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Abstract—Let A∗ = {z : z ∈ C, 1 < |z| < +∞}, and
consider the class MΣ(µ, λ, φ) of meromorphic bi-univalent
functions defined in A∗. This work focuses on deriving estimates
for the coefficients |b0|, |b1| and |b2| of functions in MΣ(µ, λ, φ),
utilizing the properties of meromorphic functions. The findings
presented here refine or extend certain results established by
earlier researchers.

Index Terms—analytic function, Meromorphic function, Bi-
univalent function, Coefficient bound.

I. INTRODUCTION

LET A = {z : z ∈ C, |z| < 1} and A0 = {z : z ∈
C, 0 < |z| < 1}. The set H comprises all analytic

functions defined in A that can be expressed as

f(z) = z +
∞∑
n=2

anz
n = z + a2z

2 + a3z
3 + · · · . (1)

where an are complex coefficients. An analytic function of
this form is said to be normalized. If, in addition, such
a function is univalent, it is referred to as a normalized
univalent analytic function. The class of all normalized
univalent analytic functions is denoted by S.

In[1], Srivastava et al. introduced the subclasses S∗(φ) and
C(φ) . For z ∈ A, let Cn be real numbers with C1 > 0, and
define

φ(z) = 1 +

∞∑
n=1

Cnz
n = 1 + C1z + C2z

2 + · · · (2)

where φ(z) maps A onto the right half-plane and is sym-
metric with respect to the real axis. The subclass S∗(φ) is
defined as

S∗(φ) = {f :
zf ′(z)

f(z)
≺ φ(z), f(z) ∈ H},

and the subclass C∗(φ) is defined as

C(φ) = {f :
1 + zf ′′(z)

f ′(z)
≺ φ(z), f(z) ∈ H}.

In [2], Liu investigated the subclass B(λ, α, σ, β) of ana-
lytic functions f which satisfied

(1−λ)(
f(z)

g(z)
)α+λ

zf ′(z)

g(z)
(
f(z)

g(z)
)α ≺ (

1 + βz

1− βz
)α, f(z) ∈ H.
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where parameters λ ≥ 0, α ≥ 0, 0 < |β| ≤ 1 and σ > 0.
when the parameters take specific values, for instance, λ =
1, β = 1, and δ = 1, the class reduces to the well-known
class of Bazilevič functions.

The famous Koebe 1/4-theorem asserts that if f is an an-
alytic univalent function in A, then the image f(A) contains
the disc A1/4 where A1/4 represents the open disc centered
at the origin with radius 1

4 .
The inverse function of f , denoted by h = f−1, is defined

by the following relations:

h(f(z)) = z, forz ∈ A,

and
f(h(w)) = w, forw ∈ Ar0 ,

where Ar0 = {w : |w| < r0(f), r0(f) ≥ 1
4}.

The calculation yields

h(w) = w +
∞∑
n=2

1

n
K−nn−1(a2, a3, ..., an)wn

= w− a2w
2 + (2a2− a3)w3− (5a3

2− 5a2a3 + a4)w4 + · · · ,

where K−nn−1 is the polynomial defined by the variables
a2, a3, ..., an as introduced in [3].

In [5], Lewin conducted a comprehensive investigation
into bi-univalent functions, establishing that for z ∈ A, and
f ∈ σ, both f(z) and its inverse h(w) are univalent. Building
upon Lewin’s foundational research, numerous scholars (see
[[6]-[10]]) have subsequently explored and derived the initial
coefficient bounds for this class of functions, significantly
advancing our understanding in this field.

Let A∗ = {z : z ∈ C, 1 < |z| <∞}. The class Σ consists
of all meromorphic univalent functions g defined on A∗ that
admit a Laurent series expansion of the form

g(z) = z +
∞∑
n=0

bn
zn
, forz ∈ A∗. (3)

If g ∈ Σ, then g possesses an inverse h = g−1, which can
be expressed as

h(w) = w +
∞∑
n=0

cn
wn

, forW ∈ A∗M , (4)

where A∗M = {w : M < |w| < ∞,M > 0} is the domain
h. The inverse function h satisfies the following relations:

h(g(z)) = z, forz ∈ A∗

and
g(h(w)) = w, forw ∈ A∗M .
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We say that g is the bi-univalent meromorphic function if
g ∈ Σ, h ∈ Σ. The class of the meromorphic bi-univalent
functions is denoted by MΣ. For g ∈ MΣ, the calculation
yields the following expression for the function h:

h(w) = w − b0 −
∞∑
n=1

1

n
Kn
n+1(b1, b2, ..., bn)wn

= w − b0 −
b1
w
− b2 + b0b1

w2
− b3 + 2b0b2 + b20b1 + b21

w3
· · · ,

(5)
where Kn

n+1 is the polynomial defined by the variables
b0, b1, b2, ..., bn in [4].

