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Abstract—In real-world applications, the parameters used to 

describe the decision-making problem are imprecise and vague. 

Fuzzy modeling of the problem using fuzzy numbers (FNs) can 

address the inherent vagueness of the parameters effectively. A 

crucial aspect of decision-making, particularly when 

uncertainty exists at lower levels, involves ranking FNs. This 

paper introduces a novel defuzzification technique for ranking 

Generalized Trapezoidal Fuzzy Numbers with Left and Right 

Heights (GTFNLRH). For the purpose of ranking, the proposed 

approach derives a representative value of GTFNLRH. This 

involves finding a Triangular Fuzzy Quantity (TFQ) using 

centroids with vagueness at lower decision levels, calculating the 

value (VAL), representing the ill-defined magnitude, 

determining the ambiguity (AMB), quantifying the vagueness 

within its ill-defined magnitude of the GTFNLRH, and applying 

VAL and AMB to the TFQ. Based on these representative values, 

a novel ranking criterion is established that overcomes the 

limitations of ranking different FNs observed in some existing 

fuzzy ranking methods. An application of the novel 

defuzzification technique is also investigated to assess the fuzzy 

risk associated with product manufacturing by different 

companies. 

Index Terms—Ambiguity, Centroids, Decision-levels, Fuzzy 

risk analysis, Fuzzy numbers, Triangular Fuzzy quantity, 

Value.  

I. INTRODUCTION AND LITERATURE REVIEW 

VALUATING systems often involve uncertainty stemming 

from imprecise measurements within decision-making 

processes. To address this, Zadeh [1] introduced fuzzy sets 

(FSs) as a powerful framework for representing subjective 

and imprecise information. When precise parameter values 

are unavailable due to incomplete information or knowledge 

gaps, FNs, a specific type of fuzzy set proposed by Zadeh [2], 

become valuable. FNs find applications in data analysis, 

engineering, and decision-making. 

Ranking FNs is crucial for assessing the inherent 

uncertainty in decision-making scenarios. It effectively 

handles imprecise, vague, and ambiguous data in science and 

engineering systems. However, due to the diverse  

characteristics of FNs and the inherent subjectivity of ranking     
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methods, the same set of FNs can yield different ranking 

orders when evaluated using different approaches. 

The concept of ranking FNs was first introduced by Jain 

[3] for decision-making in fuzzy environments, representing 

imprecise measurements as fuzzy sets. Yager [4] proposed a 

ranking method based on the centroids of FNs. Subsequently, 

Dubois & Prade [5] made significant contributions to the field 

with their work on operations on FNs. Murakami et al. [6] 

developed a centroid-based algorithm for ordering FNs. 

While numerous researchers have devised various ranking 

methods, Bortolan & Degani [7] comprehensively analyzed 

these approaches. Their study revealed that many existing 

methods produced inconsistent rankings even in simple 

scenarios. 

Chen [8] proposed a ranking method for FNs based on 

maximizing and minimizing sets, while Nakamura [9] 

utilized preference relations for decision-making. Liou & 

Wang [10] introduced a ranking approach using integral 

values, and Choobineh & Li [11] developed an index based 

on alpha-cuts for ordering FNs. Following these 

contributions, numerous researchers have proposed various 

ranking methods which includes Fortemps & Roubens [12] 

ranking FNs using area compensation, Cheng [13] ranking 

FNs based on the distance between the origin and the centroid 

of each FN, and Chu & Tsao’s [14] ranking FNs based on the 

area between the centroid point and the origin. 

Delgado et al. [15] introduced two key parameters to 

characterize FNs, VAL represents the ill-defined magnitude 

of the FN, and AMB, quantifies the vagueness associated with 

the FN's value. These parameters are fundamental to the 

development of fuzzy set theory. This study focuses on 

GTFNLRH, which has significant applications in areas such 

as approximate reasoning, fuzzy image processing, fuzzy data 

analysis, fuzzy clustering, and fuzzy risk analysis. 

Key contributions related to GTFNLRH are by Chen et al. 

[16], who first introduced GTFNLRH for fuzzy risk analysis 

problems. Pushpinder Singh [17] proposed a ranking method 

based on a score function derived from areas, Jiang et al. [18], 

identified shortcomings in Chen et al.’s [16] ranking method 

and proposed a modified approach using areas and spreads. 

Rituparna and Bijit [19], utilized GTFNLRH in parametric 

form and employed VAL and AMB for ranking, and  

Barazandeh and Ghazanfari [20] ranked GTFNLRH based on 

centroids and areas. 

Other relevant works include: Sinika & Ramesh [29], who 

developed an interval-based de-neutrosophication method for 

the PERT problem in a neutrosophic environment, Hitoshi 
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Yano [30], who formulated multiobjective bimatrix games 

with fuzzy random payoffs, Jana et al. [31], focused on 

compiling a fuzzy portfolio using large-scale data, and Lee et 

al. [32], proposed mechanisms for evaluating and mitigating 

damages under multiple criteria fuzzy behavior. 

Risk is typically defined by two key factors: The likelihood 

of an adverse event occurring, and the severity of the potential 

consequences. Risk represents the potential for damage or 

loss associated with human activities. To effectively assess 

risk, it’s crucial to incorporate decision-makers’ perspectives. 

Often, decision-makers express their priorities regarding 

evaluation criteria using linguistic terms (e.g., “high,” “low,” 

“moderate”) rather than specific numerical values. 

A robust risk assessment model requires the identification 

of key risk factors within the system or process, evaluating 

each risk factor's relative importance, and predicting potential 

challenges. Chen and Chen [21] proposed fuzzy risk analysis 

based on similarity measures of GTFNs, Chen & Sanguansat 

[22] analyzed fuzzy risk through similarity measures further, 

Xu et al. [23] demonstrated fuzzy risk analysis created on new 

similarity, Chen & Chen [24] established fuzzy risk analysis 

based on ranking generalized fuzzy numbers with different 

heights and different spreads, and Rao [25] proposed 

evaluating fuzzy risk based on centroids of centroids.  

     This work incorporates defuzzification based on the 

following observations: Chen and Chen [21] demonstrated 

that the y-coordinate of the centroid of a Generalized 

Trapezoidal Fuzzy Number (GTrFN) 𝐴 = (𝑎, 𝑏, 𝑐, 𝑑;𝑤) may 

not always lie within the interval [0, 𝑤], 0 ≤ 𝑤 ≤ 1 of the 

FN, even though it lies within the interval [𝑤/3, 𝑤/2]. Many 

existing ranking methods rely on the y-coordinate of the 

centroid, particularly when ranking based on the x-coordinate 

fails. These observations highlight the importance of 

considering the ‘vagueness set [𝑤/3, 𝑤/2]’ in the ranking of 

FNs. For the GTFNLRH, the 𝑦 coordinate of the centroid is 

in [𝑤1/3, (𝑤1
2 + 𝑤2

2 + 𝑤1𝑤2)/3(𝑤1 + 𝑤2)] for 𝑤1 < 𝑤2; 

0 ≤ 𝑤1 ≤ 𝑤2 ≤ 1 and [𝑤2/3, (𝑤1
2 +𝑤2

2 + 𝑤1𝑤2)/3(𝑤1 +
𝑤2)] for 𝑤2 < 𝑤1; 0 ≤ 𝑤2 ≤ 𝑤1 ≤ 1. 

This paper introduces a novel defuzzification method by 

identifying a TFQ within the lower decision-level interval (y-

coordinate of the GTFNLRH's centroid), evaluating the TFQ 

at different decision levels  𝑤1 < 𝑤2 and 𝑤2 < 𝑤1 to obtain 

defuzzified values, and determine the VAL and AMB of this 

TFQ to represent the GTFNLRH. This approach differs from 

previous methods by avoiding the use of reducing functions 

(as suggested by Delgado et al. [15]) to minimize the impact 

of decision levels. A ranking criterion is then established 

using the calculated VAL and AMB, addressing limitations 

found in existing GTFNLRH ranking methods. The paper 

includes a comparative study with other ranking methods to 

validate the proposed approach, an application of the method 

to assess fuzzy risk in product engineering, and a discussion 

of the study's limitations and potential future research 

directions. 

II. PRELIMINARIES 

In this section, some fundamental definitions related to the 

work are presented. 

A. Fuzzy Number  

An FN is a convex normalized FS 𝐴 of the real line 𝑅 with 

membership function 𝜇𝐴 piecewise continuous, and there is 

an 𝑦0 ∈ 𝑅 such that 𝜇𝐴(𝑦0) = 1. 

B. Generalized trapezoidal fuzzy number with different left 

and right heights [26].  

The GTFNLRH denoted by 𝐴 = (𝑎, 𝑏, 𝑐, 𝑑;𝑤1 , 𝑤2) where 
0 ≤ 𝑤1 ≤ 1 and 0 ≤ 𝑤2 ≤ 1  and can be seen in Figure 1. If 

0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 ≤ 1, then we say 𝐴 is a standard 

generalized FN. The membership function 𝜇𝐴(𝑥) is defined 

as follows: 

𝜇𝐴(𝑥) =

{
 
 
 

 
 
 
𝑤1(𝑥 − 𝑎)

𝑏 − 𝑎
                                       ; 𝑎 ≤ 𝑥 ≤ 𝑏,

𝑤1(𝑐 − 𝑏) + (𝑤2 − 𝑤1)(𝑥 − 𝑏)

𝑐 − 𝑏
; 𝑏 ≤ 𝑥 ≤ 𝑐,

𝑤2(𝑥 − 𝑑)

𝑐 − 𝑑
                                     ; 𝑐 ≤ 𝑥 ≤ 𝑑,

0                                                      ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

If 𝑤1 = 𝑤2 = 𝑤, then 𝐴 is a GTrFN, and membership 

function as follows: 

𝜇𝐴(𝑥) =

{
 
 

 
 
𝑤(𝑥 − 𝑎)

𝑏 − 𝑎
; 𝑎 ≤ 𝑥 ≤ 𝑏,

1                ; 𝑏 ≤ 𝑥 ≤ 𝑐,
𝑤(𝑥 − 𝑑)

𝑐 − 𝑑
  ; 𝑐 ≤ 𝑥 ≤ 𝑑,

0                 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

If 𝑤1 = 𝑤2 = 𝑤  and 𝑏 = 𝑐, then 𝐴 is a triangular 

fuzzy number (TFN). If 𝑤1 = 𝑤2 = 1, then 𝐴 is a 

trapezoidal fuzzy number (TrFN), and if 𝑎 = 𝑏 = 𝑐 =
𝑑 and 𝑤1 = 𝑤2, then 𝐴 is a crisp number. 

