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Abstract—Uncertain differential equations (UDEs) are a spe-
cific type of differential equations that are influenced by Liu
processes. The application of UDEs requires careful consider-
ation of statistical inference, and various techniques have been
suggested by researchers to calculate the unknown parameters.
However, there is limited discussion in the existing literature
regarding the asymptotic characteristics of these estimators.
This study focuses on the estimation of parameter for un-
certain intelligent transportation system described by UDEs
based on discrete observations. Initially, we define the least
squares estimator, followed by the derivation of consistency and
asymptotic distribution of the drift parameter. We then provide
the uncertain Hyperbolic model as an illustrative example
and present numerical demonstrations to clarify the proposed
approach.

Index Terms—UDEs; parameter estimation; Liu process;
difference equation; implicit Euler scheme

I. INTRODUCTION

Intelligent transportation originated from people’s reflec-
tions on traditional problems such as traffic congestion,
frequent accidents and low efficiency. In the early days, with
the rise of computer technology and communication technol-
ogy, preliminary concepts such as intelligent traffic signal
control began to emerge. During the development process,
various technologies such as sensors, cameras and satellite
positioning are used to collect traffic data. Cloud computing
and big data analysis technologies process massive amounts
of data to realize functions such as traffic flow prediction and
intelligent route planning. At the same time, the development
of vehicle networking technology enables communication
between vehicles and between vehicles and infrastructure.
Therefore, many scholars have studied the intelligent trans-
portation systems. For example, Gong et al. ( [10]) surveyed
edge intelligence in intelligent transportation systems. Chen
et al. ( [6]) proposed energy-efficient and regenerative energy
recovery schemes for sustainable intelligent transportation
system using the Artificial societies, computational exper-
iments, parallel execution framework. Dilek and Dener (
[7]) examined computer vision applications in the literature,
the machine learning and deep learning methods used in
intelligent transportation systems applications.
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Statistical inference holds great significance in modeling
stochastic models and has garnered attention from numerous
researchers. For example, Zhang et al. ( [27]) introduced a
numerical technique to identify the structure and estimate
line parameters without prior knowledge of voltage angles.
Maldonado et al. ( [20]) utilized a sequential Bayesian
approach to infer parameters in stochastic dynamic load
models. Zhang et al. ( [28]) delved into the joint estimation of
states and parameters in a specific nonlinear bilinear systems
category. Ji and Kang ( [13]) explored novel methods for
on-line parameter estimation in nonlinear systems. Escobar
et al. ( [9]) proposed various strategies to tackle param-
eter estimation challenges in stochastic systems operating
continuously. Ding ( [8]) analyzed the characteristics of
two different least squares techniques that effectively handle
white and colored noise disturbances using conventional
methodologies prevalent in the field. Shin and Park ( [22])
utilized a generator-regularized continuous conditional gen-
erative adversarial network to estimate uncertain parameters.
Amorino et al. ( [1]) introduced a contrast function to
estimate parameters in a stochastic McKean-Vlasov equa-
tion. Mehmood and Raja ( [21]) investigated evolutionary
heuristics of weighted differential evolution for parameter
estimation in the Hammerstein-Wiener model. Brusa et al.
( [4]) proposed an evolutionary optimization approach to
streamline approximate maximum likelihood estimation in
discrete models. In real-world scenarios, factors such as
uncertain communication environments like population dy-
namics with time lag necessitate dealing with time delays. As
a result, parameter estimation for stochastic delay differential
equations has garnered significant interest in recent decades.
Berezansky and Braverman ( [3]) discussed the estimation
of solutions for delay linear differential equations. Benke
and Pap ( [2]) examined the convergence properties of the
maximum likelihood estimator. Liu and Jia ( [17]) utilized the
moments method to calculate parameter values from discrete
solution observations. Zhu et al. ( [29]) explored identifying
parameters in a reaction-diffusion rumor propagation system
with time delay. Jamilla et al. ( [12]) employed a genetic al-
gorithm with multi-parent crossover to estimate parameters in
three neutral delay differential equation models with discrete
delay. Wei ( [23]) derived the consistency and asymptotic
distribution of the estimator under condition of two types of
small noises.

