
Preconditioned Conjugate Gradient Method with
Shifted Multi-Step Circulant and Skew-Circulant

Splitting Preconditioner
Yi Yin, Nian-Ci Wu, and Chengzhi Liu

Abstract—In this paper, we are concerned with the solution of
Hermitian positive definite Toeplitz linear systems by employ-
ing the preconditioned conjugate gradient (CG) method. The
shifted multi-step circulant and skew-circulant splitting (CSCS)
preconditioner Pm is designed based on the shifted classical
CSCS iterative methods. We show that if the CSCS is P-regular,
the spectrum of the preconditioned matrix is clustered around 1
for moderate m. Theoretical and experimental results show that
our preconditioner can accelerate the convergence of CG for
solving large Hermitian positive definite Toeplitz linear systems.

Index Terms—Hermitian Toeplitz matrices, CSCS iteration,
P-regular, the shifted multi-step CSCS preconditioner, CG.

I. INTRODUCTION

CONSIDER the solution to a large linear system of
equations

Tx = b, (1)

where the coefficient matrix T = [tkj ]
n
k,j=1 ∈ Cn×n is a

Hermitian positive definite Toeplitz matrix with tkj = tk−j

and the right-hand side b ∈ Cn. The Toeplitz system in
Equation (1) has gained mainstream interest in many areas
such as [1], [2], [3], [4], [5].

Recently, there has been a lot of literature about construct-
ing, analyzing, and implementing various direct and iterative
methods to solve (1). For example, Krylov subspace based
techniques such as conjugate gradient (CG) for Hermitian
positive definite Toeplitz systems [1]; the Hermitian and
skew-Hermitian splitting (HSS) method and the accelerated
HSS iterative method for non-Hermitian positive definite
Toeplitz systems [6], [7]; the superfast structured Toeplitz
solutions for general Toeplitz systems [4], [5]; the circulant
and skew-circulant splitting (CSCS) iterative method for pos-
itive definite Toeplitz systems [8], [9]; the accelerated CSCS
[10] and shifted CSCS iterative methods [11] for Hermitian
Toeplitz systems; the augmented Kaczmarz algorithm for
inconsistent systems [12]; and the local circulant and residue
splitting iterative method for Toeplitz-structured saddle point
problems [13]. Despite the fact that the iterative solver is a
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preferred choice for solving large sparse linear systems, its
convergence rate may be very slow or even divergent.

As stated in [14], iterative methods combined with pre-
conditioning techniques could significantly speed up the con-
vergence rate. Especially, a careful and problem-dependent
choice of preconditioner can make the Krylov subspace itera-
tive methods more reliable. The main task in preconditioning
is to design a preconditioner P that is as close as possible
to the coefficient matrix T . Thus, we can replace the system
(1) with the preconditioned system P−1Tx = P−1b. Very
often, the preconditioned matrix P−1T is well conditioned or
has a clustered spectrum, and P−1 can be obtained easily.
Research on preconditioning technique has been a contin-
uous hot spot in numerical algebra. Many preconditioners
have been proposed based on the special structure of the
coefficient matrix T such as [15], [16], [17], [18]. For more
details about this research area, we refer the reader to read
the surveys [14], [19], [20], [21].

Of all the preconditioning techniques, the polynomial
preconditioner in [22] is of popular and interesting, which
has fueled new research such as [23], [24], [25]. The primary
challenge in constructing polynomial preconditioners lies
in the efficient splitting of the coefficient matrix and the
selection of an appropriate iterative solver.

By utilizing the shifted CSCS iterative method introduced
in [11], we propose a shifted multi-step CSCS preconditioner
and employ the preconditioned conjugate gradient (PCG)
method to solve (1). This approach is hereafter abbreviated
as CSCS(m)-CG, where m is the order of the polynomial.
This proposed method profits from the fact that the circulant
matrices and skew-circulant matrices can be diagonalized
by the discrete Fourier matrices. Therefore, any n-vector
multiplication with the Toeplitz matrix T can be computed
with O(n log n) arithmetic operations by using the fast
Fourier transform (FFT). Under certain assumptions about
the generation function of T , we will show that the eigen-
values of the preconditioned matrix are clustered around 1
for moderate m. Hence we can expect that the CSCS(m)-CG
method has a good performance in solving (1).