C. Parametric representation of fuzzy number 

A fuzzy number 𝐴 in parametric form is a pair of functions 

[𝑎(𝑟), 𝑎(𝑟)]; 0 ≤ 𝑟 ≤ 1, satisfying the following conditions: 

(i) 𝑎(𝑟) is an increasing left continuous bounded function on 

[0,1];  

(ii) 𝑎(𝑟) is a decreasing left continuous bounded function on 

[0,1];  

(iii) 𝑎(𝑟) ≤ 𝑎(𝑟), 0 ≤ 𝑟 ≤ 1. 

 

D. Value and ambiguity of a fuzzy number [15]  

If A is a fuzzy number with a parametric representation 

[𝑎(𝑟), 𝑎(𝑟)], 𝑟 ∈ [0,1] and 𝑠: [0,1] → [0,1]is a 

reducing function, then the value and ambiguity of the 

fuzzy number A with respect to the reducing function 

are defined by: 

 𝑉𝑎𝑙(𝐴) = ∫ 𝑠(𝑟){𝑎(𝑟) + 𝑎(𝑟)}𝑑𝑟
1

0
  

 𝐴𝑚𝑏(𝐴) = ∫ 𝑠(𝑟){𝑎(𝑟) − 𝑎(𝑟)}𝑑𝑟
1

0
 

where 𝑠(𝑟) is the reducing function and     

∫ 𝑠(𝑟)𝑑𝑟 = 0.5
1

0
. 

E. Arithmetic Operations between GTFNLRH [26] 

If 𝐺1 = (𝛼1, 𝛽1, 𝛾1, 𝛿1; 𝑤𝐿1, 𝑤𝑅1) and 𝐺2 =

(𝛼2, 𝛽2, 𝛾2, 𝛿2; 𝑤𝐿2, 𝑤𝑅2) are two GTFNLRH with 

(𝛼2, 𝛽2, 𝛾2, 𝛿2) ≠ (0, 0, 0, 0) , then the arithmetic 

operations addition, subtraction, multiplication, and 

division denoted by ⊕,⊝,⊗,⊘  respectively of  

GTFNLRH 𝐺1and 𝐺2 are defined as follows:  

𝐺1⊕𝐺2 = (𝛼1, 𝛽1, 𝛾1, 𝛿1; 𝑤𝐿1, 𝑤𝑅1) 
⊕ (𝛼2, 𝛽2, 𝛾2, 𝛿2; 𝑤𝐿2, 𝑤𝑅2)  
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= [
𝛼1 + 𝛼2, 𝛽1 + 𝛽2, 𝛾1 + 𝛾2, 𝛿1 + 𝛿2;

min(𝑤𝐿1, 𝑤𝐿2) ,min(𝑤𝑅1 , 𝑤𝑅2)
] 

𝐺1⊖𝐺2 = (𝛼1, 𝛽1, 𝛾1, 𝛿1; 𝑤𝐿1, 𝑤𝑅1) 
                   ⊝ (𝛼2, 𝛽2, 𝛾2, 𝛿2; 𝑤𝐿2, 𝑤𝑅2)   

= [
𝛼1 − 𝛿2, 𝛽1 − 𝛾2, 𝛾1 − 𝛽2, 𝛿1 − 𝛼2;

min(𝑤𝐿1, 𝑤𝐿2) ,min(𝑤𝑅1 , 𝑤𝑅2)
] 

𝐺1⊗𝐺2 = (𝛼1, 𝛽1, 𝛾1, 𝛿1; 𝑤𝐿1, 𝑤𝑅1) 
                   ⊗ (𝛼2, 𝛽2, 𝛾2, 𝛿2; 𝑤𝐿2, 𝑤𝑅2)    

= [
𝛼1 × 𝛼2, 𝛽1 × 𝛽2, 𝛾1 × 𝛾2, 𝛿1 × 𝛿2;

min(𝑤𝐿1, 𝑤𝐿2) ,min(𝑤𝑅1 , 𝑤𝑅2)
] 

𝐺1⊘𝐺2 = (𝛼1, 𝛽1, 𝛾1, 𝛿1; 𝑤𝐿1, 𝑤𝑅1)
⊘ (𝛼2, 𝛽2, 𝛾2, 𝛿2; 𝑤𝐿2, 𝑤𝑅2) 

         [
𝛼1

𝛿2
,
𝛽1

𝛾2
,
𝛾1

𝛽2
,
𝛿1

𝛼2
; min(𝑤𝐿1, 𝑤𝐿2) ,min(𝑤𝑅1 , 𝑤𝑅2)] 

III. PROPOSED METHOD 

Consider a GTFNLRH  𝐽 = (𝑎, 𝑏, 𝑐, 𝑑; 𝑤1, 𝑤2), shown in 

Fig.1 and Fig.2 with 𝑤1 < 𝑤2, 𝑤2 < 𝑤1. In the first step of 

defuzzification, the GTFNLRH is geometrically treated as a 

quadrilateral PQRS, and this quadrilateral PQRS is 

partitioned into three plane regions, namely triangular regions 

PQL, MRS, and quadrilateral region LQRM, shown 

graphically in Fig. 1 and Fig. 2. The centroids of the triangle 

PQL, triangle MRS, and quadrilateral LQRM are given by 

𝐴((𝑎 + 2𝑏)/3, 𝑤1/3),  𝐵((2𝑐 + 𝑑)/3, 𝑤2/3), and 

𝐶 (
𝑤1(2𝑏+𝑐)+𝑤2(𝑏+2𝑐)

3(𝑤1+𝑤2)
,
𝑤1

2+𝑤2
2+𝑤1𝑤2

3(𝑤1+𝑤2)
) respectively. In the 

second step of defuzzification, the centroids 𝐴, 𝐵, 𝐶 are joined 

to get a triangular FQ, 𝐴𝐵𝐶 with    decision levels in the  

ranges[
𝑤1

3
,
𝑤1
2+𝑤2

2+𝑤1𝑤2

3(𝑤1+𝑤2)
] for the case  𝑤1 < 𝑤2 

and[
𝑤2

3
,
𝑤1
2+𝑤2

2+𝑤1𝑤2

3(𝑤1+𝑤2)
] for the case 𝑤2 < 𝑤1  respectively. 

 

 

 
Fig. 1. GTFNLRH and TFQ for 𝑤1 < 𝑤2 

 

 
Fig. 2. GTFNLRH and TFQ for 𝑤2 < 𝑤1  
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Definition 1 

The TFQ, 𝐽∗ formed from GTFNLRH,                           

𝐽 = (𝑎, 𝑏, 𝑐, 𝑑; 𝑤1, 𝑤2)  with decision levels in 

[
𝑤1

3
,
𝑤1
2+𝑤2

2+𝑤1𝑤2

3(𝑤1+𝑤2)
], where 0 ≤ 𝑤1 ≤ 𝑤2 ≤ 1 and 

[
𝑤2

3
,
𝑤1
2+𝑤2

2+𝑤1𝑤2

3(𝑤1+𝑤2)
], where 0 ≤ 𝑤2 ≤ 𝑤1 ≤ 1 is 

defined as: 

𝐽∗ =

(
𝑎+2𝑏

3
,
𝑤1(2𝑏+𝑐)+𝑤2(𝑏+2𝑐)

3(𝑤1+𝑤2)
,
2𝑐+𝑑

3
;
𝑤1

3
;
𝑤1
2+𝑤2

2+𝑤1𝑤2

3(𝑤1+𝑤2)
)  (1) 

𝐽∗ =

(
𝑎+2𝑏

3
,
𝑤1(2𝑏+𝑐)+𝑤2(𝑏+2𝑐)

3(𝑤1+𝑤2)
,
2𝑐+𝑑

3
;
𝑤2

3
;
𝑤1
2+𝑤2

2+𝑤1𝑤2

3(𝑤1+𝑤2)
)  (2)   

 

Definition 2 

The Membership function of TFQ  𝐽∗ given by Eq. (1) 

is defined as: 

𝜇𝐽∗(𝑥) =

{
 
 

 
 𝑤1

3
+

𝑤2
2(𝑥−

𝑎+2𝑏

3
)

𝑤1(𝑐−𝑎)+𝑤2(2𝑐−𝑏−𝑎)
,
𝑎+2𝑏

3
≤ 𝑥 ≤

𝑤1(2𝑏+𝑐)+𝑤2(𝑏+2𝑐)

3(𝑤1+𝑤2)
,

𝑤1
2+𝑤2

2+𝑤1𝑤2

3(𝑤1+𝑤2)
, 𝑥 =

𝑤1(2𝑏+𝑐)+𝑤2(𝑏+2𝑐)

3(𝑤1+𝑤2)
 ,

𝑤2

3
+

𝑤1
2(𝑥−

2𝑐+𝑑

3
)

𝑤1(2𝑏−𝑐−𝑑.)+𝑤2(𝑏−𝑑.)
,
𝑤1(2𝑏+𝑐.)+𝑤2(𝑏+2𝑐)

3(𝑤1+𝑤2)
≤ 𝑥 ≤

2𝑐+𝑑

3
.