Stochastic differential equations may not accurately rep-
resent certain time-varying systems like stock prices. As a
result, Liu ( [15]) developed uncertainty theory, which was
later refined by Liu ( [16]) based on normality, duality,
subadditivity, and product axioms. Recent literature has dis-
cussed parameter estimation for uncertain differential equa-
tions (UDEs). For instance, Li et al. ( [14]) presented three
methods for parameter estimation in UDEs using discrete
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observational data. Chen et al. ( [5]) applied the method of
moments to estimate parameters in an uncertain SIR model,
devising a numerical solution algorithm. Liu ( [18]) utilized
generalized moment estimation techniques. Yang et al. ( [25])
applied the α-path method for parameter estimation. Liu
and Yang ( [19]) proposed moment estimations for unknown
parameters using Euler method approximation for high-order
UDEs. Wei ( [24]) employed a contrast function to derive
least squares estimators for an uncertain Vasicek model.
Ye and Liu ( [26]) suggested a method for determining if
an uncertain differential equation adequately fits observed
data or not. He et al. ( [11]) formulated an algorithm
for estimating parameters in a specific uncertain fractional
differential equation.

Despite recent advancements in parameter estimation for
UDEs, the asymptotic characteristics of the estimators remain
unexplored. To address this gap, this study examines parame-
ter estimation for intelligent transportation systems described
by UDEs with a small dispersion coefficient from discrete
observations. We establish the consistency and asymptotic
distribution of the estimator, presenting the uncertain Hyper-
bolic model as a case study with accompanying simulations.
The paper is structured as follows: Section 2 outlines the
problem formulation and details the least squares estima-
tor based on the contrast function. Section 3 focuses on
determining the asymptotic properties of the least squares
estimator. Section 4 includes the uncertain Hyperbolic model
as an illustrative example along with simulation results.

II. PRELIMINARIES

Firstly, we give some definitions about uncertain variables
and Liu process.

Definition 1: ( [15], [16]) Let L be a σ-algebra on a
nonempty set Γ. A set function M : L → [0, 1] is called
an uncertain measure if it satisfies the following axioms:
Axiom 1: (Normality Axiom) M(Γ) = 1 for the universal
set Γ.
Axiom 2: (Duality Axiom) M(Λ) +M(Λc) = 1 for any
event Λ.
Axiom 3: (Subadditivity Axiom) For every countable se-
quence of events Λ1, Λ2, · · · ,

M{
∞⋃
i=1

Λi} ≤
∞∑
i=1

M{Λi}.

Axiom 4: (Product Axiom) Let (Γk,Lk,Mk) be uncertainty
spaces for k = 1, 2, · · · . Then the product uncertain measure
M is an uncertain measure satisfying

M{Π∞k=1Λk} = min
k≥1
Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k =
1, 2, · · · .

An uncertain variable ξ is a measurable function from the
uncertainty space (Γ,L,M) to the set of real numbers.

Definition 2: ( [15]) For any real number x, let ξ be an
uncertain variable and its uncertainty distribution is defined
by

Φ(x) =M(ξ ≤ x).

In particular, an uncertain variable ξ is called normal if it
has an uncertainty distribution

Φ(x) = (1 + exp(
π(µ− x)√

3σ
))−1, x ∈ <,

denoted by N (µ, σ). If µ = 0, σ = 1, ξ is called a standard
normal uncertain variable.

Definition 3: ( [16]) An uncertain process Ct is called a
Liu process if
(i) C0 = 0 and almost all sample paths are Lipschitz contin-
uous, (ii) Ct has stationary and independent increments, (iii)
the increment Cs+t−Cs has a normal uncertainty distribution

Φt(x) = (1 + exp(
−πx√

3t
))−1, x ∈ <.

Moreover, a real-valued function Xα
t is called the α-

path of above uncertain differential equation if it solves the
corresponding ordinary differential equation

dXα
t = h(t,Xα

t , X
α
t−τ )dt+ |w(t,Xα

t , X
α
t−τ )|Φ−1(α)dt,

where

Φ−1(α) =

√
3

π
ln

α

1− α
, α ∈ (0, 1).