The remainder of the paper is organized as follows. After
reviewing the shifted CSCS iterative method in Section II, we
introduce the shifted multi-step CSCS preconditioners and
give efficient implementations of the CSCS(m)-CG method
in Section III. In Section IV, we establish the estimators
of the lower and upper bounds of the spectrum of the
preconditioned matrix. Numerical experiments are given to
confirm the effectiveness of our preconditioners in Section V.
Finally, we end this work with some conclusions in Section
VI.
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II. THE SHIFTED CSCS ITERATION

Assume that the generating function of T in (1) is defined
by f(x) =

∑+∞
−∞ tke

−ikx with i ≡
√
−1 and x ∈ [−π, π] for

k = 0,±1, · · · ,±(n− 1). It is verified that t−k = conj(tk)
1

for all integers and T is a Hermitian matrix, see [9]. After
that we can split T according to

T = Cβ − Sγ , (2)

where Cβ = Circ(c0, · · · , cn−1) is a Hermitian circulant
matrix and Sγ = Skewcirc(s0, · · · , sn−1) is a Hermitian
skew circulant matrix with c0 = β, s0 = γ, ck = (tn−k +
t−k)/2 and sk = (tn−k − t−k)/2 for k = 1, · · · , n− 1. For
more details, we refer to [9], [10], [11]. As described in [10,
Theorem 2.1], if f(x) =

∑+∞
−∞ tke

−ikx is in the Wiener class
where

∑+∞
−∞ |tk| < ∞ and satisfies the condition f(x) ≥

δ > 0 for any x, we know that the circulant matrix Ct0 is
uniformly positive and bounded for sufficiently large n. It
implies that the assumption that Cβ is positive definite is
reasonable.

Due to the promising performance and elegant mathemat-
ical properties of CSCS in (2), Liu et al proposed the shifted
CSCS iterative method for solving the Toeplitz systems in
(1) [11]. The algorithm framework is detailed below.

The shifted CSCS iterative method: Given an initial guess
x(0), until iterative sequence {x(k)} converges, compute

Ĉβx
(k+1) = Ŝγx

(k) + b, k = 0, 1, 2, · · · (3)

where Ĉβ = αI + Cβ , Ŝγ = αI + Sγ , and α is the shift
parameter.

It is shown in [11] that for j = 1, · · · , n, there exists a
shift α such that λj(Ĉ

H
β + Ŝγ) = 2α + λj(Cβ + Sγ) > 0,

where λj(M) means the jth eigenvalue of the matrix M .
By Hermann Wey’s theorem, i.e., Theorem 4.3.1 in [26], it is
verified that ĈH

β + Ŝγ is positive definite. Thus T = Ĉβ− Ŝγ

is a P-regular splitting and the spectral radius of iterative
matrix Ĉ−1

β Ŝγ will be less than 1 when T is Hermitian
positive definite, see [27, Theorem 1.2].

III. THE PROPOSED METHOD

A. Definition of preconditioners

Unless otherwise specified, we take β = t0 and γ = 0 to
make the circulant part dominant. For simplicity, we denote
Ĉt0 and Ŝ0 as C and S, respectively. Since T = C − S is a
P-regular splitting, the inverse of T can be written as

T−1 = (I − C−1S)−1C−1.

Replacing the first factor of the right-hand term above with
its Taylor expansion, we have

T−1 = (I −G)−1C−1 = (I +G+G2 + · · · )C−1

= (I +G+G2 + · · ·+Gm−1)C−1

+Gm(I −G)−1C−1

= pm−1(G)C−1 +GmT−1, (4)

1The operation conj(v) means the conjugate transpose of vector v.

where G = C−1S, pm−1(G) =
∑m−1

k=0 Gk. If the term
GmT−1 in (4) is of small norm, the matrix

P−1
m = pm−1(G)C−1 (5)

is close to T−1 and the matrix Pm serves as an effective
preconditioner for (1). Therefore we can replace the system
(1) with the preconditioned system

P−1
m Tx = P−1

m b,

which can be solved by employing the state of the art iterative
method such as the CG method. Accordingly, we refer to the
matrix Pm as the shifted multi-step CSCS preconditioner.