  

              (3) 

Definition 3 

The Parametric form for the TFQ, 𝐽∗  given by Eq. (1) 

with decision level 𝛿 ∈ [
𝑤1

3
,
𝑤1

2+𝑤2
2+𝑤1𝑤2

3(𝑤1+𝑤2)
], where 

𝑤1 < 𝑤2 and   0 ≤ 𝑤1 ≤ 𝑤2 ≤ 1 is defined as: 

 [𝐽∗(𝛿), 𝐽
∗
(𝛿)] =

{
 
 
 
 

 
 
 
 [

𝑎+2𝑏

3
+ (

𝑤1(𝑐−𝑎)+𝑤2(2𝑐−𝑏−𝑎)

𝑤2
2 ) (𝛿 −

𝑤1

3
) , 0] ,

𝑖𝑓
𝑤1

3
≤ 𝛿 ≤

𝑤2

3

[

𝑎+2𝑏

3
+ (

𝑤1(𝑐−𝑎)+𝑤2(2𝑐−𝑏−𝑎)

𝑤2
2 ) (𝛿 −

𝑤1

3
) ,

2𝑐+𝑑

3
+ (

𝑤1(2𝑏−𝑐−𝑑)+𝑤2(𝑏−𝑑.)

𝑤1
2 ) (𝛿 −

𝑤2

3
)
] ,

 𝑖𝑓
𝑤2

3
≤ 𝛿 ≤

𝑤1
2+𝑤2

2+𝑤1𝑤2

3(𝑤1+𝑤2)

        (4) 

and satisfy the following conditions: 

(i) 𝐽∗(𝛿) is an increasing left continuous bounded 

function on [
𝑤1

3
,
𝑤1
2+𝑤2

2+𝑤1𝑤2

3(𝑤1+𝑤2)
], 

 (ii) 𝐽
∗
(𝛿) is a decreasing left continuous bounded 

function on [
𝑤1
2+𝑤2

2+𝑤1𝑤2

3(𝑤1+𝑤2)
,
𝑤2

3
],  

(iii) 𝐽∗(𝛿) ≤ 𝐽
∗
(𝛿) for 

𝑤1

3
≤ 𝛿 ≤

𝑤1
2+𝑤2

2+𝑤1𝑤2

3(𝑤1+𝑤2)
. 

 

Definition 4 

For two arbitrary FNs in parametric form 

𝐴 = [𝑎(𝑟)𝑎(𝑟)], and 𝐵 = [𝑏(𝑟)𝑏(𝑟)], 0 ≤ 𝑟 ≤ 1, 

with corresponding TFQ in parametric form 

𝐴∗ = [𝐴∗(𝛿), 𝐴
∗
(𝛿)] and 𝐵∗ = [𝐵∗(𝛿), 𝐵

∗
(𝛿)],   

𝛿 ∈ [
𝑤1

3
,
𝑤1

2+𝑤2
2+𝑤1𝑤2

3(𝑤1+𝑤2)
], the addition (𝐴∗ + 𝐵∗) and 

scalar multiplication by 𝑐 are defined as follows:  

(𝐴∗ + 𝐵∗)𝛿 = 𝐴∗(𝛿) + 𝐵∗(𝛿)  

(𝐴∗ + 𝐵∗)𝛿 = 𝐴
∗
(𝛿) + 𝐵

∗
(𝛿)  

(𝑐𝐴∗)(𝛿) = 𝑐𝐴∗(𝛿) for 𝑐 ≥ 0 

(𝑐𝐴∗)(𝛿) = 𝑐𝐴
∗
(𝛿) for 𝑐 < 0 

(𝑐𝐴∗)(𝛿) = 𝑐 𝐴
∗
(𝛿) for 𝑐 ≥ 0 

(𝑐𝐴∗)(𝛿) = 𝑐 𝐴∗(𝛿) for 𝑐 < 0. 

Definition 5 

The VAL of the GTFNLRH, 𝐽 = (𝑎, 𝑏, 𝑐, 𝑑; 𝑤1, 𝑤2) 
where 𝑤1 < 𝑤2 is defined by using Eq. (4). 

𝑉𝐴𝐿(𝐽) = ∫ [𝐽∗(𝛿) + 𝐽
∗
(𝛿)] 𝑑

𝑤2
3

𝑤1
3

𝛿 

+∫ [𝐽∗(𝛿) + 𝐽
∗
(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤2
3

                      (5) 

On integrating Eq. (5), we get 

𝑉𝐴𝐿(𝐽) =
1

18(𝑤1+𝑤2)
2 [

𝑤1
3(2𝑏 + 3𝑐 + 𝑑) + 𝑤2

3(𝑎 + 3𝑏 + 2𝑐)

+𝑤1𝑤2
2(𝑎 + 4𝑏 + 𝑐) + 𝑤1

2𝑤2(𝑏 + 4𝑐 + 𝑑)
]     

                                                                                (6) 

Definition 6 

The AMB of the GTFNLRH, 𝐽 = (𝑎, 𝑏, 𝑐, 𝑑; 𝑤1, 𝑤2)                               
where 𝑤1 < 𝑤2 is defined by using Eq. (4).  

𝐴𝑀𝐵(𝐽) = ∫ [𝐽
∗
(𝛿) − 𝐽∗(𝛿)] 𝑑

𝑤2
3

𝑤1
3

𝛿 

+∫ [𝐽
∗
(𝛿) − 𝐽∗(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤2
3

       (7) 

Integrating Eq. (7), we get 

𝐴𝑀𝐵(𝐽) =

1

18(𝑤1+𝑤2)
2 [

𝑤1
3(2𝑏 + 3𝑐 + 𝑑) − 𝑤2

3(𝑎 + 3𝑏 + 2𝑐

−𝑤1𝑤2
2(𝑎 + 4𝑏 + 𝑐) + 𝑤1

2𝑤2(𝑏 + 4𝑐 + 𝑑)
]    

(8)  

Definition 7 

The Parametric form for the TFQ, 𝐽∗  given by Eq. (2) 

with decision level 𝛿 ∈ [
𝑤2

3
,
𝑤1

2+𝑤2
2+𝑤1𝑤2

3(𝑤1+𝑤2)
], where 

𝑤2 < 𝑤1 and   0 ≤ 𝑤2 ≤ 𝑤1 ≤ 1 is defined as: 

[𝐽∗(𝛿), 𝐽
∗
(𝛿)] =

{
 
 
 
 

 
 
 
 [0,

2𝑐+𝑑

3
+ (

𝑤1(2𝑏−𝑐−𝑑)+𝑤2(𝑏−𝑑)

𝑤1
2 ) (𝛿 −

𝑤2

3
)] ,

𝑖𝑓
𝑤2

3
≤ 𝛿 ≤

𝑤1

3

[

𝑎+2𝑏

3
+ (

𝑤1(𝑐−𝑎)+𝑤2(2𝑐−𝑏−𝑎)

𝑤2
2 ) (𝛿 −

𝑤1

3
) ,

2𝑐+𝑑

3
+ (

𝑤1(2𝑏−𝑐−𝑑)+𝑤2(𝑏−𝑑.)

𝑤1
2 ) (𝛿 −

𝑤2

3
)
] ,

 𝑖𝑓
𝑤1

3
≤ 𝛿 ≤

𝑤1
2+𝑤2

2+𝑤1𝑤2

3(𝑤1+𝑤2)

          (9) 

and satisfy the following conditions: 

(i) 𝐽∗(𝛿) is an increasing left continuous bounded 

function on [
𝑤1
2+𝑤2

2+𝑤1𝑤2

3(𝑤1+𝑤2)
,
𝑤1

3
], 

 (ii) 𝐽
∗
(𝛿) is a decreasing left continuous bounded 

function on [
𝑤2

3
,
𝑤1
2+𝑤2

2+𝑤1𝑤2

3(𝑤1+𝑤2)
],  

(iii) 𝐽∗(𝛿) ≤ 𝐽
∗
(𝛿) for 

𝑤2

3
≤ 𝛿 ≤

𝑤1
2+𝑤2

2+𝑤1𝑤2

3(𝑤1+𝑤2)
. 
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Definition 8 

For two arbitrary FNs in parametric form 

𝐴 = [𝑎(𝑟)𝑎(𝑟)], and 𝐵 = [𝑏(𝑟)𝑏(𝑟)], 0 ≤ 𝑟 ≤ 1, 

with corresponding TFQ in parametric form 

𝐴∗ = [𝐴∗(𝛿), 𝐴
∗
(𝛿)] and 𝐵∗ = [𝐵∗(𝛿), 𝐵

∗
(𝛿)], 𝛿 ∈

[
𝑤2

3
,
𝑤1

2+𝑤2
2+𝑤1𝑤2

3(𝑤1+𝑤2)
], the addition (𝐴∗ + 𝐵∗) and scalar 

multiplication by 𝑐 are defined as follows:  

(𝐴∗ + 𝐵∗)𝛿 = 𝐴∗(𝛿) + 𝐵∗(𝛿)  

(𝐴∗ + 𝐵∗)𝛿 = 𝐴
∗
(𝛿) + 𝐵

∗
(𝛿)  

(𝑐𝐴∗)(𝛿) = 𝑐𝐴∗(𝛿) for 𝑐 ≥ 0 

(𝑐𝐴∗)(𝛿) = 𝑐𝐴
∗
(𝛿) for 𝑐 < 0 

(𝑐𝐴∗)(𝛿) = 𝑐 𝐴
∗
(𝛿) for 𝑐 ≥ 0 

(𝑐𝐴∗)(𝛿) = 𝑐 𝐴∗(𝛿) for 𝑐 < 0. 