In 2013, Hamidi et al. [11] conducted an investigation into
the subclass BΣ(α, λ) ⊂MΣ, resulting in the estimation of
the coefficient |an|. Following this work, significant attention
has been devoted to the study of various subclasses of mero-
morphic bi-univalent functions, with numerous researchers
establishing initial coefficient bounds for these classes (see
[12]–[18]).

Definition 1.1: A functin g(z) of the form (2) is said to
g(z) ∈ MΣ(µ, λ,Φ), if λ and µ are non-negative and the
following subordination conditions hold:.

(1− λ)(
g(z)

z
)µ + λ

zg′(z)

g(z)
(
g(z)

z
)µ ≺ Φ(z), z ∈ A∗, (6)

and

(1− λ)(
h(w)

w
)µ + λ

wh′(w)

h(w)
(
h(w)

w
)µ ≺ Φ(w), w ∈ A∗M ,

(7)
where h(w) = g−1(w) is the inverse of g given by (5) and
Φ(z) = φ( 1

z ) is defined by (2) with the seres expansion

Φ(z) = φ(
1

z
) = 1 +

∞∑
n=1

Cn
zn
. (8)

By varying the parameters associated with the aforemen-
tioned definition, it is possible to ascertain that

(1) MΣ(µ, λ, z+(1−2α)
z−1 ) = MΣ(λ, µ, α) (see [10,11]);

(2) MΣ(µ, λ, ( z+1
z−1 )α) = Σ̃∗M (α, µ, λ) (see [13]);

(3) MΣ(1, λ, z+(1−2α)
z−1 ) = BΣ(α;λ) (see [14]);

(4) MΣ(β, 1, ( z+1
z−1 )α) = B(α;β) (see [15]);

(5) MΣ(0, 1, z+(1−2α)
z−1 ) = Σαβ(0 ≤ α < 1) (see[16]);

(6) MΣ(0, 1, ( z+1
z−1 )α) = Σ∗(α)(0 ≤ α < 1) (see [16]);

(7) MΣ(β, 1, ( z+1
z−1 )α) = ΣB(β, α)(0 ≤ α < 1) (see[16]);

(8) MΣ(0, 0, ( z+1
z−1 )α) = ˜̃Σ∗(α)(0 ≤ α < 1) (see [16]);

(9) MΣ(0, 1,Φ) = SΣ′ (φ) (see[17]).
The coefficient estimates of |b0|, |b1| and |b2| derived

in previous studies were suboptimal, primarily due to the
limited constraints imposed in their derivations. In this work,
we rigorously address these limitations by incorporating
more comprehensive restrictive conditions, thereby refining
and improving upon several existing results.

Consider the classP consisting of functionsp(z) = 1 +
∞∑
n=1

pnz
n, which are analytic in the domainAand fulfill

the requirement that the real part ofp(z) is positive, i.e.,
Rep(z) > 0. In [19], Goodman proved the following result.

Lemma 1.1: If n ≥ 1 be a fixed integer, z ∈ A,

p(z) = 1 +
∞∑
n=1

pnz
n ∈ P, then |pn| ≤ 2. This inequality is

sharp.

II. MAIN RESULTS AND PROOF

We first estimate the bounds on the coefficients |b0|, |b1|
and |b2| for functions in the class MΣ(µ, λ,Φ).

Theorem 2.1: Let g(z) ∈MΣ(µ, λ,Φ). Then the following
coefficient bounds hold:

(i) The coefficient b0 satisfies

|b0| ≤ min{ C1

|λ− µ|
,

√
2C1 + 2|C2 − C1|√
|(2λ− µ)(1− µ)|

,

C1

√
2C1√

|(2λ− µ)(1− µ)C2
1 − 2(C2 − C1)(λ− µ)2|

}; (9)

(ii) The coefficient b1 satisfies

|b1| ≤
C1

|2λ− µ|
; (10)

(iii) The coefficient b2 satisfies

|b2| ≤
C1+2|C2−C1|+|C1−2C2+C3|+

|(3λ−µ)(µ−1)(µ−2)C3
1
|

3(λ−µ)3

|3λ−µ| .
(11)

Proof: Let z ∈ A0. We define the functions:G and H as
follows:

G(z) = g(
1

z
) =

1

z
+
∞∑
n=0

bnz
n

and

H(w) = h(
1

w
) =

1

w
+
∞∑
n=0

bnw
n.