The UDEs considered in this paper is described as follows:{
dXt =a(Xt, θ)dt+ εdCt, t ∈ [0, 1],

X0 =x0,
(1)

where θ ∈ Θ is an unknown parameter. ε ∈ (0, 1], Ct is
a Liu process. We assume that {Xt, t ≥ 0} is observed at
{ti = i

n , i = 1, 2, · · · , n}.
Note that, the contrast function is

ρn,ε(θ) =
n∑
i=1

|Xti −Xti−1
− a(Xti−1

, θ)∆ti−1|2

ε2∆ti−1
, (2)

where ∆ti−1 = ti − ti−1 = 1
n .

Hence, the least squares estimator could be written as

θ̂n,ε = arg min
θ∈Θ

ρn,ε(θ). (3)

Let
Ψn,ε(θ) = ε2(ρn,ε(θ)− ρn,ε(θ0)), (4)

where θ0 is the true parameter value.
We have

θ̂n,ε = arg min
θ∈Θ

Ψn,ε(θ). (5)

III. MAIN RESULTS AND PROOFS

Suppose X0 = (X0
t , t ≥ 0) is the solution to the given

ordinary differential equation:

dX0
t = a(X0

t , θ0)dt, X0
0 = x0. (6)

We introduce some assumptions as follows:
Assumption 1: For x, y ∈ R, θ ∈ Θ, there exists some

positive constants K1 and K2 satisfying

|a(x, θ)− a(y, θ)| ≤ K1|x− y|, |a(x, θ)| ≤ K2(1 + |x|).

Assumption 2:

θ 6= θ0 ⇐⇒ a(X0
t , θ) 6= a(X0

t , θ0).

Assumption 3:

|∂θa(x, θ)|+ |∂θθa(x, θ)| ≤ L(1 + |x|),
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where L > 0 is a constant, ∂θa(x, θ) and ∂θθa(x, θ) denote
the once and twice differential of θ respectively.

Now, we give some important lemmas.
Denote

Rn,εt = X [nt]
n
, (7)

where [nt] is the integer part of nt.
Lemma 1: As ε→ 0, n→∞,

sup
0≤t≤1

|Xt −X0
t |

P→ 0.

Proof: Note that

Xt −X0
t =

∫ t

0

(a(Xs, θ0)− a(X0
s , θ0))ds+ εCt. (8)

Then, by using Cauchy-Schwarz inequality, we obtain

|Xt −X0
t |2

≤ 2|
∫ t

0

(a(Xs, θ0)− a(X0
s , θ0))ds|2 + 2ε2|Ct|2

≤ 2t

∫ t

0

|a(Xs, θ0)− a(X0
s , θ0)|2ds+ 2ε2 sup

0≤t≤1
|Ct|2

≤ 2K2
1 t

∫ t

0

|Xs −X0
s |2ds+ 2ε2 sup

0≤t≤1
|Ct|2.

Thus, with the help of Gronwall’s inequality, we have

|Xt −X0
t |2 ≤ 2ε2e2K2

1 sup
0≤t≤1

|Ct|2. (9)

Hence,

sup
0≤t≤1

|Xt −X0
t | ≤

√
2εeK

2
1 sup

0≤t≤1
|Ct|. (10)

Therefore,
sup

0≤t≤1
|Xt −X0

t |
P→ 0, (11)

as ε→ 0 and n→∞.
Since [nt]

n → t as n → ∞, according to Lemma 1, we
have

Rn,εt
P→ X0

t . (12)

Lemma 2: As ε→ 0 and n→∞,

1

n

n∑
i=1

a(Xti−1
, θ)

P→
∫ 1

0

a(X0
t , θ)dt.

Proof: Since

sup
θ
| 1
n

n∑
i=1

a(Xti−1 , θ)−
∫ 1

0

a(X0
t , θ)dt|

= sup
θ
|
∫ 1

0

a(Rn,εt , θ)dt−
∫ 1

0

a(X0
t , θ)dt|

≤ sup
θ

∫ 1

0

|a(Rn,εt , θ)− a(X0
t , θ)|dt

≤ K1

∫ 1

0

|Rn,εt −X0
t |dt

≤ K1 sup
0≤t≤1

|Rn,εt −X0
t |,

we have

sup
θ
| 1
n

n∑
i=1

a(Xti−1
, θ)−

∫ 1

0

a(X0
t , θ)dt|

P→ 0, (13)

as ε→ 0 and n→∞.
Therefore,

1

n

n∑
i=1

a(Xti−1
, θ)

P→
∫ 1

0

a(X0
t , θ)dt, (14)

as ε→ 0 and n→∞.
Lemma 3: As ε→ 0 and n→∞,

n∑
i=1

a(Xti−1
, θ)(Cti − Cti−1

)
P→

∫ 1

0

a(X0
t , θ)dCt.