Remark 1: If the skew-circulant part S dominates, then
we can use an alternative preconditioning strategy. Such a
polynomial preconditioner can also be derived from multi-
splitting methods or the two-stage iteration methods of trivial
outer splittings such as discussed in [24], [25], [28], [29].

Theorem 1: Let T be a Hermitian positive definite matrix.
The shifted multi-step CSCS preconditioner Pm is a Hermi-
tian positive definite matrix.

Proof: Since C and S are Hermitian, GjC−1 is Hermi-
tian for all j = 0, 1, . . . ,m− 1. It follows immediately that
P−1
m is Hermitian according to (5). According to

(I − T 1/2C−1T 1/2)H = I − T 1/2C−1T 1/2,

we have

G = I − C−1T = T−1/2(I − T 1/2C−1T 1/2)T 1/2,

which implies that all eigenvalues of G are real. In addition,

T 1/2P−1
m T 1/2 = T 1/2(P−1

m T )T−1/2 = T 1/2(I−Gm)T−1/2,

and λℓ(I − Gm) > 0 for ℓ = 1, 2, · · · , n since the spectral
radius ρ(G) = ρ(C−1S) < 1, we know that P−1

m is positive
definite and the result follows.

Remark 2: If the preconditioner Pm in (5) is Hermitian
positive definite, then the corresponding multi-step precondi-
tioner is also known as the validity multi-step preconditioner
in [23].

B. Efficient implementations

When the CSCS(m)-CG method is employed to solve the
linear system (1), the main computational cost is the matrix-
vector product y = Tp and the calculation of P−1

m r, which
is equivalent to solving the generalized residual equation
Pmz = r, where p, r and z are the search direction, the
current residual and the generalized residual, respectively.

We first discuss the calculation of the matrix-vector prod-
uct Tp. Since the circulant matrix C can be diagonalized by
the discrete Fourier matrix Fn, and the skew-circulant matrix
S can be diagonalized by the diagonal-scaled discrete Fourier
matrix F̂n, i.e.,

C = F ∗
nΛFn and S = F̂ ∗

nΣF̂n,

where Λ and Σ are diagonal matrices holding the eigenvalues
of C and S, respectively, the discrete Fourier matrix Fn =
1√
n

[
e−i2πkj/n

]n−1

k,j=0
and F̂n = FnΩ with Ω = diag(ω) and

the n-vector ωT = [(−1)−(j−1)/n]n−1
j=0 . For more details, we

refer to Definition 2.1 in [1].
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Note that the first column of Fn is given by Fn(:, 1) =
1√
n
e with n-vector e being a vector with all entries equal to

1. It will take only O(n log n) operations to compute all the
eigenvalues of matrix C. The details are as follows. Let the
vector λ hold the eigenvalues of C. We have

λ = Λe =
√
nFnCe1 = fft(C(:, 1)),

where e1 is the first column of an identity matrix with order
n, and the operation fft(v) is a command that computes
the product

√
nFnv for any n-vector v in MATLAB.

Similarly, the vector σ is comprised of the eigenvalues of
S and can be obtained using

σ = fft(ω. ∗ S(:, 1)),

where the operation ’.∗’ is the entrywise multiplication.
By embedding T into a 2n × 2n circulant matrix, y =

Tp can be computed by the FFT with O(n log n) arithmetic
operations. We briefly called as y = HToepvec(t,p), where
t the first column of Hermitian Toeplitz matrix T . Reader
can refer to for more details about the fast calculation of Tp.