Consequently, (6) and (7) can be equivalently expressed as

(1−λ)(zG(z))µ−λzG
′(z)

G(z)
(zG(z))µ ≺ φ(z), (z ∈ A) (12)

and

(1− λ)(zH(w))µ + λ
wH ′(w)

H(w)
(
H(w)

w
)µ ≺ φ(w).(w ∈ A)

(13)
Since g ∈ MΣ(µ, λ,Φ), the definition of subordination

implies the existence of two Schwarz functions u, v : A→ A
satisfying

(1− λ)(zG(z))µ − λzG
′(z)

G(z)
(zg(z))µ = φ(u(z)), z ∈ A,

(14)
and

(1−λ)(zH(w))µ−λwH
′(w)

H(w)
(wH(w))µ = φ(v(w)), w ∈ A.

(15)
Using the Schwartz functions u and v, we define the

functions p and q in P as follows:

p(z) =
1 + u(z)

1− u(z)
= 1 + p1z + p2z

2 + p3z
3 + · · · (16)

and

q(w) =
1 + v(w)

1− v(w)
= 1 + q1w + q2w

2 + q3w
3 + · · · . (17)
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By expanding (16) and (17), we derive the series expansions
for u and v as

u(z) =
p(z)− 1

p(z) + 1
=

1

2
[p1z+(p2−

p2
1

2
)z2+(p3−p1p2+

1

4
p3

1)z3

+ · · ·], (18)

v(w) = v(w)−1
v(w)+1 = 1

2 [q1w + (q2 − q21
2 )w2 + (q3 − q1q2 + 1

4q
3
1)w3

+ · · ·]. (19)

Based on (14), (15), (18) and (19), we derive the following
expansions:

(1− λ)(zG(z))µ − λ zG
′(z)

G(z) (zg(z))µ = 1 +
∞∑
n=0

Fn+1(b0, b1, ..., bn)zn+1

which expands to

= 1− (λ− µ)b0z −
2(2λ− µ)b1 + (2λ− µ)(µ− 1)b20

2
z2 −

6(3λ−µ)b2+6(3λ−µ)(µ−1)b0b1+(3λ−µ)(µ−1)(µ−2)b30
6 z3

+ · · · , (20)

and

(1− λ)(zH(w))µ − λwH
′(w)

H(w) (wH(w))µ = 1 +
∞∑
n=0

Fn+1(c0, c1, ..., cn)wn+1

which expands to

= 1 + (λ− µ)b0w +
2(2λ− µ)b1 − (2λ− µ)(µ− 1)b20

2
w2 +

6(3λ−µ)b2−6(3λ−µ)(µ−2)b0b1+(3λ−µ)(µ−1)(µ−2)b30
6 w3

+ · · · . (21)

Additionally, we have the expansions for φ(u(z)) and
φ(v(w)):

φ(u(z)) = 1 +

∞∑
n=1

n∑
k=1

CkD
k
n(p1, p2, ..., pn)zn

which expands to

= 1 +
C1p1

2
z + (

C1p2

2
+
C2 − C1

4
p2

1)z2

+[
C1p3

2
+
C2 − C1

2
p1p2+

C1 − 2C2 + C3

8
p3

1]z3+· · · , (22)

and

φ(v(w)) = 1 +
∞∑
n=1

n∑
k=1

CkD
k
n(q1, q2, ..., qn)wn

which expands to

= 1 +
C1q1

2
w + (

C1q2

2
+
C2 − C1

4
q2
1)w2

+[
C1q3

2
+
C2 − C1

2
q1q2 +

C1 − 2C2 + C3

8
q3
1 ]w3 + · · · .

(23)
Here Fn+1 denotes the Faber polynomial of degree n+ 1 as
defined in [12] and for k ≤ n,

Dk
n(p1, p2, ..., pn) =

∑ k!pµ1

1 ...pµnn
µ1!...µn!