Proof: Note that

n∑
i=1

a(Xti−1
, θ)(Cti − Cti−1

) =

∫ 1

0

a(Rn,εt , θ)dCt. (15)

Then, for each sample γ and any given η > 0,

P (|
∫ 1

0

a(Rn,εt (γ), θ)dCt −
∫ 1

0

a(X0
t (γ), θ)dCt| > η)

≤ K(γ)

η

∫ 1

0

E[|a(Rn,εt (γ), θ)− a(X0
t (γ), θ)|]dt

≤ K(γ)K1

η

∫ 1

0

E[|Rn,εt (γ)−X0
t (γ)|]dt

→ 0,

where K(γ) is the Lipschitz constant.
Therefore,

n∑
i=1

a(Xti−1 , θ)(Cti − Cti−1)
P→

∫ 1

0

a(X0
t , θ)dCt, (16)

as ε→ 0 and n→∞.
Theorem 1: As ε→ 0 and n→∞,

θ̂n,ε
P→ θ0.

Proof: Note that

ε2(ρn,ε(θ)− ρn,ε(θ0))

=
n∑
i=1

−(Xti −Xti−1
− 1

n
a(Xti−1

, θ) +Xti −Xti−1

− 1

n
a(Xti−1 , θ0))(a(Xti−1 , θ)− a(Xti−1 , θ0))

= −2
n∑
i=1

(a(Xti−1 , θ)− a(Xti−1 , θ0))(Xti −Xti−1

− 1

n
a(Xti−1

, θ0))

+
1

n

n∑
i=1

(a(Xti−1
, θ)− a(Xti−1

, θ0))2.

Since

Xti −Xti−1
=

∫ ti

ti−1

a(Xs, θ0)ds+ ε(Cti − Cti−1
), (17)
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we have
n∑
i=1

(a(Xti−1 , θ)− a(Xti−1 , θ0))

(Xti −Xti−1
− 1

n
a(Xti−1

, θ0))

=
n∑
i=1

∫ ti

ti−1

(a(Xti−1
, θ)− a(Xti−1

, θ0))

(a(Xs, θ0)− a(Xti−1
, θ0))ds

+ε
n∑
i=1

(a(Xti−1
, θ)− a(Xti−1

, θ0))(Cti − Cti−1
)

=

∫ 1

0

(a(Rn,εs , θ)− a(Rn,εs , θ0))

(a(Xs, θ0)− a(Rn,εs , θ0))ds

+ε

∫ 1

0

(a(Rn,εs , θ)− a(Rn,εs , θ0)dCs.

Then, we obtain

sup
θ
|
∫ 1

0

(a(Rn,εs , θ)− a(Rn,εs , θ0))

(a(Xs, θ0)− a(Rn,εs , θ0))ds|

≤
∫ 1

0

sup
θ

(|a(Rn,εs , θ)|+ |a(Rn,εs , θ0)|)

K1|Xs −Rn,εs |ds

≤ 2K1K2

∫ 1

0

(1 + |Rn,εs |)|Xs −Rn,εs |ds

≤ 2K1K2

∫ 1

0

(1 + |Rn,εs |)(|Xs −X0
s |

+|Rn,εs −X0
s |)ds

≤ 2K1K2(1 + sup
0≤s≤1

|Xs|)( sup
0≤s≤1

|Xs −X0
s |

+ sup
0≤s≤1

|Rn,εs −X0
s |).

