤ t) = F (t) = 1− (1− F (t))(1−G(t))

will hold if and only if (1 − G(t)) = 1. Therefore, the
probability density function for Y can be written as

lim
∆t→0

P (t ≤ Y ≤ t+∆t)

∆t
= (1−G(t))dF (t) (31)

By assuming the censoring indicator δi = I(Yi ≤ Ci) fol-
lows a Bernoulli distribution with the probability of success

(uncensored) for i = 1, 2, ..., n is γ = P (Y ≤ C), we will
obtain

P (Y ≤ C) =

∞∫
0

P (Y ≤ C|Y = u)dF (u)

=

∞∫
0

P (u ≤ C)dF (u)

=

∞∫
0

(1−G(u))dF (u) (32)

Next, the Koziol-Green model is defined as [14]

(1− F (t))φ = (1−G(t)) (33)

with φ as the censoring parameter. Using Eq.(33), γ can be
written as

γ =

∞∫
0

(1− F (u))φdF (u)

=
1

φ+ 1
(34)

Using Eq.(29),(33), and (34), the survival function based on
Koziol-Green model is

P (T > t) = (1−K(t))γ

Using the maximum likelihood, the estimation for γ is

(1/n)
n∑

i=1

δi. Empirically, the function K(t) can be calculated

as P̂ (T ≤ t) = (1/n)
n∑

i=1

I(Ti ≤ t). Therefore, the estima-

tion of the survival using the Koziol-Green (KG) model is

Ŝ(t)KG =

(
1− 1

n

n∑
i=1

I(Ti ≤ t)

) 1
n

n∑
i=1

δi

(35)

The γ̂ represents the proportion of the uncensored ob-
servations. Therefore, when γ̂ ≈ 1 (almost no censored
observations), the estimation of the Koziol-Green survival
function will be the same as the Kaplan-Meier estimator,
which is the empirical survival probability P̂ (T > t). Then,
the estimated cumulative hazard function using Koziol-Green
can be written as

Ĥ(t)KG = −

[
1

n

n∑
i=1

δi

]
log

(
1− 1

n

n∑
i=1

I(Ti ≤ t)

)
(36)

Using Nelson-Aalen and Kaplan-Meier estimators, R(t) is
the divisor. Meanwhile, the Koziol-Green estimator uses
n as its divisor. The presence of censored observations is
accommodated through the parameter γ. By revisiting the
Nelson-Aalen’s cumulative hazard, the Cox-Snell residual is
calculated by modifying R(ti) to W (ti, β̂) (see Eq. (4)),
similarly when modification is done with the Kaplan-Meier
estimator (see Eq. (28)). In the Koziol-Green estimator, that
W (ti, β̂) cannot be applied since its divisor is n. Therefore,
instead of using W (ti, β̂), for the Koziol-Green estimator,
we propose the form of W (β̂).

W (β̂) =
n∑

i=1

exp(β̂xi) (37)
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The proposed value of W (β̂) is determined based on the
formula of W (ti, β̂). The difference is that W (β̂) is not time-
dependent. This is consistent with the estimation using the
Koziol-Green model, which uses n, whose value is also not
time-dependent. Furthermore, based on Eq. (36) and Eq. (37),
by replacing n with W (β̂), the cumulative baseline hazard
function using Koziol-Green model is

Ĥ0(t)KG = −γ̂ log

(
1− 1

W (β̂)

n∑
i=1

I(Ti ≤ t)

)
(38)

with γ̂ = (1/n)
∑n

i=1 δi is the proportion of the uncensored
observations.

C. Change Point Detection using Modified Residuals

To detect a change point using Cox-Snell residuals, where
the baseline cumulative hazard has been modified using
Kaplan-Meier, Eq. (9) can be written as

ε̂CSKMi(k) =

{
Ĥ0(t, β̂1)KM exp(β̂1xi)

∣∣k
i=1

Ĥ0(t, β̂2)KM exp(β̂2xi)
∣∣n
i=k+1

(39)

where

Ĥ0(t, β̂p)KM = −
k∑

i=1

log

(
1− di

W (ti, β̂p)

)
for p = 1, 2. If the baseline cumulative hazard is estimated
using the Koziol-Green, the Cox-Snell residual can be ex-
pressed as

ε̂CSKGi(k) =

{
Ĥ0(t, β̂1)KG exp(β̂1xi)

∣∣k
i=1

Ĥ0(t, β̂2)KG exp(β̂2xi)
∣∣n
i=k+1

(40)

where

Ĥ0(t, β̂p)KG = −γp log

[
1− 1

W (β̂p)

k∑
i=1

I(Ti ≤ t)

]
for p = 1, 2. The estimation for parameters γ1 and γ2
are −(1/k)(

∑k
i=1 δi) and (1/[n − k])(

∑n
i=k+1 δi), respec-

tively. By referring to Eq.(37), we find that W (β̂1) =∑k
i=1 exp(β̂1xi) and W (β̂2) =

∑n
i=k+1 exp(β̂2xi).