,

where the non-negative integers µ1, ..., µn satisfying the
following conditions(see[20]):

n∑
i=1

µi = k,
n∑
i=1

µi = n.

Consequently, the following relations can be derived by
comparing the initial coefficients.

−(λ− µ)b0 =
C1p1

2
, (24)

− 1
2 [2(2λ− µ)b1 + (2λ− µ)(µ− 1)b20] = 1

2C1p2 + C2−C1

4 p2
1,

(25)
−[(3λ−µ)b2+(3λ−µ)(µ−1)b0b1+

1

6
(3λ−µ)(µ−1)(µ−2)b30]

=
C1p3

2
+
C2 − C1

2
p1p2 +

C1 − 2C2 + C3

8
p3

1, (26)

(λ− µ)b0 =
C1q1

2
, (27)

1

2
[2(2λ−µ)b1− (2λ−µ)(µ−1)b20] =

1

2
C1q2 +

C2 − C1

4
q2
1 .

(28)
(3λ−µ)b2−(3λ−µ)(µ−1)b0b1+

1

6
(3λ−µ)(µ−1)(µ−2)b30

=
C1q3

2
+
C2 − C1

2
q1q2 +

C1 − 2C2 + C3

8
q3
1 . (29)

(i) From (24) and (27), we obtain the following relations:

p1 = −q1 (30)

and
b20 =

C2
1 (p2

1 + q2
1)

8(λ− µ)2
. (31)

Applying Lemma 1.1 in (31), we obtain

|b0| ≤
C1

|λ− µ|
. (32)

From (25) and (28), we get

(2λ−µ)(1−µ)b20 =
C1

2
(p2+q2)+

C2 − C1

4
(p2

1+q2
1). (33)

Applying Lemma 1.1 in (33), we obtain

|b0| ≤
√

2C1 + 2|C2 − C1|√
|(2λ− µ)(1− µ)|

. (34)

From (30), (31) and (33), we obtain

p2
1 =

2C1(λ− µ)2(p2 + q2)

(2λ− µ)(1− µ)C2
1 − 2(C2 − C1)(λ− µ)2

. (35)

From (31) and (35), we obtain

b20 =
C3

1 (p2 + q2)

2(2λ− µ)(1− µ)C2
1 − 4(C2 − C1)(λ− µ)2

. (36)

Applying Lemma 1.1 in (36) , we obtain

|b0| ≤
C1

√
2C1√

|(2λ− µ)(1− µ)C2
1 − 2(C2 − C1)(λ− µ)2|

.

(37)
Combined with (32), (34) and (37), we get the same value
of |b0| as Equation (7).

(ii) From (25) and (28), we obtain

2(2λ− µ)b1 = −C1(p2 − q2)

2
. (38)
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Applying Lemma 1.1 in (38) once again, we get

|b1| ≤
C1

|2λ− µ|
. (39)

Multiplying (25) by (28), we get

−4(2λ− µ)2b21 =
(C2 − C1)2

4
p2

1q
2
1 +

(C2 − C1)C1

2
·

(p2
1q2 + q2

1p2) + C2
1p2q2 − (2λ− µ)2(1− µ)2b40. (40)

Substituting (30), (31) into (40), and applying Lemma 1.1,
we can obtain

|b1| ≤
1

|2λ− µ|
·√

(C2 − C1)2 + 2|C2 − C1|C1 + C2
1 +

(2λ−µ)2(1−µ)2C4
1

4(λ−µ)4 .
(41)

Substituting (30), (33) into (40), from Lemma 1.1, we can
obtain

|b1| ≤
1

|2λ− µ|

√
2(C2 − C1)2 + 4C1|C2 − C1|+ 2C2

1 .

(42)
Substituting (36) into (40), from Lemma 1.1, we can obtain

|b1| ≤
1

|2λ− µ|
·

√
(C2 − C1)2 + 2|C2 − C1|C1 + C2

1 +
(2λ−µ)2(1−µ)2C6

1

[(2λ−µ)(1−µ)C2
1−2(C2−C1)(λ−µ)2]2

.