As Xs
P→ X0

s and Rn,εs
P→ X0

s , we have∫ 1

0

(a(Rn,εs , θ)− a(Rn,εs , θ0))

(a(Xs, θ0)− a(Rn,εs , θ0))ds
P→ 0,

as ε→ 0 and n→∞.
For each sample γ and any given η > 0,

P (|ε
∫ 1

0

(a(Rn,εs , θ)− a(Rn,εs , θ0))dCs| > η)

≤ εK(γ)

η

∫ 1

0

E[|a(Rn,εs , θ)− a(Rn,εs , θ0)|]ds

≤ εK(γ)

η

∫ 1

0

E[2K2(1 + |Rn,εs |)]ds→ 0, (18)

as ε→ 0 and n→∞.
Hence,

ε

∫ 1

0

(a(Rn,εs , θ)− a(Rn,εs , θ0))dCs
P→ 0, (19)

as ε→ 0 and n→∞.

Therefore,
n∑
i=1

(a(Xti−1
, θ)− a(Xti−1

, θ0))

(Xti −Xti−1 −
1

n
a(Xti−1 , θ0))

P→ 0,

as ε→ 0 and n→∞.
According to Lemma 2, we obtain

1

n

n∑
i=1

(a(Xti−1 , θ)− a(Xti−1 , θ0))2

P→
∫ 1

0

(a(X0
t , θ)− a(X0

t , θ0))2dt,

as ε→ 0 and n→∞.
Then, we have

ε2(ρn,ε(θ)− ρn,ε(θ0))
P→

∫ 1

0

(a(X0
t , θ)− a(X0

t , θ0))2dt,

(20)
as ε→ 0 and n→∞.

By using Assumption 2 and the continuity of X0
t , for each

δ > 0, we get

inf
|θ−θ0|>δ

∫ 1

0

(a(X0
t , θ)− a(X0

t , θ0))2dt

>

∫ 1

0

(a(X0
t , θ0)− a(X0

t , θ0))2dt = 0.

Therefore,
θ̂n,ε

P→ θ0, (21)

as ε→ 0 and n→∞.

Theorem 2: As ε→ 0, n→∞ and nε→∞,

ε−1(θ̂n,ε − θ0)
d→

∫ 1

0
∂θa(X0

t , θ0)dCt∫ 1

0
(∂θa(X0

t , θ0))2dt

Proof: Since

dε2(ρn,ε(θ)− ρn,ε(θ0))

dθ

= −2
n∑
i=1

∂θa(Xti−1 , θ)(Xti −Xti−1

−a(Xti−1
, θ)∆ti−1),

and

ε−1
n∑
i=1

∂θa(Xti−1
, θ0)(Xti −Xti−1

−a(Xti−1 , θ0)∆ti−1)

= ε−1
n∑
i=1

∂θa(Xti−1 , θ0)∫ ti

ti−1

(a(Xs, θ0)− a(Xti−1
, θ0))ds

+
n∑
i=1

∂θa(Xti−1
, θ0)(Cti − Cti−1

).

According to Lemma 3, we obtain
n∑
i=1

∂θa(Xti−1
, θ0)(Cti − Cti−1

)
P→

∫ 1

0

∂θa(X0
t , θ0)dCt,

(22)
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as ε→ 0, n→∞.
For s ∈ [ti−1, ti], we have

Xs −Xti−1 =

∫ s

ti−1

a(Xv, θ0)dv + ε(Cs − Cti−1)

=

∫ s

ti−1

(a(Xv, θ0)− a(Xti−1
, θ0))dv

+a(Xti−1 , θ0)(s− ti−1) + ε(Cs − Cti−1).

By using the Cauchy-Schwarz inequality, we get

|Xs −Xti−1 |2 ≤ 2|
∫ s

ti−1

(a(Xv, θ0)− a(Xti−1 , θ0))dv|2

+2(|a(Xti−1
, θ0)|(s− ti−1)

+ε|Cs − Cti−1
|)2

≤ 2K2
1

n

∫ s

ti−1

|Xv −Xti−1
|2dv

+2(
1

n
|a(Xti−1 , θ0)|

+ε sup
ti−1≤s≤ti

|Cs − Cti−1
|)2.

With the help of Gronwall’s inequality, we have

|Xs −Xti−1
|2 ≤ 2(

1

n
|a(Xti−1

, θ0)

+ε sup
ti−1≤s≤ti

|Cs − Cti−1
|)2e

2K2
1

n (s−ti−1).