Next, we discuss the calculation of P−1
m r. From (5), we

get z = P−1
m r. It is worth specifying that P−1

m does not need
to be formed explicitly since P−1

m r can be evaluated via a
series of matrix-vector products, i.e., to solve the Pmz = r,
we need to perform m steps

Cz(j) = Sz(j−1) + r, j = 1, · · · ,m,

of the shifted classical CSCS iteration in (3). Thus

z(m) = Gmz(0) + (I +G+G2 + · · ·+Gm−1)C−1r. (6)

If we select z(0) = 0 in (6), then

z(m) = (I +G+G2 + · · ·+Gm−1)C−1r = z. (7)

The computation of P−1
m r can be formulated as the following

subroutine z = InvPvec(λ,σ, r,m).

Subroutine z = InvPvec(λ,σ, r,m)
Input two eigenvalue vectors λ and σ of C and S,
respectively, the current residual r, the order m of Pm.

1: Compute z(0,1) = fft(r)./λ, z(0) = ifft(z(0,1)).
2: For j = 1 : m

(a) Update r := Sz(j−1) + r by
s1 = fft(ω. ∗ z(j−1)), s2 = σ. ∗ s1, s =

conj(ω). ∗ ifft(s2), r = s+ r.
(b) Solve the equation Cz(j) = r by

z(j,1) = fft(r)./λ, z(j) := ifft(z(j,1)).
3: EndFor
4: Set z := z(m) and output z.

When employing the CSCS(m)-CG method to solve the
Hermitian positive definite Toeplitz linear systems, it is
quite natural to allow the usage of the aforementioned FFT.
Therefore, the total arithmetic operations at each step of the
CSCS(m)-CG method is O(n log n).

The CSCS(m)-CG method.
Input the first column t of T , the right-hand side b,
the stopping tolerance TOL, the maximum number ℓ of
iterations, two eigenvalue vectors λ and σ of C and S,
respectively, the order m of Pm.

1: Call y = HToepvec(t,x(0)) and compute r(0) = b−
y.

2: Call z(0) = InvPvec(λ,σ, r(0),m) and assign p(0) =
z(0).

3: For k = 0, 1, · · · , ℓ
If ∥r(k)∥2/∥r(0)∥2 > TOL

(a) Call y = HToepvec(t,p(k)) and compute uk =
(r(k), z(k))/(y,p(k)).

(b) Compute x(k+1) = x(k) + ukp
(k) and r(k+1) =

r(k) − uky.
(c) Call z(k+1) = InvPvec(λ,σ, r(k+1),m).
(d) Compute vk = (r(k+1), z(k+1))/(r(k), z(k)) and

p(k+1) = z(k+1) + vkp
(k).

Else goto 5.
4: EndFor
5: Set x := x(k) and output x.

Remark 3: It is well known that FFT is highly paralleliz-
able which has been efficiently implemented on multiproces-
sors. Moreover, the CG method is also easily parallelizable.
Thus, the CSCS(m)-CG method is well-suited for parallel
computing. For more references on parallel computing, see
[21], [30].

IV. CONVERGENCE ANALYSIS

In this section, our main result is that the spectra of these
preconditioned matrices P−1

m T are clustered around 1. Hence
the CSCS(m)-CG method when applied to solve the linear
systems (1) will converge sufficiently fast. Given an n ×
n matrix M , we denote the eigenvalues of M arranged in
nonincreasing order, i.e., λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M).

Lemma 1: [26, Lemma 5.6.10] Let A ∈ Cn×n and ε > 0
be given, there is a matrix norm ∥ · ∥ε such that ρ(A) ≤
∥A∥ε ≤ ρ(A) + ε.

Theorem 2: If T = C − S is the P-regular splitting and
the preconditioner Pm is defined by (5), then we have the
following bounds

1− ∥G∥mε ≤ λj(T̂ ) ≤ 1 + ∥G∥mε , j = 1, · · · , n, (8)

where the preconditioned matrix T̂ = P−1
m T and ∥ ·∥ε is the

matrix norm in Lemma 1.