As in Eq.(9) and Eq.(10), if xk is not a change point, then
β̂1 and β̂2 in Eq.(39) and (40) can be exchanged each other
to obtain ε̃CSKMi(k) and ε̃CSKGi(k).

ε̃CSKMi(k) =

{
Ĥ0(t, β̂2)KM exp(β̂2xi)

∣∣k
i=1

Ĥ0(t, β̂1)KM exp(β̂1xi)
∣∣n
i=k+1

(41)

ε̃CSKGi(k) =

{
Ĥ0(t, β̂2)KG exp(β̂2xi)

∣∣k
i=1

Ĥ0(t, β̂1)KG exp(β̂1xi)
∣∣n
i=k+1

(42)

Since the distribution of the cumulative baseline hazard is
exponential (λ = 1), then E(Ĥ0(t)KM ) = E(Ĥ0(t)KG) =
1. Thus, when xk is not the change point, we will get
E(ε̃CSKM (k)) = E(ε̃CSKG(k)) = exp(β̂x̄). Then, the
empirical likelihood ratio for the Cox-Snell residual modified
using the Kaplan-Meier and the Koziol-Green are

−2 logℜCSKM(k) = −2 sup

{
n∑

i=1

log(npKMi)

}
(43)

Fig. 3: P-P plot of the CPtest using Cox-Snell-Kaplan-Meier
residuals, fitted with generalized extreme value distribution

where pKM is the probability distribution for ε̃CSKM. As the
empirical likelihood ratio of the Cox-Snell modified using
the Koziol-Green is

−2 logℜCSKG(k) = −2 sup

{
n∑

i=1

log(npKGi)

}
(44)

with pKG is the probability distribution for ε̃CSKG.
The −2 logℜ(k)’s are calculated for each possible value

of k, then used to calculate the statistic CPtest by taking the
square root in Eq (43) and (44).

Suppose a change point is to be detected by modifying the
Martingale residual. In that case, the modification using the
Kaplan-Meier (KM) estimator and Koziol-Green (KG) model
can be accomplished by leveraging the results obtained from
the modified Cox-Snell residual. Hence, the modification of
Martingale residual can be expressed as ε̂MKMi = δi−ε̂CSKMi

and ε̂MKGi = δi − ε̂CSKGi. To test using the modified
Martingale residual, whether xk is a change point or not,
the empirical likelihood ratios are

−2 logℜMKM(k) = −2 sup

{
n∑

i=1

log(np∗KMi)

}
(45)

and

−2 logℜMKG(k) = −2 sup

{
n∑

i=1

log(np∗KGi)

}
(46)

with p∗KM and p∗KG are the probability distribution for both

ε̃MKMi(k) = δi − ε̃CSKMi(k)

ε̃MKGi(k) = δi − ε̃CSKGi(k)

respectively with i = 1, 2, ..., n. Thus, the expected values
of ε̃MKMi(k) and ε̃MKGi(k) under the null hypothesis of no
change point (H0 : β1 = β2) is θ − exp(β̂x̄).

We will investigate whether the CPtest statistics obtained
by modifying the residuals follow a generalized extreme
value distribution. By adjusting the residuals and using the
same simulation algorithm as in subsection III.C., the P-P
plot of the modified CPtests are shown in the Fig. 3, 4, 5, and
6. The simulation results show that statistics CPtest follows
the theoretical shape of the gev distribution, suggesting that
statistic CPtest also follows a gev distribution.

V. PRACTICAL STUDY

A. Simulation

In this section, the performance of the change point
estimator using Cox-Snell and Martingale residuals will
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Fig. 4: P-P plot of the CPtest using Cox-Snell-Koziol-Green
residuals, fitted with generalized extreme value distribution

Fig. 5: P-P plot of the CPtest using Martingale-Kaplan-Meier
residuals, fitted with generalized extreme value distribution

Fig. 6: P-P plot of the CPtest using Martingale-Koziol-Green
residuals, fitted with generalized extreme value distribution

be compared through simulation. The comparison will be
conducted for both the original and modified versions of the
residuals in various situations, such as different sample sizes
and the proportion of the censored observations.