Then,

sup
ti−1≤s≤ti

|Xs −Xti−1
| ≤
√

2(
1

n
|a(Xti−1

, θ0)

+ε sup
ti−1≤s≤ti

|Cs − Cti−1
|)e

K2
1

n2 .

Hence,

|ε−1
n∑
i=1

∂θa(Xti−1 , θ0)∫ ti

ti−1

(a(Xs, θ0)− a(Xti−1
, θ0))ds|

≤ ε−1
n∑
i=1

|∂θa(Xti−1
, θ0)|

|
∫ ti

ti−1

(a(Xs, θ0)− a(Xti−1
, θ0))ds|

≤ ε−1K1

n∑
i=1

|∂θa(Xti−1
, θ0)|

∫ ti

ti−1

|Xs −Xti−1
|ds

≤ K1

nε

n∑
i=1

|∂θa(Xti−1
, θ0)| sup

ti−1≤s≤ti
|Xs −Xti−1

|

≤
√

2K1e
K2

1
n2

nε

1

n

n∑
i=1

|∂θa(Xti−1 , θ0)||a(Xti−1 , θ0)|

+

√
2K1e

K2
1

n2

n

n∑
i=1

|∂θa(Xti−1 , θ0)|

sup
ti−1≤s≤ti

|Cs − Cti−1
|.

Since

1

n

n∑
i=1

|∂θa(Xti−1 , θ0)||a(Xti−1 , θ0)| ≤ LK2(1+ sup
0≤t≤1

|Xt|).

(23)
When ε→ 0, n→∞ and nε→∞, we have
√

2K1e
K2

1
n2

nε

1

n

n∑
i=1

|∂θa(Xti−1
, θ0)||a(Xti−1

, θ0)| P→ 0. (24)

As
1

n

n∑
i=1

sup
ti−1≤s≤ti

|Cs − Cti−1
| P→ 0, (25)

we have
√

2K1e
K2

1
n2

n

n∑
i=1

|∂θa(Xti−1
, θ0)| sup

ti−1≤s≤ti
|Cs − Cti−1

|

≤
√

2K1e
K2

1
n2 L(1 + sup

0≤t≤1
|Xt|)

1

n

n∑
i=1

sup
ti−1≤s≤ti

|Cs − Cti−1
|

P→ 0.

Therefore,

ε−1
n∑
i=1

∂θa(Xti−1
, θ0)(Xti −Xti−1

−a(Xti−1 , θ0)∆ti−1)

P→
∫ 1

0

∂θa(X0
t , θ0)dCt.

Then,

ε−1∂θΨn,ε(θ0)
P→

∫ 1

0

∂θa(X0
t , θ0)dCt. (26)

Note that

∂θΨn,ε(θ0) = ∂θΨn,ε(θ̂n,ε)

+∂θθΨn,ε(θ̂n,ε + δ(θ0 − θ̂n,ε))(θ0 − θ̂n,ε),

where δ ∈ [0, 1].
Since ∂θΨn,ε(θ̂n,ε)=0, we get

∂θΨn,ε(θ0) = ∂θθΨn,ε(θ̂n,ε+δ(θ0− θ̂n,ε))(θ0− θ̂n,ε), (27)

Note that

∂θθΨn,ε(θ0)

= −2
n∑
i=1

[∂θθa(Xti−1
, θ0)(Xti −Xti−1

−a(Xti−1
, θ0)∆ti−1)

−∆ti−1(∂θa(Xti−1
, θ0))2]

= −2
n∑
i=1

∂θθa(Xti−1
, θ0)(Xti −Xti−1

−a(Xti−1 , θ0)∆ti−1)

+2

n∑
i=1

∆ti−1(∂θa(Xti−1 , θ0))2.