Proof: It suffices to show that λ1(T̂ ) ≥ 1− ∥G∥mε and
λn(T̂ ) ≤ 1 + ∥G∥mε . According to the above hypothesis,
we can get ρ(G) < 1 easily. From (5), some algebraic
manipulations give

T̂ = pm−1(G)(I −G) = I −Gm,

thus

λ1(T̂ ) =
1

ρ(T̂−1)
=

1

ρ([I −Gm]−1)

≥ 1

∥(I −Gm)−1∥ε
=

1

∥I +Gm + (Gm)2 + · · · ∥ε

≥ 1

1 + ∥Gm∥ε + ∥Gm∥2ε + · · ·
= 1− ∥Gm∥ε ≥ 1− ∥G∥mε .

The right inequality in (8) can be obtained by the submulti-
plicativity of matrix norm immediately.
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Corollary 1: If the CSCS is a convergent splitting, then
the eigenvalues of the preconditioned matrix T̂ = P−1

m T
have the following bounds

1− ∥G∥mε ≤ λj(T̂ ) ≤ 1 + ∥G∥mε , j = 1, · · · , n,

where ∥ · ∥ε is the matrix norm in Lemma 1.

Theorem 2 and Corollary 1 show that when the CSCS
is P-regular or a convergent splitting, the eigenvalues of
the preconditioned matrix P−1

m T will be located in a circle
centered at (1, 0) with radius ρ(Gm) = ρ(G)m, it can be
easily deduced that the convergence rate of the CSCS(m)-
CG method is linear, see for instance [2, Theorem 1.10].
Thus, the CSCS(m)-CG method will converge in a constant
number of iterations and the total complexity of solving the
Toeplitz system is O(n log n).

According to (4) and (5), we quantify the deviation and
obtain ∥T−1 − P−1

m ∥ε = ∥GmT−1∥ε = O(∥G∥mε ). The
preconditioning effect of Pm is partially determined by the
spectral radius of the matrix G = (αI+Cβ)

−1(αI+Sγ). The
determination of an optimal parameter α = argmin(ρ(G))
is the key issue for improving computing efficiency. Unfor-
tunately, it is difficult to determine α theoretically, which
strongly depend on the specific structure and properties of
the coefficient matrix T when solving the linear systems
(1) by using the PCG method. Here, we will not touch this
topic further. However, numerous numerical tests show that
α ≈ −[λ1(Cβ) + λ1(Sγ)]/2 is an appropriate choice, which
is similar to the conclusion in [11].

Remark 4: We remark here that the selection of m will
affect the performance of the preconditioner Pm. According
to (7), the larger m is, the more costly in solving Pmz =
r. On the other hand, since ρ(G) < 1, it follows that the
larger m is, the closer the preconditioner P−1

m is to T−1,
the more clustered around 1 the spectra of P−1

m T are, and
the faster the convergence rate of the CSCS(m)-CG method
will be. Therefore, we need to strike a balance between the
computational complexity and convergence rate. To reduce
the amount of calculation, it is not necessary for m to be too
large in actual implementations. Experimentally, we found
that m = 3 or 4 is a suitable choice.

V. NUMERICAL EXAMPLES

In this section, we illustrate the effectiveness of the
proposed CSCS(m)-CG method for solving three kinds of
Hermitian positive definite Toeplitz systems. All numerical
tests were performed on a Founder desktop PC with Intel(R)
Core(TM) i5-7500 CPU 3.40 GHz using MATLAB with
machine precision 10−16. The right-hand side b = e,
the initial guess x(0) is set to zero vector. The algorithm
terminates when the current iteration satisfies the condition
TOL= ||r(k)||2/||r(0)||2 ≤ 10−12, where r(k) is the residual
vector at the kth iteration.

Example 1: ([10], [18], [9]) Consider the Toeplitz matrix
T defined by

tk =

 (1 +
√
−1)/(1 + k)p, k > 0,

2, k = 0,
conj(tk), k < 0.

(9)

Note that the sequence {tk}n−1
k=0 in Example 1 is absolutely

summable when p > 1, and the generating function f(x) =

2
∑+∞

k=0(sin (kx) + cos (kx))/(1 + k)p with x ∈ [0, 2π] is
continuous and belongs to the Wiener class. It can be shown
that the Toeplitz matrix T is Hermitian positive definite. In
our tests, we took p = 1.1, which is the same as in [18].