The random sample of variables (T, δ, x) is generated
based on simulation in section III.C. In this section, the
covariate x will also be generated from Gamma (shape =
2, scale = 5) and Log-normal (µ = 5, σ = 1) distributions.
These distributions, with a domain of x > 0, are selected
because a numerical variable that serves as a covariate in
survival analysis often has positive values. By testing several
distributions for the covariate, we seek to understand whether
variations in the covariate will affect the goodness of the
Cox model with a change point in the covariate. Through
this simulation, we want to know whether or not different
covariate distributions affect the model with the estimated
change point’s goodness. The model’s goodness will be
measured via its Akaike Information Criterion (AIC). The
smaller the AIC, the better the model’s ability to explain
the data [21]. Data generation will be performed using
n = 100 as the sample size. In addition, the proportion of
the uncensored observations (δ) will also be varied to see if
the number of censored observations will affect the proposed
method’s performance. We will perform the simulation for
δ = (99%, 80%, 50%, 30%). The Cox-PH model’s AIC with

a change point for x is calculated for each varied sample size
and the proportion of censored observations. AIC is used
because it can assess the relative quality of the statistical
model [22]. AIC helps determine the best and most balanced
model to avoid overfitting. Therefore, a model with a lower
AIC is better because it could explain data with a minimum
number of parameters. The change point is estimated through
Cox-Snell and Martingale residuals so that the model will be
as on Eq.(25). Modifications on AIC can be made to adjust
with the studied model. The AIC is modified for the Cox-PH
model with a single change point on covariate x.

AIC = 2p− 2[log(L̂1) + log(L̂2)] (47)

with p representing the number of estimated parameters in
the model. L̂1 and L̂2 are, respectively, the likelihood values
based on the model’s parameters, estimated for interval x ≤
xk∗ and x > xk∗ . The simulation results are shown in Fig.
7,8, and 9.

Fig. 7: The AIC of the Cox-PH model with a change point
on x, for x ∼ exponential(λ = 1/5)

For all distributions tested in this simulation, the number
of uncensored observations positively correlates with the AIC
of the Cox-PH model. This also means the more censored
observations there are, the smaller the AIC of the model.
Thus, estimating the change point using the proposed method
will result in a better Cox model in cases where the number
of censored observations increases. A significant proportion
of censored observations can result in less accurate analysis
[23]. By using the proposed method, this issue can be solved.
The model estimated based on the estimated change point
demonstrates a strong ability to represent the data effectively,
as it has a smaller AIC. Based on the residuals tested in this
simulation, the Martingale residual with its modification is
the most effective in empirically estimating the change point.
This applies when the proportion of uncensored observations
(δ) is 30% and 50%. For δ = 80% and δ = 99%, the Cox-
Snell residual still produces a model with smaller AIC (in the
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Fig. 8: The AIC of the Cox-PH model with a change point
on x, for x ∼ Gamma(shape = 2, scale = 5)

Fig. 9: The AIC of the Cox-PH model with a change point
on x, for x ∼ Log-Normal(µ = 5, σ = 1)

case of x ∼ exponential with δ = 80%, and x ∼ log-normal
with δ = 99%). Meanwhile, in the case x ∼ gamma with
δ = 99%, all residuals give a similar change point estimation,
resulting in identical models among all residual types.

Based on the modifications applied to the residuals, the
modification using the Koziol-Green estimator gives the
smallest AIC for the Cox-PH model with a change point.
In almost every tested covariate distribution, the residual
modification with the Koziol-Green estimator results in the
model with the smallest or second-smallest AIC. Only in
the case x ∼ log-normal with δ = 99%, the residual

modification with the Koziol-Green estimator produces a
relatively large AIC. Therefore, it can be concluded that
the residual modification with the Koziol-Green estimator
will give a good Cox-PH model for cases with a significant
number of censored observations.

B. Real data analysis

We applied the proposed method for the Primary Biliary
Cirrhosis (PBC) data in [24]. The dataset consists of 418
observations, with 257 of them being right-censored. The
variable to be analyzed is the duration (in days) from cir-
rhosis patients’ registration until their death (N.days), along
with their censoring status (δ). The covariate to be observed
is the bilirubin level (in mg/dl) due to its association with the
cirrhosis patients’ severity [25]. After estimating the change
points for the bilirubin, the Average Remaining lifetime will
be calculated for each bilirubin interval.