Definition 9 

The VAL of the GTFNLRH, 𝐽 = (𝑎, 𝑏, 𝑐, 𝑑; 𝑤1, 𝑤2) 
where 𝑤2 < 𝑤1 is defined by using Eq. (9). 

𝑉𝐴𝐿(𝐽) = ∫ [𝐽∗(𝛿) + 𝐽
∗
(𝛿)] 𝑑

𝑤1
3

𝑤2
3

𝛿 

+∫ [𝐽∗(𝛿) + 𝐽
∗
(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤1
3

                     (10) 

On integrating Eq. (10), we get 

𝑉𝐴𝐿(𝐽) =

1

18(𝑤1+𝑤2)
2 [

𝑤1
3(2𝑏 + 3𝑐 + 𝑑) + 𝑤2

3(𝑎 + 3𝑏 + 2𝑐)

+𝑤1𝑤2
2(𝑎 + 4𝑏 + 𝑐) + 𝑤1

2𝑤2(𝑏 + 4𝑐 + 𝑑)
]     

                                                                               (11) 

Definition 10 

The AMB of the GTFNLRH,  𝐽 = (𝑎, 𝑏, 𝑐, 𝑑; 𝑤1, 𝑤2),  
where 𝑤1 < 𝑤2 is defined by using Eq. (9).  

𝐴𝑀𝐵(𝐽) = ∫ [𝐽
∗
(𝛿) − 𝐽∗(𝛿)] 𝑑

𝑤1
3

𝑤2
3

𝛿 

+∫ [𝐽
∗
(𝛿) − 𝐽∗(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤1
3

         (12) 

Integrating Eq. (12), we get 

𝐴𝑀𝐵(𝐽) =

1

18(𝑤1+𝑤2)
2 [

𝑤1
3(2𝑏 + 3𝑐 + 𝑑) − 𝑤2

3(𝑎 + 3𝑏 + 2𝑐

−𝑤1𝑤2
2(𝑎 + 4𝑏 + 𝑐) + 𝑤1

2𝑤2(𝑏 + 4𝑐 + 𝑑)
]  

  (13) 

Definition 11 

If 𝑤1 = 𝑤2 = 𝑤, then GTFNLRH will become a 

GTFN and the VAL and AMB in decision level [
𝑤

3
,
𝑤

2
] 

are given by: 

𝑉𝐴𝐿(𝐽) =
𝑤

36
(𝑎 + 5𝑏 + 5𝑐 + 𝑑)         (14) 

𝐴𝑀𝐵(𝐽) =
𝑤

36
(−𝑎 − 2𝑏 + 2𝑐 + 𝑑)        (15) 

 

 

Definition 12 

If 𝐽1 = (𝑎1, 𝑏1, 𝑐1, 𝑑1; 𝑤1, 𝑤2) and                          𝐽2 =
(𝑎2, 𝑏2, 𝑐2, 𝑑2; 𝑤1, 𝑤2) are two GTFNLRH, then the 

following ranking order is defined based on the 

definition of VAL and AMB given by Eqns. (6), (8), 

(11), and (13). 

For both cases 𝑤1 ≠ 𝑤2 and 𝑤1 = 𝑤2  

 (1) If 𝑉𝐴𝐿(𝐽1) ≻ 𝑉𝐴𝐿(𝐽2), then 𝐽1 ≻ 𝐽2  

 (2) If 𝑉𝐴𝐿(𝐽1) ≺ 𝑉𝐴𝐿(𝐽2), then 𝐽1 ≺ 𝐽2 

 (3) If 𝑉𝐴𝐿(𝐽1) = 𝑉𝐴𝐿(𝐽2), then  

          (a) if 𝐴𝑀𝐵(𝐽1) ≻ 𝐴𝑀𝐵(𝐽2), then 𝐽1 ≺ 𝐽2, 

          (b) if 𝐴𝑀𝐵(𝐽1) ≺ 𝐴𝑀𝐵(𝐽2), then 𝐽1 ≻ 𝐽2, 

          (c) if 𝐴𝑀𝐵(𝐽1) = 𝐴𝑀𝐵(𝐽2), then 𝐽1~𝐽2. 

I. PROPOSITIONS AND REASONABLE PROPERTIES 

This section presents propositions related to VAL, and AMB 

of the GTFNLRH with reference to TFQ in lower decision 

levels. The reasonable properties for ranking FNs the 

proposed approach satisfy are also presented. 

Proposition 1 

If 𝐽 = (𝑎, 𝑏, 𝑐, 𝑑; 𝑤1, 𝑤2) is a GTFNLRH, and 𝐽∗ is the 

TFQ of 𝐽 with parametric representation  

[𝐽∗(𝛿), 𝐽
∗
(𝛿)], then 𝑉𝑎𝑙(𝑘𝐽) = 𝑘 𝑉𝐴𝐿(𝐽)  and 

𝐴𝑀𝐵(𝑘𝐽) = 𝑘 𝐴𝑀𝐵(𝐽) for scalar 𝑘. 

Proof. Case (i) for 𝑤1 < 𝑤2 

By using Eq. (5), we get  

𝑉𝐴𝐿(𝑘𝐽) = ∫ [𝑘𝐽∗(𝛿) + 𝑘𝐽
∗
(𝛿)] 𝑑

𝑤2
3

𝑤1
3

𝛿 

+∫ [𝑘𝐽∗(𝛿) + 𝑘𝐽
∗
(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤2
3

= 𝑘𝑉𝐴𝐿(𝐽)   

By using Eq. (7), we get 

 𝐴𝑀𝐵(𝑘𝐽.) = ∫ [𝑘𝐽
∗
(𝛿) − 𝑘𝐽∗(𝛿)] 𝑑

𝑤2
3

𝑤1
3

𝛿 

+∫ [𝑘𝐽
∗
(𝛿) − 𝑘𝐽∗(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤2
3

 = 𝑘𝐴𝑀𝐵(𝐽) 

Case(ii) for 𝑤2 < 𝑤1 

By using Eq. (10), we get 

𝑉𝑎𝑙(𝑘𝐽) = ∫ [𝑘𝐽∗(𝛿) + 𝑘𝐽
∗
(𝛿)] 𝑑

𝑤1
3

𝑤2
3

𝛿 

+∫ [𝑘𝐽∗(𝛿) + 𝑘𝐽
∗
(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤1
3

= 𝑘𝑉𝐴𝐿(𝐽)   

By using Eq. (12), we get 

𝐴𝑀𝐵(𝑘𝐽) = ∫ [𝑘𝐽∗(𝛿) − 𝑘𝐽∗(𝛿)]𝑑

𝑤1
3

𝑤2
3

𝛿 

+∫ [𝑘𝐽
∗
(𝛿) − 𝑘𝐽∗(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤1
3

 = 𝑘𝐴𝑀𝐵(𝐽)                 

For 𝑘 = −1, 𝑉𝐴𝐿(−𝐽) = − 𝑉𝐴𝐿(𝐽), and 

𝐴𝑀𝐵(−𝐽) = − 𝐴𝑀𝐵(𝐽) for  𝑤1 < 𝑤2, and 𝑤2 < 𝑤1 . 
Proposition 2 

Case (i) If 𝐽1 = (𝑎1, 𝑏1, 𝑐1, 𝑑1; 𝑤1, 𝑤2) and                 

𝐽2 = (𝑎2, 𝑏2, 𝑐2, 𝑑2; 𝑤1, 𝑤2) are two GTFNLRH,  and 

𝐽1
∗, 𝐽2

∗ are the TFQ of 𝐽1, 𝐽2 with parametric 

representation  [𝐽1
∗(𝛿), 𝐽1

∗
(𝛿)], [𝐽2

∗(𝛿), 𝐽2
∗
(𝛿)] 

respectively, then  𝑉𝐴𝐿(𝐽1 + 𝐽2) = 𝑉𝐴𝐿(𝐽1) +
𝑉𝐴𝐿(𝐽2)  
𝐴𝑀𝐵(𝐽1 + 𝐽2) = 𝐴𝑀𝐵(𝐽1) + 𝐴𝑀𝐵(𝐽2)  
 

Proof. Case (i) for 𝑤1 < 𝑤2 

By using Eq. (5), we get 

𝑉𝐴𝐿(𝐽1 + 𝐽2) = ∫ [
𝐽1
∗(𝛿) + 𝐽2

∗(𝛿) +

𝐽1
∗(𝛿) + 𝐽2

∗(𝛿)
] 𝑑𝛿

𝑤2
3

𝑤1
3

 

+∫ [
𝐽1
∗(𝛿) + 𝐽2

∗(𝛿) +

𝐽1
∗(𝛿) + 𝐽2

∗(𝛿)
] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤2
3
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  =

{
 
 

 
 ∫ [𝐽1

∗(𝛿) + 𝐽1
∗
(𝛿)] 𝑑

𝑤2
3

𝑤1
3

𝛿

+∫ [𝐽1
∗(𝛿) + 𝐽1

∗
(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤2
3 }

 
 

 
 

 . 

+

{
 
 

 
 ∫ [𝐽2

∗(𝛿) + 𝐽2
∗
(𝛿)] 𝑑

𝑤2
3

𝑤1
3

𝛿

+∫ [𝐽2
∗(𝛿) + 𝐽2

∗
(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤2
3 }

 
 

 
 

       

= 𝑉𝐴𝐿(𝐽1) + 𝑉𝐴𝐿(𝐽2). 