(43)
Adding the square of (31) to the square of (28), we obtain

4(2λ− µ)2b21 =
C2

1

2
(p2

2 + q2
2) +

(C2 − C1)2

8
(p4

1 + q4
1)

+
(C2 − C1)C1

2
(p2

1p2 + q2
1q2)− (2λ−µ)2(1−µ)2b40. (44)

From (40) and Lemma 1.1, we get

|−4(2λ−µ)2b21| ≤ |
(C2 − C1)2

4
p2

1q
2
1 |+|

(C2 − C1)C1

2
(p2

1q2

+q2
1p2)|+ |B2

1p2q2|+ |(2λ− µ)2(1− µ)2b40| ≤

4(C2−C1)2 + 8|C2−C1|C1 + 4C2
1 + (2λ−µ)2(1−µ)2b40.

(45)
From (44) and Lemma 1.1, we get

|4(2λ− µ)2b21| ≤ |
C2

1

2
(p2

2 + q2
2)|+ | (C2 − C1)2

8
(p4

1 + q4
1)|+

| (C2 − C1)C1

2
(p2

1p2 +q2
1q2)|+|(2λ−µ)2(1−µ)2b40| ≤ 4(C2

−C1)2 +8|(C2−C1)|C1 +4C2
1 +(2λ−µ)2(1−µ)2b40. (46)

It can be demonstrated that the two sides of equations
(45) and (46) are identical. Now, substituting (31), (33)
and (36) into (46) respectively yields (41), (42) and (43).
Consequently, by applying the aforementioned methodology
to (39), (41) and (43), we arrive at the following results:

|b1| ≤ min{ C1

|2λ− µ|
,

1

|2λ− µ|
·

√
(C2 − C1)2 + 2|C2 − C1|C1 + C2

1 +
(2λ−µ)2(1−µ)2C4

1

4(λ−µ)4 , 1
|2λ−µ| ·

√
|(C2 − C1)2|+ 2|C2 − C1|C1 + C2

1 +
(2λ−µ)2(1−µ)2B6

1

[(2λ−µ)(1−µ)C2
1−2(C2−C1)(λ−µ)2]2

,

1
2|λ−µ|

√
2(C2 − C1)2 + 4|C2 − C1|C1 + 2C2

1 = C1

|2λ−µ| .

(iii) Subtracting (26) from (29), we have

2(3λ− µ)b2 +
1

3
(3λ− µ)(µ− 1)(µ− 2)b30 =

C1

2 (q3 − p3) + C2−C1

2 (q1q2 − p1p2) + C1−2C2+C3

8 (q3
1 − p3

1).

(47)
From (24), we have

b0 = − C1p1

2(λ− µ)
. (48)

Considering (30) and (48), we obtain from (47) that

2(3λ− µ)b2 =
C1

2
(q3 − p3)− C2 − C1

2
(p2 + q2)p1

−C1 − 2C2 + C3

4
p3

1 +
(3λ− µ)(µ− 1)(µ− 2)C3

1p
3
1

24(λ− µ)3
. (49)

Applying Lemma 1.1 to the above equation and perform-
ing a simple calculation yields the result of (iii).

III. MAIN COROLLARIES

By varying µ, λ and φ in MΣ(µ, λ,Φ), we can derive
some interesting results that build upon the insights of
existing research. Some of these findings confirm previous
conclusions, while others correct some previous research
errors.

By setting λ = 1 in Theorem 2.1, we obtain the following
corollary.

Corollary 3.1: ([11]) Let g(z) ∈MΣ(µ, 1,Φ). Then

|b0| ≤ min{
C1

|1− µ|
,

√
2C1 + 2|C2 − C1|√
|(2− µ)(1− µ)|

,

C1

√
2C1√

|(2− µ)(1− µ)B2
1 − 2(C2 − C1)(1− µ)2|

}.

|b1| ≤
C1

|2− µ|
.

Let Φ(z) = z+(1−2α)
z−1 = 1+ 2(1−α)

z + 2(1−α)
z2 + · · · for0 ≤

α < 1. Then C1 = C2 = 2(1 − α). From Theorem 2.1, we
derive the following result.

Corollary 3.2: Let g(z) ∈MΣ(µ, λ, z+(1−2α)
z−1 ). Then,

|b0| ≤


2
√

1−α√
|(2λ−µ)(1−µ)|

, 0 ≤ α < 1− (λ−µ)2

|(2λ−µ)(1−µ)| ;

2(1−α)
|λ−µ| , 0 ≤ 1− (λ−µ)2

|(2λ−µ)(1−µ)| ≤ α < 1,

and
|b1| ≤

2(1− α)

|2λ− µ|
.