Before estimating the change point, bilirubin levels must
significantly impact the mortality risk of cirrhosis patients,
both theoretically and statistically. Additionally, dataset
(N.daysi, δi, bilirubini)418i=1 is sorted by the bilirubin variable
so that bilirubini ≤ bilirubini+1. By constructing a Cox-
PH model, the Wald test statistics for bilirubin levels is
12.26, and it follows a chi-squared distribution with df
(degree of freedom) = 1 because there is only one covariate
being analyzed [26]. For α = 5%, the statistics exceed
χ2
df=1 = 3.84, indicating that bilirubin levels statistically

affect the mortality risk. Therefore, there might be a change
point for the bilirubin. The estimated Cox-PH model is

h(t|bilirubin) = h0(t) exp(0.142bilirubin)

The change point will be estimated using the original and
modified version of Cox-Snell and martingale residual. The
CPtest results are shown in Table I.

TABLE I: CPtest for change point detection using original
and modified Cox-PH residuals

Residuals CPtest Change Point Candidate Bilirubin

Cox-Snell (Original) 24.75 bilirubin97 0.7
Cox-Snell (Kaplan-Meier) 52.98 bilirubin81 0.7
Cox-Snell (Koziol-Green) 120.36 bilirubin102 0.8

Martingale (Original) 21.47 bilirubin97 0.7
Martingale (Kaplan-Meier) 52.93 bilirubin81 0.7
Martingale (Koziol-Green) 119.81 bilirubin103 0.8

The CPtest statistics using the modified residuals also fol-
low generalized extreme value distribution. At α = 5%, the
test indicates that all methods conclude that there is a change
point because all of the CPtest exceed GEVα=5% = 2.97.
The potential change point may vary, but based on their
bilirubin levels, there are two candidates for the bilirubin
change point, 0.7 and 0.8. Thus, if a Cox-PH model was
formed with a change point at 0.7 and 0.8, the AICs for
both models are shown in Table II. As for the original
model without a change point, the AIC is 1651.56. It is quite
clear that the model with a change point performs better.
However, the optimal model is the one with the bilirubin
change point at 0.8 mg/dl, estimated via modified Cox-Snell
and martingale residual using the Koziol-Green model. The

IAENG International Journal of Applied Mathematics

Volume 55, Issue 5, May 2025, Pages 984-996

 
______________________________________________________________________________________ 



TABLE II: AIC for the Cox-PH model with a change point
in bilirubin

Bilirubin Change Point AIC

0.7 mg/dl 1548.03
0.8 mg/dl 1518.81

Fig. 10: The Average Remaining lifetime based on Single
Change Point of Bilirubin Levels

estimated optimal model is

h(t|bilirubin) =

{
h0(t)A exp(3.092bilirubin)

∣∣
bilirubin≤0.8

h0(t)B exp(0.123bilirubin)
∣∣
bilirubin>0.8

with h0(t)A and h0(t)A are the baseline hazard correspond-
ing with the bilirubin interval ≤ 0.8 and > 0.8 respectively.
The result is theoretically consistent with the fact that normal
bilirubin levels do not exceed 1.2 mg/dl [27]. Our results
indicate that bilirubin levels above 0.8 mg/dl are already
associated with a higher risk of death. Next, we calculate
the average remaining lifetime for each bilirubin interval,
as shown in Fig. 10. We can also construct the mortality
tables for each interval, as shown in Appendixes A and B.
The patient with bilirubin levels exceeding 0.8 mg/dl faces
a greater risk of death in the early year of the treatment.
After six years of treatment, patients in both bilirubin inter-
val groups will have relatively similar remaining lifetimes.
Suppose the result is applied to determine the life insurance
premiums during the initial six years. In that case, patients
with bilirubin levels greater than 0.8 mg/dl should pay higher
insurance premiums because their risk is also higher.

The next question is whether the estimated change point
significantly affects the changes in the patient’s survival.
There are 123 patients with bilirubin level ≤ 0.8 mg/dl,
with 18 patients having complete observations, called O1.
Meanwhile, there are 295 patients with bilirubin levels >
0.8 mg/dl, with 143 patients having complete observations,
called O2. Suppose n1t is the number at risk at t for bilirubin

level ≤ 0.8 mg/dl, and n2t is the number at risk at t for
bilirubin level > 0.8 mg/dl. Let dt be the number of events
for both categories. The expected value of the occurred event
(death) at t for each group is

eit =
nit∑2
i=1 nit

× dt; i = 1, 2 (48)

The expected value of the event occurrence for both bilirubin
categories are E1 =

∑
t e1t and E2 =

∑
t e2t, respectively.