In Figure 1, we display the spectral distributions of the
preconditioned matrices P−1

m T in Example 1 with different
m and α when n = 2000 (left), n = 4000 (middle), and
n = 6000 (right), respectively. It is evident from Figure 1 that
the spectral distributions of the preconditioned matrices be-
come increasingly clustered around 1 as m increases. These
results are entirely consistent with the previous description
in Section III.

To further illustrate the effectiveness of the proposed
method, we list in Tables I-III the spectral radii of the itera-
tion matrices, the iteration counts, and the elapsed CPU time
obtained by implementing the CSCS(m)-CG method. The
numerical results obtained by the CG method without using
a preconditioner are also listed for comparison. In Tables I-III
and the subsequent tables, the iteration number, elapsed CPU
time, and the spectral radius of iteration matrices defined in
(3) are denoted by Iter, Time, and ρ(G(α)), respectively.

TABLE I
NUMERICAL RESULTS OF EXAMPLE 1 WHEN n = 2000, α = 0.6.

m
CSCS(m)-CG CG

ρ(G(α))m Iter Time(s) Iter Time(s)

1 0.738 25 0.023

41 0.0462 0.544 17 0.013
3 0.401 13 0.010
4 0.296 12 0.010

TABLE II
NUMERICAL RESULTS OF EXAMPLE 1 WHEN n = 4000, α = 0.8.

m
CSCS(m)-CG CG

ρ(G(α))m Iter Time(s) Iter Time(s)

1 0.684 25 0.038

41 0.1592 0.467 15 0.021
3 0.319 13 0.019
4 0.218 10 0.017

TABLE III
NUMERICAL RESULTS OF EXAMPLE 1 WHEN n = 6000, α = 1.0.

m
CSCS(m)-CG CG

ρ(G(α))m Iter Time(s) Iter Time(s)

1 0.644 25 0.051

42 0.3512 0.414 14 0.029
3 0.267 13 0.028
4 0.172 9 0.027

From Tables I-III, we can observe that the iteration count
of the CSCS(m)-CG method becomes smaller as m in-
creases. Generally, the larger m may require more computa-
tional time at each iteration, however, the total computation
can be greatly reduced due to fewer iterations. This means
that the shifted multi-step CSCS preconditioners Pm can
accelerate the convergence of the CG methods significantly.

Example 2: ([10]) Consider the Toeplitz matrix T defined
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Fig. 1. Spectral distributions of preconditioned matrices for Example 1.

by

tk =

 −
√
−1(µ− υ)(1 + (−1)k)/πk, k > 0,

µ+ υ, k = 0,
conj(tk), k < 0,

(10)

where µ and υ are the maximum and minimum values of the
generating function, respectively.

In this example, the generating function is given by

f(x) =

{
µ−υ
π x+ µ , −π ≤ x < 0,

µ−υ
π x+ υ , 0 < x ≤ π,

(11)

which implies that T is Hermitian positive definite. The
computational results with µ = 10, υ = 0.5 are listed in
Tables IV-VI for n = 2000, 4000, and 6000, respectively.
These results further demonstrate that the iteration counts and
the computing times are smaller when the Pm preconditioner
is used in the CG method.

TABLE IV
NUMERICAL RESULTS OF EXAMPLE 2 WHEN n = 2000, α = −1.0.

m
CSCS(m)-CG CG

ρ(G(α))m Iter Time(s) Iter Time(s)

1 0.815 42 0.034

60 0.0612 0.664 30 0.022
3 0.542 23 0.018
4 0.442 20 0.019

TABLE V
NUMERICAL RESULTS OF EXAMPLE 2 WHEN n = 4000, α = −0.9.

m
CSCS(m)-CG CG

ρ(G(α))m Iter Time(s) Iter Time(s)

1 0.811 43 0.055

61 0.1322 0.658 29 0.039
3 0.534 24 0.036
4 0.433 20 0.036

TABLE VI
NUMERICAL RESULTS OF EXAMPLE 2 WHEN n = 6000, α = −0.8.

m
CSCS(m)-CG CG

ρ(G(α))m Iter Time(s) Iter Time(s)

1 0.809 43 0.076

61 0.1512 0.655 29 0.055
3 0.530 23 0.052
4 0.429 20 0.048

Example 3: Consider the discretization of the heat equa-
tion

∂u

∂t
− α̃

(
∂2u

∂x2
+

∂2u

∂y2

)
= 0 (12)

with the homogeneous boundary conditions using the cen-
tered and the upwind difference schemes.