By using the Eq. (7), we get  

𝐴𝑀𝐵(𝐽1 + 𝐽2) = ∫ [
𝐽1
∗(𝛿) + 𝐽2

∗(𝛿)

− (𝐽1
∗(𝛿) + 𝐽2

∗(𝛿))
] 𝑑

𝑤2
3

𝑤1
3

𝛿 

+∫ [
𝐽1
∗(𝛿) + 𝐽2

∗(𝛿)

− (𝐽1
∗(𝛿) + 𝐽2

∗(𝛿))
] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤2
3

 

=

{
 
 

 
 ∫ [𝐽1

∗
(𝛿) − 𝐽1

∗(𝛿)] 𝑑
𝑤2
3

𝑤1
3

𝛿

+∫ [𝐽1
∗
(𝛿) − 𝐽1

∗(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤2
3 }

 
 

 
 

  

+

{
 
 

 
 ∫ [𝐽2

∗(𝛿) − 𝐽2
∗
(𝛿)] 𝑑

𝑤2
3

𝑤1
3

𝛿

+∫ [𝐽2
∗(𝛿) − 𝐽2

∗
(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤2
3 }

 
 

 
 

   

= 𝐴𝑀𝐵 (𝐽1) + 𝐴𝑀𝐵(𝐽2). 
Case (ii) for 𝑤2 < 𝑤1 

By using Eq. (10), we get 

𝑉𝐴𝐿(𝐽1 + 𝐽2) = ∫ [
𝐽1
∗(𝛿) + 𝐽2

∗(𝛿)

+𝐽1
∗(𝛿) + 𝐽2

∗(𝛿)
] 𝑑

𝑤1
3

𝑤2
3

𝛿 

+∫ [
𝐽1
∗(𝛿) + 𝐽2

∗(𝛿)

+𝐽1
∗(𝛿) + 𝐽2

∗(𝛿)
] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤1
3

  

 =

{
 
 

 
 ∫ [𝐽1

∗(𝛿) + 𝐽1
∗
(𝛿)] 𝑑

𝑤1
3

𝑤2
3

𝛿

+∫ [𝐽1
∗(𝛿) + 𝐽1

∗
(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤1
3 }

 
 

 
 

  

+

{
 
 

 
 ∫ [𝐽2

∗(𝛿) + 𝐽2
∗
(𝛿)] 𝑑

𝑤1
3

𝑤2
3

𝛿

+∫ [𝐽2
∗(𝛿) + 𝐽2

∗
(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤1
3 }

 
 

 
 

 

= 𝑉𝐴𝐿 (𝐽1) + 𝑉𝐴𝐿(𝐽2). 
By using the Eq. (7), we get  

𝐴𝑀𝐵(𝐽1 + 𝐽2) = ∫ [
𝐽1
∗(𝛿) + 𝐽2

∗(𝛿)

− (𝐽1
∗(𝛿) + 𝐽2

∗(𝛿))
] 𝑑

𝑤2
3

𝑤1
3

𝛿 

+∫ [
𝐽1
∗(𝛿) + 𝐽2

∗(𝛿)

− (𝐽1
∗(𝛿) + 𝐽2

∗(𝛿))
] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤2
3

 

=

{
 
 

 
 ∫ [𝐽1

∗
(𝛿) − 𝐽1

∗(𝛿)] 𝑑
𝑤2
3

𝑤1
3

𝛿

+∫ [𝐽1
∗
(𝛿) − 𝐽1

∗(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤2
3 }

 
 

 
 

  

+

{
 
 

 
 ∫ [𝐽2

∗(𝛿) − 𝐽2
∗
(𝛿)] 𝑑

𝑤2
3

𝑤1
3

𝛿

+∫ [𝐽2
∗(𝛿) − 𝐽2

∗
(𝛿)] 𝑑𝛿

𝑤1
2+𝑤2

2+𝑤1𝑤2
3(𝑤1+𝑤2)

𝑤2
3 }

 
 

 
 

   

= 𝐴𝑀𝐵 (𝐽1) + 𝐴𝑀𝐵(𝐽2). 

Proposition 3 

If  𝐽1and 𝐽2 are two GTFNLRH, then 

𝑉𝐴𝐿(𝐽1 − 𝐽2) = 𝑉𝐴𝐿(𝐽1) − 𝑉𝐴𝐿(𝐽2)  
𝐴𝑀𝐵(𝐽1 − 𝐽2) = 𝐴𝑀𝐵(𝐽1) − 𝐴𝑀𝐵(𝐽2).   
Proof. This is a consequence of Propositions 1 and 2. 

𝑉𝐴𝐿(𝐽1 − 𝐽2) = 𝑉𝐴𝐿(𝐽1 + (−𝐽2))  

= 𝑉𝐴𝐿 (𝐽1) + 𝑉𝐴𝐿(−𝐽2) = 𝑉𝐴𝐿(𝐽1) − 𝑉𝐴𝐿(𝐽2) 
𝐴𝑀𝐵(𝐽1 − 𝐽2) = 𝐴𝑀𝐵(𝐽1 + (−𝐽2)  
= 𝐴𝑀𝐵 (𝐽1) + 𝐴𝑀𝐵(−𝐽2) = 𝐴𝑀𝐵(𝐽1) − 𝐴𝑀𝐵(𝐽2)   

Proposition 4 

 If 𝐽 = (0,0,0,0;𝑤1 , 𝑤2) then 𝑉𝐴𝐿(𝐽) = 0, and 

 𝐴𝑀𝐵(𝐽) = 0 for both 𝑤1 < 𝑤2 and 𝑤2 < 𝑤1.   

Proof. The proof is a direct consequence of Eq. (5), 

Eq. (7), Eq. (10) & Eq. (14). 

Proposition 5 

If 𝐽 = (𝑥, 𝑥, 𝑥, 𝑥; 𝑤, 𝑤) is a crisp number, then 

𝑉𝐴𝐿(𝐽) = 1/3 and 𝐴𝑀𝐵(𝐽) = 0.  

Proof. The proof is a direct consequence of Eq. (13), 

& Eq. (14) by substituting  𝑎 = 𝑏 = 𝑐 = 𝑑 = 𝑥. 

Proposition 6 

If 𝐽1, 𝐽2 and 𝐽3 are three arbitrary GTFNLRH, such that 

𝐽1 ≺ 𝐽2 and 𝐽2 ≺ 𝐽3 then,  𝐽1 ≺ 𝐽3 provides order by the 

values. 

Proof. By using Definition 12, for 𝐽1 ≺ 𝐽2, 𝑉𝐴𝐿(𝐽1) <
𝑉𝐴𝐿(𝐽2) and for 𝐽2 ≺ 𝐽3, 𝑉𝐴𝐿(𝐽2) < 𝑉𝐴𝐿(𝐽3) .  
This implies that 𝑉𝐴𝐿 (𝐽1) < 𝑉𝐴𝐿 (𝐽3), and hence, 

 𝐽1 ≺ 𝐽3. 

Reasonable Properties (Wang & Kerre, [33])  

Wang and Kerre [33] proposed some axioms that 

serve as reasonable properties for the ordering of 

fuzzy quantities. Let 𝒜 be a finite subset of the set of 

all fuzzy quantities ℱ and let ℛ be the proposed 

ranking approach. The proposed ranking approach 

satisfies the following axioms:  

Axiom 1: If 𝐴 ∈ 𝒜, then 𝐴 ≽ 𝐴 by the ranking 

approach ℛ on 𝒜.  

Axiom 2: If (𝐴, 𝐵) ∈ 𝒜2, and 𝐴 ≽ 𝐵, 𝐵 ≽ 𝐴 by the 

ranking approach ℛ on 𝒜, then 𝐴 ∼ 𝐵 on 𝒜.  

Axiom 3: If (𝐴, 𝐵, 𝐶) ∈ 𝒜3, and 𝐴 ≽ 𝐵, 𝐵 ≽ 𝐶 by the 

ranking approach ℛ on 𝒜, then 𝐴 ≽ 𝐶 on 𝒜.  

Proof: By using Definition (12),  

for 𝐴 ≽ 𝐵, 𝑉𝐴𝐿(𝐴) ≥ 𝑉𝐴𝐿(𝐵),  
and for 𝐵 ≽ 𝐶, 𝑉𝐴𝐿(𝐵) ≥ 𝑉𝐴𝐿(𝐶).  
This implies 𝑉𝑎𝑙(𝐴) ≥ 𝑉𝐴𝐿(𝐶), and hence, 𝐴 ≽ 𝐶. 

Axiom 4: Let 𝐴, 𝐵, 𝐴 + 𝐶, 𝐵 + 𝐶 be elements of ℱ. If 

𝐴 ≽ 𝐵 by ℛ, then 𝐴 + 𝐶 ≽ 𝐵 + 𝐶 by ℛ.  

Proof: Let 𝐴 ≽ 𝐵,  

then by Definition (12), 𝑉𝐴𝐿(𝐴) ≥ 𝑉𝐴𝐿(𝐵),  
⟹ 𝑉𝑎𝑙(𝐴) + 𝑉𝐴𝐿(𝐶) ≥ 𝑉𝐴𝐿(𝐵) + 𝑉𝐴𝐿(𝐶)  
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⟹ 𝑉𝑎𝑙(𝐴 + 𝐶) ≥ 𝑉𝐴𝐿(𝐵 + 𝐶) (By Proposition 3) 
⟹ (𝐴 + 𝐶) ≥ (𝐵 + 𝐶)  (By Definition 12).  

II. COMPARATIVE STUDY 

In this section, a comparative study is carried out with six sets 

of GTFNLRH and six sets of the most frequently used 

triangular and trapezoidal FNs by decision makers.  

A. Comparative study for GTFNLRH  

This section presents a comparative study of the suggested 

approach with the methods presented in [17, 18,19, 20] using 

six sets of GTFNLRH cited from different works in the 

existing literature on ranking FNs.  

Set 1: Consider two GTFNLRH with different cores cited 

from the work of Pushpinder Singh [17], shown in Figure 3. 

 

 
Fig. 3. 𝐿 = (2, 5, 6, 7; 0.6, 0.4)  

           𝑀 = (3, 4, 5, 6; 0.8, 0.6). 