Under the null hypothesis that there is no difference in
survival function between categories is [28]

W =
2∑

i=1

(Oi − Ei)
2

Ei
(49)

The null hypothesis will be rejected at significance level α
if W > χ2

(α,df=1). Using the PBC dataset and significance
level 5%, the obtained statistic is W = 46.3 > χ2

(5%,df=1) =
3.84. Then, based on the log-rank test, we can say there is
a significant difference in patient survival for both bilirubin
categories.

Suppose we create a categorical variable based on the
estimated change point for the bilirubin variable. We can
construct a Cox-PH model using the new categorical vari-
able to calculate the hazard ratio between categories. The
constructed model is

h(t|bilirubin) = h0(t) exp(1.55× I(bilirubin > 0.8))

A positive regression coefficient indicates that patients with
bilirubin levels higher than 0.8 mg/dl have a higher risk of
death. To determine how much higher, we will calculate the
hazard ratio (HR)

HR =
h0(t) exp(1.55× 1)

h0(t) exp(1.55× 0)
= 4.715

Through the hazard ratio, the risk can be compared. The
interpretation is that patients with bilirubin levels greater than
0.8 mg/dl have a risk of death that is 4.715 times higher
compared to patients with bilirubin levels below 0.8 mg/dl.

After obtaining one change point, an interesting thing to
be investigated is whether there are also change points in
the sub-interval bilirubin ≤ 0.8 and > 0.8. We can apply the
proposed method to each sub-interval. Before that, we need
to test whether bilirubin levels significantly affect each sub-
interval. This is done by creating a Cox-PH model for each
sub-interval and then conducting a Wald test. For bilirubin
≤ 0.8 mg/dl, the Wald test statistic is 1.483 < χ2

df=1,α=5% =
3.84, indicating that bilirubin levels do not have a significant
effect. Therefore, change point detection and estimation are
not needed for this interval. However, for bilirubin > 0.8
mg/dl, the Wald test statistic is 9.712 > χ2

df=1,α=5% = 3.84.
Since bilirubin levels have a significant effect, estimating a
change point in bilirubin levels within this interval makes
sense. The estimated change point is 1.1 mg/dl using the
Martingale-Koziol-Green residual. Repeating the same steps,
the next change points for bilirubin levels are 1.3 mg/dl, 2.6
mg/dl, and 5 mg/dl. The survival rates of cirrhosis patients
can vary depending on their bilirubin levels. If every cirrhosis
patient is assumed to have the same survival rate, some
patients’ conditions may be underestimated, even though
their condition has already reached a critical stage. Therefore,
creating a mortality table based on these change points can
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Fig. 11: The Average Remaining lifetime based on Multiple
Change Points of Bilirubin Levels

help reduce the risks for the patients. Furthermore, a specific
mortality table based on the patient’s medical conditions
can be used as a reference for determining insurance pre-
miums for patients (see Appendixes). It is reasonable for
patients with less severe medical conditions to pay lower
premium costs. Using the log-rank test, the hazard rate
between patients with bilirubin ≤ 8 mg/dl and patients with
bilirubin ∈ (0.8, 1.1] mg/dl is not significantly different
because the test statistics W = 1 < χ2

(5%,df=1) = 3.84.
Patients with bilirubin levels ∈ (1.1, 1.3] mg/dl also do not
have a significantly different hazard compared to those with
bilirubin ≤ 8 mg/dl and bilirubin ∈ (0.8, 1.1] mg/dl, as their
respective log-rank test statistics are 3.4 and 1.1, both of
which are less than χ2

(5%,df=1) = 3.84. To simplify the
interpretation, the plot for the average remaining lifetime for
patients with specific bilirubin intervals is only shown for
those with significant survival differences, as shown in Fig
11. Patients with the shortest remaining lifetime are those
with bilirubin levels above 2.6 mg/dl. The remaining lifetime
becomes even shorter when it exceeds 5 mg/dl. Therefore,
it is reasonable for patients with bilirubin levels below 2.6
mg/dl to pay lower insurance premiums than those with
bilirubin levels above 2.6 mg/dl.

The estimated change point we got using our proposed
method is consistent with previous studies using the same
dataset, which estimated a change point at bilirubin levels
of 2.6 mg/dl [8], 2.8 mg/dl [29], and 3 mg/dl [7]. However,
using our method, the hazard rate changes can be detected
starting from the bilirubin level of 0.8 mg/dl. This can be
an early warning for patients with bilirubin levels above
0.8 mg/dl. Patients with bilirubin levels between 0.8 mg/dl
and 2.6 mg/dl have a relatively similar remaining lifetime.
However, the lifetime decreases when bilirubin levels exceed
2.6 mg/dl.