For the mathematical treatment it is sufficient to consider
the case where α̃ = 1. This leads to the symmetric Toeplitz
matrix T = tridiag(−1, 2+h2/τ,−1) ∈ Rn×n, where h and
τ are the space and time steps, respectively. The generating
function of this matrix is given by f(x) = 4 sin2(x/2) +
h2/τ .

In fact, the eigenvalues of T are λj(T ) = 4 sin2[π(j +
1)/(n + 1)] + h2/τ for j = 0, 1, · · · , n − 1. Clearly, T is
ill-conditioned for larger n and smaller h2/τ , which implies
that the CG method for solving (1) will converge slowly.
However, from the numerical results presented in Tables VII-
IX for various h2/τ when n = 2000, we can see that the
preconditioner Pm significantly accelerates the convergence
of the CG method.

In our numerical tests, all the evidences from Tables I-
IX and Figure 1 show that as the degree m increases, the
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TABLE VII
NUMERICAL RESULTS OF EXAMPLE 3 WHEN α = −0.4,

h2/τ = 1×10−2 .

m
CSCS(m)-CG CG

ρ(G(α))m Iter Time(s) Iter Time(s)

1 0.984 263 0.112

272 0.6522 0.967 207 0.132
3 0.952 175 0.125
4 0.936 152 0.127

TABLE VIII
NUMERICAL RESULTS OF EXAMPLE 3 WHEN α = −0.4,

h2/τ = 5× 10−2 .

m
CSCS(m)-CG CG

ρ(G(α))m Iter Time(s) Iter Time(s)

1 0.923 110 0.053

119 0.3272 0.852 85 0.059
3 0.787 69 0.050
4 0.726 56 0.046

TABLE IX
NUMERICAL RESULTS OF EXAMPLE 3 WHEN α = −0.4,

h2/τ = 1×10−1 .

m
CSCS(m)-CG CG

ρ(G(α))m Iter Time(s) Iter Time(s)

1 0.857 75 0.042

83 0.2552 0.735 56 0.045
3 0.630 44 0.032
4 0.540 36 0.030

more clustered the eigenvalues of the preconditioned matrix
are, and the faster the convergence rate of the CSCS(m)-CG
method will be. Although the reduction in terms of iteration
count compensate for the additional work per iteration when
the larger m are selected, the number of operations at each
iteration increases rapidly. In summary, from the numerical
results of the preceding three examples we found that m = 3
or 4 could be appropriately used in the PCG method with
the shifted multi-step CSCS preconditioner Pm in terms of
both iteration number and computational cost. Theoretically,
one should choose the optimal m, however, it is not easy
to get the optimal m which reaches a tradeoff between the
computational complexity and convergence rate. We will
continue to further in-depth study from the viewpoint of both
theory and computations for this problem.

VI. CONCLUSION

In this paper, we investigate the solution of Hermitian
positive definite Toeplitz systems, with a particular focus on
the role of preconditioning in enhancing the performance
of Krylov subspace iterative methods. Based on the shifted
CSCS iterative method, we introduce the shifted multi-step
CSCS preconditioner. We rigorously prove that if the shifted
CSCS splitting is P -regular, the spectrum of the precon-
ditioned coefficient matrix clusters around 1 for moderate
values of m, leading to improved convergence properties.
The numerical results validate the effectiveness of our pro-
posed method, demonstrating significant improvements in
both convergence rate and computational efficiency. These
findings underscore the potential of the shifted multi-step
CSCS preconditioner as a powerful tool for solving large-
scale Hermitian positive definite Toeplitz systems.
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