Using (10), 𝑉𝐴𝐿(𝐿) = 0.9604, and 𝑉𝐴𝐿(𝑀) = 1.0963.  

As 𝑉𝐴𝐿(𝐿) < 𝑉𝐴𝐿(𝑀) ⟹ 𝐿 ≺ 𝑀. This result is consistent with 

the result of Pushpinder Singh [17].  

Set 2: Consider two GTFNLRH, cited from the work of 

Rituparna et al. [19], shown in Figure 4.  

 

 
Fig. 4. 𝐿 = (0.4, 0.5, 0.5, 0.6; 0.6,0.7) 

𝑀 = (0.2, 0.4, 0.6, 0.8; 0.5, 0.6) 

Using (5), 𝑉𝐴𝐿(𝐿) = 0.1084, and 𝑉𝐴𝐿(𝑀) = 0.0899.  

As 𝑉𝐴𝐿(𝑀) < 𝑉𝐴𝐿(𝐿) ⟹ 𝑀 ≺ 𝐿. This result coincides with 

the result of Rituparna et al. [19].  

Set 3: Consider three GTFNLRH, cited from the work of 

Barazandeh et al. [20], shown in Figure 5.  

Using (5), 𝑉𝐴𝐿(𝐿) = 0.09256, 𝑉𝐴𝐿(𝑀) = 0.12186, and 

𝑉𝐴𝐿(𝑁) = 0.153657.  

As 𝑉𝐴𝐿(𝐿) < 𝑉𝐴𝐿(𝑀) < 𝑉𝐴𝐿(𝑁) ⟹ 𝐿 ≺ 𝑀 ≺ 𝑁. This result 

is consistent with the result of Barazandeh et al. [20].  

Set 4: Consider a GTrFN and two GTFNLRH, taken from 

Jiang et al. [18], shown in Figure 6.  

Fig. 5. 𝐿 = (0.1765, 0.2860,0.7244,1.0574; 0.5, 0.6) 

𝑀 = (0.3221, 0.4949,1.1392,1.6373; 0.4 0.5) 
𝑁 = (0.3290, 0.4890,1.1737,1.7787; 0.5, 0.6) 

Fig. 6. 𝐿 = (0.1,0.2,0.4,0.5; 1,1) 

𝑀 = (0.1,0.2,0.4,0.5; 0.8, 1) 
𝑁 = (0.1,0.2,0.4,0.5; 1, 0.8) 

Using (13), (5), and (10), we get 𝑉𝐴𝐿(𝐿) = 0.1,                 

V𝐴𝐿(𝑀) = 0.087229, and 𝑉𝐴𝐿(𝑁) = 0.094993.                             

As 𝑉𝐴𝐿(𝑀) < 𝑉𝐴𝐿(𝑁) < 𝑉𝐴𝐿(𝐿) ⟹𝑀 ≺ 𝑁 ≺ 𝐿.  

As 𝐿 is a normal FN, one must prefer 𝐿 over 𝑀 and 𝑁.  

However, the ranking orders of Jiang et al. [18] and 

Barazandeh et al. [20] are 𝑁 ≺ 𝐿 ≺ 𝑀 is inconsistent with 

human intuition. They prefer 𝑁 over 𝐿.  

 

Set 5: Consider the images of GTFNLRH of Set 4, taken from 

Jiang et al. [18], shown in Figure 7. 

Using (13), (5), and (10), we get 𝑉𝐴𝐿(𝐿) = −0.1,              

V𝐴𝐿(𝑀) = −0.08722, and 𝑉𝐴𝐿(𝑁) = −0.09499.                            

As 𝑉𝐴𝐿(𝑀) > 𝑉𝐴𝐿(𝑁) > 𝑉𝐴𝐿(𝐿) ⟹𝑀 > 𝑁 > 𝐿.                          

This result is consistent with Set 4 and satisfies the symmetry 

between Set 4 and Set 5.  

Fig. 7. 𝐿 = (−0.5, −0.4, −0.2, −0.1; 1, 1) 

𝑀 = (−0.5, −0.4, −0.2, −0.1; 1, 0.8) 
𝑁 = (−0.5, −0.4, −0.2, −0.1; 0.8, 1) 
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Set 6: Consider two GTFNLRH, taken from Pushpinder 

Singh [17], shown in Figure 8.  

Using (10), 𝑉𝐴𝐿(𝐿) = 0.4582, and 𝑉𝐴𝐿(𝑀) = 0.4061.   

As 𝑉𝐴𝐿(𝑀) < 𝑉𝐴𝐿(𝐿) ⟹𝑀 ≺ 𝐿.  

However, Pushpinder Singh's [17] ranking result is 

inconsistent with human intuition. 
 

 

Fig. 8. 𝐿 = (1, 2, 3, 4; 0.6,0.4) 

𝑀 = (0, 3, 4, 5; 0.4, 0.2). 

 

B. Comparative study on frequently cited trapezoidal and 

triangular FNs 

This section demonstrates a comparative study of the 

proposed approach with six sets of frequently cited 

trapezoidal and triangular FNs taken from [5]. A comparative 

study of the proposed method is carried out against the 

methods presented in [4, 14, 16, 22, 24, 28], and the results 

are presented in Table I.  

Set 1: A = (0.1,0.3,0.3,0.5), B = (0.3,0.5,0.5,0.7)  

Set 2: A = (0.1,0.2,0.4,0.5), B = (0.1,0.3,0.3,0.5)  

Set 3: A = (0.1,0.3,0.3,0.5), B = (0.2,0.3,0.3,0.4)  

Set 4: A =(0.1,0.3,0.3,0.5;0.8,0.8),B =(0.1,0.3,0.3,0.5)  

Set 5: A = (0.1,0.2,0.4,0.5), B = (1,1,1,1)  

Set 6: A = (0.1,0.3,0.3,0.5), B = (-0.5,-0.3,-0.3,-0.1)  

The conclusions derived from Table I are: 

Set 1: The ranking order is consistent with all fuzzy ranking 

methods in Table I.  

Set 2 and Set 3: The FNs, A and B, have the same VAL. 

Therefore, the ranking order is decided by using AMB. B's 

AMB is smaller than A's AMB, so we prefer B to A. This 

result is consistent with Chen and Chen’s [24] method and 

Wu et al.’s [27] method, as the spread of B is smaller than the 

spread of A. Yager’s [4], Chu and Tsao’s [14], Chen and 

Sanguansat’s [22], and Chen et al.’s [16] methods failed to 

discriminate FNs, A and B.  

Set 4: The ranking order is consistent with all fuzzy ranking 

methods mentioned in Table I except Yager’s [4] method. 

Although the centroids of FNs A and B differ, Yager [4] 

failed to discriminate FNs.  

Set 5: The ranking order is consistent with all fuzzy ranking 

methods mentioned in Table I except Yager’s [4] and Chu 

and Tsao’s [14] methods. Yager [4] and Chu and Tsao [14] 

failed to discriminate FNs A and B, as FN B is a crisp number.  

Set 6: The ranking order is consistent with all fuzzy ranking 

methods in Table I. 

III. APPLICATION-FUZZY RISK ANALYSIS 

This section outlines a fuzzy risk assessment procedure to 

quantify the risk associated with product manufacturing by 

different companies. The evaluation criteria are expressed as 

linguistic terms represented by GTFNLRH. The risk analysis 

algorithm assesses both the likelihood of an adverse event and 

the severity of its potential consequences, and the ranking 

function developed in Section III is utilized to evaluate risk, 

magnitude of loss, and the likelihood of failure for individual 

components. 

Fuzzy risk analysis was proposed by Schmucker [28]. 

Consider 𝑛 companies 𝐹̃𝑖, 1 ≤ 𝑖 ≤ 𝑛, producing the products 

𝐴̃𝑖 , 1 ≤ 𝑖 ≤ 𝑛 and each product is made with 𝑝 sub-products 

𝐴̃𝑖𝑘 , 1 ≤ 𝑘 ≤ 𝑛. To evaluate the failure probability 𝑃̃𝑖of the 

product 𝐴̃𝑖, we use the assessing terms 𝑃̃𝑖𝑘 and 𝑄̃𝑖𝑘  called 

“likelihood of failure” and “magnitude of loss” of the sub-

products 𝐴̃𝑖𝑘, both are GTFNs, represented as linguistic 

terms. Chen et al. [16] used a linguistic term set comprising 

nine members to represent linguistic values. Each member of 

the linguistic term set corresponds to a GTFN, as shown in 

Table II. Figure 9. Shows the structure of fuzzy risk analysis 

proposed by Schmucker [28]. 

The set of rules for evaluating fuzzy risk by the proposed 

ranking method is presented in the following steps:  

Step 1: Compute the failure probability 𝑃̃𝑖 for product 𝐴̃𝑖 for  

1 ≤ 𝑖 ≤ 𝑛 which is a GTFNLRH. By using the fuzzy 

weighted average method (Chen et al.[24] and Schmucker 

[28]) and GTFNs, arithmetic operations  ⨁,⨂ and ⊘ defined 

in section II, the assessing terms 𝑃̃𝑖𝑘 and 𝑄̃𝑖𝑘 of the sub-

product 𝐴̃𝑖 are aggregated to obtain 𝑃̃𝑖 , as shown below: 𝑃̃𝑖 =

[∑ 𝑃̃𝑖𝑘⊗
𝑛
𝑖=1 𝑄̃𝑖𝑘] Ø  ∑ 𝑄̃𝑖𝑘

𝑛
𝑖=1   

i.e., 𝑃̃𝑖 = (𝑝𝑖1 , 𝑝𝑖2, 𝑝𝑖3 , 𝑝𝑖4; 𝑤𝐿𝑃̃𝑖 , 𝑤𝑅𝑃̃𝑖)                               (16) 

where 𝑃̃𝑖 is a GTFLRH and 1 ≤ 𝑖 ≤ 𝑛.  