If we create a new categorical variable for bilirubin levels

based on estimated multiple change points and then construct
a Cox-PH model using this new categorical variable, the
results are shown in Table III.

TABLE III: Regression coefficient and Wald Test statistics
for each bilirubin level’s intervals

Bilirubin Intervals β̂ Wald Test Statistics

0.8 < Bilirubin ≤ 1.1 0.330 0.837
1.1 < Bilirubin ≤ 1.3 0.712 0.174
1.3 < Bilirubin ≤ 2.6 1.284 4.348
2.6 < Bilirubin ≤ 5 2.044 7.042

Bilirubin > 5 2.666 9.501

At the significance level 5%, it was found that for Bilirubin ∈
(0.8, 1.1] and Bilirubin ∈ (1.1, 1.3], there is no significant
effect on the patient mortality, as the Wald Test Statistics
for these two intervals is less than χ2

df=1,α=5% = 3.84.
However, in other intervals, there is a significant effect.
It can be said that bilirubin levels will only significantly
impact after exceeding 1.3, 2.6, and 5. Suppose we take
interval bilirubin ∈ (1.1, 1.3] as the baseline interval for the
normal bilirubin level. The hazard ratio will be calculated
to determine the increased risk for patients in the intervals
that have a significant effect. The hazard ratios are shown on
Table IV.

TABLE IV: Hazard Ratio between Bilirubin ∈ (1.1, 1.3] and
other significant intervals

Bilirubin Intervals Hazard Ratio

1.3 < Bilirubin ≤ 2.6 1.771
2.6 < Bilirubin ≤ 5 3.789

Bilirubin > 5 7.057

Patients with bilirubin levels between 1.3 and 2.6 mg/dl
have a risk level almost twice that of patients with bilirubin
levels between 1.1 and 1.3 mg/dl. If bilirubin levels exceed
2.6 mg/dl, the risk level becomes 3.789 times higher. If it
increases to 5, the risk level rises drastically to seven times
higher. These results can be a reference for knowing the
patient’s condition, allowing for appropriate treatment.

VI. CONCLUSION AND DISCUSSION

In this paper, we develop a method for estimating the
change point for a single covariate in survival analysis using
the residual of the Cox-PH model. The residuals applied are
Cox-Snell and martingale. Both residuals are also modified
using the Kaplan-Meier and Koziol-Green estimators. To
detect a change point, a test statistic is determined based
on the likelihood ratio of the residuals. Through simulation,
it was established that the distribution of the test statistic
is a generalized extreme value. The bootstrap simulation
was also performed to evaluate the performance of the
proposed change point estimation method. The performance
was assessed through AIC of the models. The results show
that the proposed method performs exceptionally well when
the number of censored observations is relatively high.
Change point estimation using martingale residuals produces
a Cox-PH model with a smaller AIC. Therefore, when there
are many censored observations, martingale residuals are
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more effective for change point estimation than Cox-Snell
residuals. If modifications are made to both residuals using
the Koziol-Green estimator, it will result in a Cox-PH model
with a change point and a smaller AIC. This is because the
hazard function is also estimated for censored observations,
leading to less biased results. Hence, modifications using the
Koziol-Green estimator for the residuals give better results
for change point estimation.

Our proposed method is designed for a single covariate.
If multiple covariates need to be analyzed, they should be
handled one at a time. Otherwise, the covariate for which the
change point will not be detected can be considered constant.
Consider a dataset (ti, δi, xi, yi)

n
i=1 with two covariates (x

and y). If a change point is to be estimated for x, then the
dataset must be sorted based on x such that xi ≤ xi+1.
However, if the change point estimation is intended for y, the
condition yi ≤ yi+1 must be satisfied for i = 1, ..., n. Even
the same algorithm can be applied to detect and estimate a
change point for time variable t as long as the dataset is
sorted by t so that ti ≤ ti+1. Next, detecting and estimating
a change point is carried out using the residuals from the
model. This method can only be used to estimate a single
change point. If multiple change points are to be estimated,
a one-by-one approach is necessary. For example, let xk be
the change point for covariate x, dividing the existing dataset
into (ti, δi, xi)

k
i=1 and (ti, δi, xi)

n
i=k+1. We can also perform

change point detection for each of the divided datasets. If a
change point is detected on them, then there will be more
than one change point within the entire dataset (ti, δi, xi)

n
i=1.