From Corollary 3.2, we further obtain the following result.
Corollary 3.3: Let g(z) ∈MΣ(1, λ, z+(1−2α)

z−1 ). Then

|b0| ≤ 2(1−α)
|λ−1| and |b1| ≤ 2(1−α)

|2λ−1| .

Remark 3.1: Two coefficient estimates for Corollary 3.2
are the same as those for Theorem 3.2 in [12]. Also, the
conclusion of Corollary 3.3 is the same as that of Theorem
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1.2 in [14].

Corollary 3.4: Let g(z) ∈ MΣ(0, 1, z+(1−2α)
z−1 ) =

Σαβ (0 ≤ α < 1).
Then

|b0| ≤
{ √

2(1− α), 0 ≤ α < 1
2 ;

2(1− α), 1
2 ≤ α < 1,

and
|b1| ≤ 1− α.

Remark 3.2: The estimates of |b0| in Corollary 3.4 is
better than that given by Theorem 1 in [16]. |b1| has the
same situation.

Let Φ(z) = ( z+1
z−1 )α = 1 + 2α

z + 2α2

z2 + 4α3+2α
3

1
z3 +

· · · for0 ≤ α ≤ 1. Then C1 = 2α,C2 = 2α2. From
Theorem 2.1, we derive the following result.

Corollary 3.5: Let g(z) ∈ MΣ(µ, λ, ( z+1
z−1 )α) =

Σ̃∗M (α, µ, λ). Then

|b0| ≤ min{ 2α
|λ−µ| ,

2
√

2α−α2√
|(2λ−µ)(1−µ)

, 2α√
|(2λ−µ)(1−µ)α+(1−α)(λ−µ)2|

}

and
|b1| ≤

2α

|2λ− µ|
.

Remark 3.3: The estimate of the coefficient |b0| in
Corollaries 3.5 improves upon the result given in [13].

Corollary 3.6: g(z) ∈MΣ(β, 1, ( z+1
z−1 )α) = B(α;β). Then

|b0| ≤ min{ 2α
|1−β| ,

2
√
−α2+2α√

|(2−β)(1−β)|
, 2α√
|(2−β)(1−β)α+(1−α)(1−β)2|

},

|b1| ≤
2α

|2− β|
.

By setting β = 0 in Corollary 3.6, we obtain the following
result.

Corollary 3.7: Let 0 ≤ α < 1, g(z) ∈
MΣ(0, 1, ( z+1

z−1 )α) = Σ∗(α). Then

|b0| ≤ min{2α,
√
−2α2 + 4α,

2α√
1 + α

} =
2α√
1 + α

and
|b1| ≤ α.

Remark 3.4: The estimates for |b0| and |b1| given in
Corollary 3.6 improve upon those given in Theorem 2 in [15]
and Theorem 3 in [16]. Specifically,Theorem 2 obtained by
Halim in [14] states that If g ∈ Σ∗(α) with 0 < α ≤ 1, then
|b0| ≤ 2α and |b1| ≤

√
5α2. However, Corollary 3.7 shows

that the estimate for |b1| is incorrect, and the correct bound
is |b1| ≤ α. Thus, the coefficient estimates in Corollary 3.7
are superior to those in Theorem 2 of [16].
Corollary 3.8: Let g(z) ∈MΣ(0, 1,Φ) = SΣ′ (Φ). Then

|b0| ≤ C1, |b1| ≤
C1

2
,

and

|b2| ≤
1

3
(C1 + 2|C2 − C1|+ |C1 − 2C2 + C3|+ C3

1 ).

Remark 3.5: The estimates for |b0| and |b2| in Corollary
3.8 agree with the bounds given by Murugusundaramoorthy
et al. [[17], Theorem 2.4(i), (iii)], However, the estimate for

|b1| in Corolly is sharper than the result in Theorem 2.4(ii)
of [17]. This demonstrates that the results in Corollary 3.8
are superior to those in Theorem 2.4 of [17].

IV. CONCLUSION

This paper first determines an accurate estimate of coeffi-
cients for the meromorphic real part function. This estimate
was used as a lemma to study a more extensive class of
Bazilevič functions and obtain more accurate estimates of
the initial coefficients for this class of functions. This paper
not only optimises the conclusions of relevant papers but also
corrects an erroneous result in Halim’s paper (see Theorem
2 in [16]).
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