Step 2: Using (10) of the proposed ranking method, evaluate 

the VAL of each GTFLRH, 𝑃̃𝑖 for 𝑤1 ≠ 𝑤2 and 1 ≤ 𝑖 ≤ 𝑛   

𝑉𝑎𝑙(𝑃̃𝑖) =
1

18(𝑤𝐿𝑃̃𝑖
+𝑤𝑅𝑃̃𝑖

)2
[𝑤𝐿𝑃̃𝑖

3(2𝑝𝑖2 + 3𝑝𝑖3 + 𝑝𝑖4) +

𝑤𝑅𝑃̃𝑖
3(𝑝𝑖1 + 3𝑝𝑖2 + 2𝑝𝑖3)+𝑤𝐿𝑃̃𝑖𝑤𝑅𝑃̃𝑖

2(𝑝𝑖1 + 4𝑝𝑖2 + 𝑝𝑖3) +

𝑤𝐿𝑃̃𝑖
2𝑤𝑅𝑃̃𝑖(𝑝𝑖2 + 4𝑝𝑖3 + 𝑝𝑖4)]           (17)  

Step 3: The higher the VAL 𝑃̃𝑖, the more likelihood of failure 

𝑃̃𝑖 of product 𝐴̃𝑖 manufactured by company 𝐹̃𝑖.  
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Structure of Fuzzy Risk Analysis [28] 

 

Numerical Example  

Let there be three companies 𝐹̃1, 𝐹̃2 and 𝐹̃3, producing the 

components 𝐴̃1, 𝐴̃2, 𝐴̃3 respectively. For each 𝐴̃𝑖 there are 

three sub-products 𝐴̃𝑖1, 𝐴̃𝑖2 and 𝐴̃𝑖3, 1 ≤ 𝑖 ≤ 3.                       

Constituent 𝐴̃𝑖 made by Company 𝐹̃𝑖 
Likelihood of failure 𝑃̃𝑖 
 

Sub-product 𝐴̃𝑖3 

Likelihood of  

failure 𝑃̃𝑖3 

Magnitude of  

loss 𝑄̃𝑖3 

 

Sub-product𝐴̃𝑖1 

Likelihood of 

failure 𝑃̃𝑖1 

Magnitude of  

loss 𝑄̃𝑖1 

 

Sub-product 𝐴̃𝑖2 

Likelihood of  

failure 𝑃̃𝑖2 

Magnitude of  

loss 𝑄̃𝑖2 
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The magnitude of loss 𝑄̃𝑖𝑘, the likelihood of failure  𝑃̃𝑖𝑘, for 

sub-products 𝐴̃𝑖𝑘 (Chen et al.[24]) made by company   𝐹̃𝑖,      
1 ≤ 𝑖 ≤ 3 for 1 ≤ 𝑘 ≤ 3 are shown in Table III.                      

The proposed fuzzy risk analysis approach is presented in the 

following steps:  

Step 1: Using (16), the likelihood of failure 𝑃̃𝑖𝑘 of product 𝐴̃𝑖 
made by company 𝐹̃𝑖 is obtained by grouping the estimated 

items 𝑃̃𝑖𝑘 and 𝑄̃𝑖𝑘 of the sub-products 𝐴̃𝑖𝑘, shown in Table III, 

where 1 ≤ 𝑖 ≤ 3 and 1 ≤ 𝑘 ≤ 3. 

𝑃̃1 = [
(𝑃̃11⨂𝑄̃11⨁𝑃̃12⨂𝑄̃12⨁𝑃̃13⨂𝑄̃13)

⊘ (𝑄̃11⨁𝑄̃12⨁𝑄̃13)
]   

= (0.1765,0.2860,07244,1.0574; 0.5,0.6)  

𝑃̃2 = [
(𝑃̃21⨂𝑄̃21⨁𝑃̃22⨂𝑄̃22⨁𝑃̃23⨂𝑄̃23)

⊘ (𝑄̃21⨁𝑄̃22⨁𝑄̃23)
]  

= (0.3221,0.4949,1.1392,1.6373; 0.4,0.5)  

𝑃̃3 = [
(𝑃̃31⨂𝑄̃31⨁𝑃̃32⨂𝑄̃32⨁𝑃̃33⨂𝑄̃33)

⊘ (𝑄̃31⨁𝑄̃32⨁𝑄̃33)
]  

= (0.3290,0.4890,1.1737,1.7787; .5,0.6)  

Step 2: Using (16), the VAL 𝑃̃𝑖 , 1 ≤ 𝑖 ≤ 3 for each 

GTFNLRH 𝑃̃𝑖,  are 𝑉𝐴𝐿(𝑃̃1) = 0.0564, 𝑉𝐴𝐿(𝑃̃2) = 0.1218, 

and 𝑉𝐴𝐿(𝑃̃3) = 0.1530. 

Step 3: As 𝑉𝐴𝐿(𝑃̃3) > 𝑉𝐴𝐿(𝑃̃2) > 𝑉𝐴𝐿(𝑃̃1), the ranking 

order of the GTFNLRH 𝑃̃1, 𝑃̃2, 𝑃̃3 is 𝑃̃3 ≻ 𝑃̃2 ≻ 𝑃̃1. Therefore, 

the order of the risk of companies 𝐹̃1, 𝐹̃2 and 𝐹̃3  is 𝐹̃3 ≻ 𝐹̃2 ≻
𝐹̃1. This implies that the product 𝐴̃3 made by the company 𝐹̃3 

has the highest probability of failure, and 𝐹̃1 has the lowest 

probability of failure. The proposed method is consistent with 

the result of Chen et al. [24]. 

 

TABLE I 

COMPARATIVE STUDY OF THE PROPOSED METHOD WITH EXISTING FUZZY RANKING METHODS 

Methods Set 1 Set 2 Set 3 

A B A B A B 

Yager [4] 0.3000 0.5000 0.3000 0.3000 0.3000 0.3000 

Chu & Tsao [4] 0.1500 0.2500 0.1500 0.1500 0.1500 0.1500 

Chen & Chen [24] 0.2579 0.4298 0.2573 0.2579 0.2579 0.2774 

Chen & Sanguansat [22] 0.3000 0.5000 0.3000 0.3000 0.3000 0.3000 

Chen et al. [16] 0.2553 0.4444 0.2553 0.2553 0.2553 0.2553 

Wu et al. [27] 0.5906 07014 0.5884 0.5906 0.5906 0.6006 

Proposed Method 0.1000 0.1667 0.0222 0.0111 0.0111 0.0055 

Methods Set 1 Set 2 Set 3 

A B A B A B 

Yager [4] 0.3000 0.3000 0.3000 # 0.3000 -0.3000 

Chu & Tsao [4] 0.1200 0.1500 0.1500 # 0.1500 -0.1500 

Chen & Chen [24] 0.2063 0.2579 0.2537 1.0000 0.2579 -0.2579 

Chen & Sanguansat [22] 0.2824 0.3000 0.3000 1.0000 0.3000 -0.3000 

Chen et al. [16] 0.2462 0.2553 0.2553 1.0000 0.2553 -0.2553 

Wu et al. [27] 0.5332 0.5906 0.5884 1.0000 0.5906 -0.5906 

Proposed Method 0.0800 0.1000 0.1000 0.3333 0.1000 -0.1000 

#: Method cannot be applied for the FN 

TABLE III 

THE MAGNITUDE OF LOSS 𝑄̃𝑖𝑘 AND THE LIKELIHOOD OF FAILURE 𝑃̃𝑖𝑘OF THE SUB-PRODUCT [24] 

Company Sub-products Magnitude of loss 𝑄̃𝑖𝑘  Likelihood of failure 𝑃̃𝑖𝑘 

𝐹̃1 𝐴̃11 𝑄̃11 = (0.04,0.1,0.18,0.23; 0.8,0.9) 𝑃̃11 = (0.17,0.22,0.36,0.42; 0.9,0.9) 

 𝐴̃12 𝑄̃12 = (0.58,063,0.80,0.86; 0.65,0.7) 𝑃̃12 = (0.32,0.41,0.58,0.65; 0.9,0.7) 

 𝐴̃13 𝑄̃13 = (0,0,0,0; 0.5,0.6)   𝑃̃13 = (0.58,0.63,0.8,0.86; 0.8,0.9) 

𝐹̃2 𝐴̃21 𝑄̃21 = (0.04,0.1,0.18,0.23; 0.8,0.7) 𝑃̃21 = (0.93,0.98,1,1; 0.85,0.8) 

 𝐴̃22 𝑄̃22 = (0.58,063,0.80,0.86; 1,0.5) 𝑃̃22 = (0.58,0.63,0.8,0.86; 0.9,0.9) 

 𝐴̃23 𝑄̃23 = (0,0,0.02,0.07; 0.4,0.8) 𝑃̃23 = (0.32,0.41,0.58,0.65; 0.7,0.9) 

𝐹̃3 𝐴̃31 𝑄̃31 = (0.04,0.1,0.18,0.23; 1,1) 𝑃̃31 = (0.17,0.22,0.36,0.42; 0.95,0.95) 

 𝐴̃32 𝑄̃32 = (0.58,063,0.80,0.86; 0.8,0.8) 𝑃̃32 = (0.72,0.78,0.92,0.97; 0.5,0.6) 

 𝐴̃33 𝑄̃33 = (0,0,0.07,0.02; 0.9,0.7) 𝑃̃33 = (0.58,0.63,0.8,0.86; 1,1)   
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TABLE II 

LINGUISTIC TERMS AND THEIR CORRESPONDING GTFNs [16] 