We believe that our method can be applied to actuarial
cases. In section V, we obtained intervals for bilirubin levels
based on the estimated change points. We also calculated
the average remaining lifetime for each bilirubin interval.
This can be used as a reference to determine the insurance
premiums for patients with specific bilirubin levels. Some
insurance premiums are often not adjusted based on the pa-
tient’s condition [30]. Using the obtained result in this study,
further research can be developed to estimate and adjust
insurance premiums based on the change point estimations,
enabling the calculation of premiums that align with the
patient’s condition. This approach can also be applied to
other diseases, including cirrhosis.

In this paper, the change point is estimated using an empir-
ical method. The change point estimation in data analysis in
section V gives such results because those estimated change
point values are also present in the dataset. The estimation
results are highly dependent on the specific covariate values
in the dataset, making the estimation potentially biased
or less generalizable if the dataset is not representative.
Therefore, we are currently developing a parametric change
point estimation method using the same concept in this
study for using the Cox-PH’s residual. The method we are
currently studying employs the idea of Bayesian inference.
This concept has been used to estimate the change point
for the time-to-event (t) variable without covariates and has
shown promising performance [31]. In the case of a survival
model with covariates, the Bayesian method can also provide
reasonably good model estimation [32], [33]. We plan to
use it for change point estimation involving covariates in
the model. By adding a change point parameter to one or
more covariates, simultaneous change point estimation can

likely be achieved. Moreover, it will provide more precise
estimates of the change point rather than empirical estimates
based solely on the data.
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APPENDIX A
MORTALITY TABLE FOR CIRRHOSIS PATIENTS WITH

BILIRUBIN LEVELS < 0.8 MG/DL

Duration
of
Illness
(Years)

lx
(number
of
living)

dx
(number
of
dying)

cx
(number
of cen-
sored)

qx
(propor-
tion of
dying)

Average
Remaining
Lifetime
(Years)

0-1 123 1 0 0.0081 6.0407
1-2 122 4 1 0.0329 5.0902
2-3 117 0 6 0.0000 4.3077
3-4 111 1 13 0.0096 3.5405
4-5 97 1 10 0.0109 3.0515
5-6 86 3 13 0.0377 2.4419
6-7 70 4 17 0.0650 2.0000
7-8 49 1 12 0.0233 1.8571
8-9 36 1 8 0.0313 1.5278
9-10 27 1 11 0.0465 1.0370
10-11 15 1 3 0.0741 0.8667
11-12 11 0 9 0.0000 0.1818
12-13 2 0 2 0.0000 0.0000

APPENDIX B
MORTALITY TABLE FOR CIRRHOSIS PATIENTS WITH

BILIRUBIN LEVELS ≥ 0.8 MG/DL

Duration
of
Illness
(Years)

lx
(number
of
living)

dx
(number
of
dying)

cx
(number
of cen-
sored)

qx
(propor-
tion of
dying)

Average
Remaining
Lifetime
(Years)

0 - 1 295 29 0 0.0983 4.2102
1 - 2 266 16 2 0.0604 3.6692
2 - 3 248 32 15 0.1331 2.9355
3 - 4 201 17 36 0.0929 2.6219
4 - 5 148 14 23 0.1026 2.5608
5 - 6 111 7 15 0.0676 2.4144
6 - 7 89 7 16 0.0864 2.0112
7 - 8 66 6 16 0.1034 1.7121
8 - 9 44 5 10 0.1282 1.5682
9 - 10 29 6 3 0.2182 1.3793
10 - 11 20 2 5 0.1143 1.0000
11 - 12 13 2 4 0.1818 0.5385
12 - 13 7 0 6 0.0000 0.0000

APPENDIX C
MORTALITY TABLE FOR CIRRHOSIS PATIENTS WITH
BILIRUBIN LEVELS BETWEEN 0.8 AND 1.1 MG/DL

Duration
of
Illness
(Years)

lx
(number
of
living)

dx
(number
of
dying)

cx
(number
of cen-
sored)

qx
(propor-
tion of
dying)

Average
Remaining
Lifetime
(Years)

0 - 1 54 1 0 0.0185 5.7037
1 - 2 53 0 0 0.0000 4.8113
2 - 3 53 0 1 0.0000 3.8113
3 - 4 52 0 9 0.0000 2.8846
4 - 5 43 2 8 0.0513 2.4884
5 - 6 33 3 6 0.1000 2.2424
6 - 7 24 1 3 0.0444 2.0833
7 - 8 20 2 4 0.1111 1.5000
8 - 9 14 1 7 0.0952 1.1429
9 - 10 6 0 1 0.0000 1.6667
10 - 11 5 0 2 0.0000 1.0000
11 - 12 3 0 1 0.0000 0.6667
12 - 13 2 0 2 0.0000 0.0000
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APPENDIX D
MORTALITY TABLE FOR CIRRHOSIS PATIENTS WITH
BILIRUBIN LEVELS BETWEEN 1.1 AND 1.3 MG/DL

Duration
of
Illness
(Years)

lx
(number
of
living)

dx
(number
of
dying)

cx
(number
of cen-
sored)

qx
(propor-
tion of
dying)

Average
Remaining
Lifetime
(Years)

0 - 1 31 2 0 0.0645 5.4839
1 - 2 29 1 1 0.0351 4.8621
2 - 3 27 2 0 0.0741 4.2222
3 - 4 25 2 4 0.0870 3.5600
4 - 5 19 0 2 0.0000 3.6842
5 - 6 17 0 1 0.0000 3.1176
6 - 7 16 0 4 0.0000 2.3125
7 - 8 12 1 3 0.0952 2.0833
8 - 9 8 1 1 0.1333 2.1250
9 - 10 6 0 0 0.0000 1.8333
10 - 11 6 0 2 0.0000 0.8333
11 - 12 4 0 3 0.0000 0.2500
12 - 13 1 0 1 0.0000 0.0000

APPENDIX E
MORTALITY TABLE FOR CIRRHOSIS PATIENTS WITH
BILIRUBIN LEVELS BETWEEN 1.3 AND 2.6 MG/DL

Duration
of
Illness
(Years)

lx
(number
of
living)

dx
(number
of
dying)

cx
(number
of cen-
sored)

qx
(propor-
tion of
dying)

Average
Remaining
Lifetime
(Years)

0 - 1 75 2 0 0.0267 5.0000
1 - 2 73 4 0 0.0548 4.1370
2 - 3 69 4 6 0.0606 3.3768
3 - 4 59 3 13 0.0571 2.9492
4 - 5 43 5 4 0.1220 3.0465
5 - 6 34 3 5 0.0952 2.8529
6 - 7 26 1 4 0.0417 2.7308
7 - 8 21 2 4 0.1053 2.3810
8 - 9 15 2 1 0.1379 2.3333
9 - 10 12 3 0 0.2500 1.9167
10 - 11 9 1 1 0.1176 1.5556
11 - 12 7 2 0 0.2857 1.0000
12 - 13 5 0 3 0.0000 0.4000
13 - 14 2 0 1 0.0000 0.0000

APPENDIX F
MORTALITY TABLE FOR CIRRHOSIS PATIENTS WITH

BILIRUBIN LEVELS BETWEEN 2.6 AND 5 MG/DL

Duration
of
Illness
(Years)

lx
(number
of
living)

dx
(number
of
dying)

cx
(number
of cen-
sored)

qx
(propor-
tion of
dying)

Average
Remaining
Lifetime
(Years)

0 - 1 60 7 0 0.1167 3.6167
1 - 2 53 5 0 0.0943 3.0943
2 - 3 48 9 5 0.1978 2.4167
3 - 4 34 3 3 0.0923 2.4118
4 - 5 28 5 6 0.2000 1.9286
5 - 6 17 0 2 0.0000 2.1765
6 - 7 15 2 3 0.1481 1.4667
7 - 8 10 1 3 0.1176 1.2000
8 - 9 6 1 0 0.1667 1.0000
9 - 10 5 3 1 0.6667 0.2000
10 - 11 1 1 0 1.0000 0.0000

APPENDIX G
MORTALITY TABLE FOR CIRRHOSIS PATIENTS WITH

BILIRUBIN LEVELS ≥ 5 MG/DL

Duration
of
Illness
(Years)

lx
(number
of
living)

dx
(number
of
dying)

cx
(number
of cen-
sored)

qx
(propor-
tion of
dying)

Average
Remaining
Lifetime
(Years)

0 - 1 75 17 0 0.2267 2.3867
1 - 2 58 6 1 0.1043 2.0862
2 - 3 51 17 3 0.3434 1.3725
3 - 4 31 9 7 0.3273 1.2581
4 - 5 15 2 3 0.1481 1.6000
5 - 6 10 1 1 0.1053 1.4000
6 - 7 8 3 2 0.4286 0.7500
7 - 8 3 0 1 0.0000 1.0000
8 - 9 2 0 1 0.0000 0.5000
9 - 10 1 0 1 0.0000 0.0000
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