Linguistic Terms GTFNs 

Absolutely Low (AL) (0, 0, 0, 0; 1) 

Very Low (VL) (0, 0, 0.02, 0.07; 1, 1;) 

Low (L) (0.04, 0.10, 0.18, 0.23; 1, 1) 
Fairly Low (FL) (0.17, 0.22, 0.36, 0.42; 1, 1) 

Medium (M) (032, 0.41, 0.58, 0.65; 1, 1) 

Fairly High (FH) (0.58, 0.63, 0.80, 0.86; 1, 1) 
High (H) (0.72, 0.78, 0.92, 0.97; 1, 1) 

Very High (VH) (0.93, 0.98, 1, 1; 1, 1) 

Absolutely High (AH) (1, 1, 1, 1; 1, 1) 

VI. CONCLUSIONS 

This paper introduces a novel defuzzification technique for 

ranking GTFNLRH. The technique identifies a TFQ by 

analyzing the centroids of three distinct regions within the 

geometric representation of GTFNLRH at a specific lower 

decision level. Using the VAL and AMB of the FN, a 

representative defuzzified value is determined for ranking 

purposes. A comparative study with existing ranking methods 

demonstrates the effectiveness of the proposed approach 

across various FNs. The paper presents a new methodology 

for evaluating fuzzy risk in product manufacturing by 

companies. Decision-maker assessments of the likelihood of 

failure and the magnitude of loss are represented as 

GTFNLRH. The proposed ranking procedure based on VAL 

and AMB is then applied to determine the overall risk for each 

company. This approach aligns with human intuition by 

considering the decision-maker’s perspective at critical 

levels. The proposed approach has broad applications, 

including multi-criteria decision-making and addressing 

scheduling challenges in project planning where activity 

times are represented as FNs. 

VII. LIMITATIONS AND FUTURE SCOPE 

This study focuses on traditional fuzzy sets, where only the 

degree of membership of an element is considered. The 

degree of non-membership is not explicitly addressed, which 

is a limitation of this work. Future research could extend this 

ranking procedure to other types of fuzzy sets that incorporate 

the degree of non-membership, such as Intuitionistic Fuzzy 

Sets and Pythagorean Fuzzy Sets. 

REFERENCES 

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp.           
      338-353, 1965. 

[2] L. A. Zadeh, “The concept of a linguistic variable and its application to        

      approximate reasoning-I,” Information Sciences, vol. 8, pp. 199-249,   
      1975. 

[3] R. Jain, “Decision making in the presence of fuzzy variable,” IEEE   

      Transactions on Systems Man and Cybernetics, vol. 6, pp. 698-703,  
      1976. 

[4] R. R. Yager, “Ranking fuzzy subsets over the unit interval,” In   
      proceedings of 17th IEEE International Conference on Decision and   

      Control, San Diego, California, pp. 1435-1437, 1978. 

[5] D. Dubois, and H. Prade, “Operations on fuzzy numbers,” International   
      Journal of Systems Science, vol. 9, no. 6, pp. 613- 626, 1978. 

[6] S. Murakami, H. Maeda, and S. Imamura, “Fuzzy decision analysis on  

      the development of centralized regional energy control system,” In  
      Proceedings of the ISAC symposium on fuzzy information, knowledge  

      representation and decision analysis, vol 16, no. 3, pp   .363-368, 1983. 

[7] G. Bortolan, and R. Degani, “A review of some methods for ranking   
       fuzzy subsets,” Fuzzy Sets and Systems, vol. 15, no. 1, pp. 1-19, 1985. 

[8]  S. H. Chen, “Ranking fuzzy numbers with maximizing set an minimizing   

       set,” Fuzzy Sets and Systems, vol. 17, pp. 113-122, 1985. 

[9]     K. Nakamura, “Preference relations on a set of fuzzy utilities as a basis  

for decision making,” Fuzzy Sets and Systems, vol. 20, pp. 147-162, 

1986. 

[10] T. S. Liou, and M. J. Wang, “Ranking fuzzy numbers with integral 

value,” Fuzzy Sets and Systems, vol. 50, no. 3, pp. 247-255, 1992. 
[11]  F. Choobineh, and H. Li, “An index for ordering fuzzy numbers,” Fuzzy 

Sets and Systems, vol. 54, no. 3, pp. 287-294, 1993. 
[12]  P. Fortemps, and M. Roubens, “Ranking and defuzzification methods 

based on area compensation,” Fuzzy Sets and Systems, vol. 82, pp. 

319-330, 1996.   
[13]  C. H. Cheng, “A new approach for ranking fuzzy numbers by distance 

method,” Fuzzy Sets and Systems, vol. 95, pp. 307-317, 1998.  

[14]  C. H. Chu, and T. Sao, “Ranking fuzzy numbers with an area between 
the centroid point and original point,” Computers and Mathematics 

with Applications, vol. 43, no. 1, pp. 111-117, 2002. 

[15] M. Delgado, M. A. Vila, and W. Voxman, “On a canonical 
representation of fuzzy numbers,” Fuzzy Sets and Systems, vol. 93, no. 

1, pp. 125-135, 1998. 

[16]  S. M. Chen, A. Munif, G. S. Chen, H. C. Liu, and B. C. Kuo, “Fuzzy 
risk analysis based on ranking generalized fuzzy numbers with 

different left heights and right heights,” Expert System with 

Applications, vol. 39, no. 7, pp. 6320-6334, 2012. 
[17]  S. Pushpinder, “A new approach for the ranking of fuzzy sets with 

different heights,” Journal of Applied Research and Technology, vol. 

10, pp. 941- 949, 2012. 
[18] W. Jiang, Y. Luo, X. Y. Qin, and J. Zhan “An Improved Method to  

Rank Generalized Fuzzy Numbers with Different Left Heights and 

Right  Heights,” Journal of Intelligent and Fuzzy Systems, vol. 28(5), 
pp. 2343– 2355, 2015. 

[19] C. Rituparna, and C. Bijit, “A new method of ranking parametric form 

of fuzzy numbers using value and ambiguity,” Applied Soft 
Computing, vol. 52, pp. 1154-1168, 2017. 

[20] Y. Barazandeh, and B. Ghazanfari, “A novel method for ranking 

generalized fuzzy numbers with two different heights and its 
application in fuzzy risk analysis,” Iranian Journal of Fuzzy Systems, 

vol. 18, no. 2, pp. 81-91, 2021. 

[21]  S. J. Chen, and S. M. Chen, “Fuzzy risk analysis based on similarity 
measures of generalized fuzzy numbers,” IEEE Transactions on    

Fuzzy Systems, vol.11, pp. 45-56, 2003. 

[22]  S. M. Chen K, and Sanguansat, “Analysing fuzzy risk based on a new 

fuzzy ranking method between generalized fuzzy numbers,” Expert 

System with Applications, vol. 38, pp. 2163-2171, 2011. 

[23]  Z. Xu, S. Shang, W. Qian, and W. Shu, “A method for fuzzy risk 
analysis based on the new similarity of trapezoidal fuzzy numbers,” 

Expert System with Applications, vol. 37, pp.1920-1927, 2010. 

[24]  S. M. Chen, and J. H. Chen, “Fuzzy risk analysis based on ranking 
generalized fuzzy numbers with different heights and different 

spreads,” Expert System with Applications, vol. 36, no. 3, pp. 6833 -

6842, 2009. 
[25]  P. Phani Bushan Rao, “Evaluating fuzzy risk based on a new method  

of ranking fuzzy numbers using centroid of centroids,” International 

Journal of Mathematics in Operational Research, vol. 14, pp. 451-472, 
2019. 

[26] W. E. Lee, and S. M. Chen, “Fuzzy risk analysis based on fuzzy  

numbers with different shapes and different deviations,” Expert  
System with Applications, vol. 34, pp. 2763- 2771, 2008. 

[27]  X. Wu, F. Liu, H. Xue, Y. Zheng, Y. Shou, and W. Jiang, “Fuzzy risk 
analysis based on a new method for ranking generalized fuzzy 

numbers,” Iranian Journal of Fuzzy Systems, vol.15, no.3, pp.117-139, 

2018. 

[28] K. J. Schmucker, Fuzzy sets, natural language computations, and risk 

analysis, MD: Computer Science Press, 1984. 

[29] S. Sinika, and G. Ramesh, “Trapezoidal Neutrosophic Program 
Evaluation and Review Technique Using Interval Arithmetic 

Operations,” IAENG International Journal of Applied Mathematics, 

vol. 54, no. 3, pp. 324-341, 2024. 
[30] Hitoshi Yano, “Multiobjective Fuzzy Random Bimatrix Games and     

An Equilibrium Solution Concept,” Lecture Notes in Engineering and 

Computer Science: Proceedings of the International MultiConference 
of Engineers and Computer Scientists, 2021, 20-22 October, 2021, 

Hong Kong, pp. 228-233. 

[31] P. Jana, D. Rosadi, and E. D. Supandi, “Fuzzy Portfolio with Multi 
objective Approach Using the Treynor Ratio,” IAENG International 

Journal of Computer Science, vol. 51, no. 8, pp. 1086-1093, 2024. 

[32] T.C. Lee, Y. C. O.Yang, P. T. Liu, and Y. H. Liao, “Evaluating 
Mechanism and Axiomatic Processes under Sustainability and Multiple 

Criteria Fuzzy Behavior,” Engineering Letters, vol. 32, no. 8, pp. 1667 

1674, 2024. 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 5, May 2025, Pages 1003-1013

 
______________________________________________________________________________________ 



 

[33]  X. Wang, and E. E. Kerre, “Reasonable properties for the ordering of 

fuzzy quantities (I),” Fuzzy Sets and Systems, vol. 118, pp. 375-385, 
2001. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 5, May 2025, Pages 1003-1013

 
______________________________________________________________________________________ 