According to Lemma 2, we have
n∑
i=1

∆ti−1(∂θa(Xti−1 , θ0))2 P→
∫ 1

0

(∂θa(X0
t , θ0))2ds, (28)
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as ε→ 0 and n→∞.
As

n∑
i=1

∂θθa(Xti−1
, θ0)(Xti −Xti−1

− a(Xti−1
, θ0)∆ti−1)

=
n∑
i=1

∂θθa(Xti−1
, θ0)

∫ ti

ti−1

(a(Xs, θ0)− a(Xti−1
, θ0))ds

+ε
n∑
i=1

∂θθa(Xti−1 , θ0)(Cti − Cti−1). (29)

By applying Lemma 3, we obtain

ε
n∑
i=1

∂θθa(Xti−1 , θ0)(Cti − Cti−1)
P→ 0, (30)

as ε→ 0 and n→∞.
Then, we have
n∑
i=1

∂θθa(Xti−1 , θ0)

∫ ti

ti−1

(a(Xs, θ0)− a(Xti−1 , θ0))ds
P→ 0,

(31)
as ε→ 0 and n→∞.

Hence,
n∑
i=1

∂θθa(Xti−1 , θ0)(Xti−Xti−1−a(Xti−1 , θ0)∆ti−1)
P→ 0,

(32)
as ε→ 0 and n→∞.

Then,

∂θθΨn,ε(θ0)
P→

∫ 1

0

(∂θa(X0
t , θ0))2ds, (33)

as ε→ 0 and n→∞.
With the help of Theorem 1, we get

ε−1(θ̂n,ε − θ0)
d→

∫ 1

0
∂θa(X0

t , θ0)dCt∫ 1

0
(∂θa(X0

t , θ0))2dt
, (34)

as ε→ 0 and n→∞.
The proof is complete.

IV. EXAMPLE

Consider the following uncertain Hyperbolic model: dXt =θ
Xt√

1 +X2
t

dt+ εdCt, t ∈ [0, 1],

X0 =x0,

(35)

where θ ∈ Θ is an unknown parameter. ε ∈ (0, 1], Ct is a
Liu process.

Since

|θ x√
1 + x2

− θ y√
1 + y2

| ≤ 2|θ||x− y|, (36)

|θ x√
1 + x2

| ≤ |θ||1 + x|, (37)

|∂θ(θ
x√

1 + x2
)|+ |∂θθ(θ

x√
1 + x2

)| = | x√
1 + x2

| ≤ |1+x|,
(38)

the coefficients of (46) satisfy Assumptions 1-4.
Then, we have

θ̂n,ε
P→ θ0, (39)

and

ε−1(θ̂n,ε − θ0)
d→

∫ 1

0
X0

t√
1+X0

t

dCt∫ 1

0
(X0

t )2

1+X0
t
dt

. (40)

It is easy to check that

θ̂n,ε =

∑n
i=1

(Xti
−Xti−1

)Xti−1√
1+X2

ti−1

1
n

∑n
i=1

X2
ti−1

1+X2
ti−1

. (41)

Estimating the parameter θ̂n,ε utilizing the discrete sample
(Xti)i=0,1,...,n, with the initial value x0 = 0.1. When
ε = 0.5 in Table 1, ε equals 0.1 in Table 2 and ε = 0.05
in Table 3, analysis of the simulation data indicates that
with sufficient sample size n and sufficiently small ε, the
estimated parameter closely approximates the true value.

TABLE I
LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF θ̂n,ε , ε = 0.5

True Average Value Absolute Error

θ0 Size n θ̂n,ε |θ0 − θ̂n,ε|

1

1000 1.1836 0.1836

2000 1.1579 0.1579

5000 1.1228 0.1228

TABLE II
LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF θ̂n,ε , ε = 0.1

True Average Value Absolute Error

θ0 Size n θ̂n,ε |θ0 − θ̂n,ε|

1

1000 1.0469 0.0469

2000 1.0253 0.0253

5000 1.0178 0.0178

Suppose there are 20 sets of observed data presented in
Table 4. Next, we calculate the least squares estimator using
this information:

θ̂n,ε = 2.1817.

Thus, let ε = 0.8, the uncertain Hyperbolic model could
be written as

dXt = 2.1817
Xt√

1 +X2
t

dt+ 0.8dCt.
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TABLE III
LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF θ̂n,ε , ε = 0.01

True Average Value Absolute Error

θ0 Size n θ̂n,ε |θ0 − θ̂n,ε|

1

10000 1.0063 0.0063

20000 1.0041 0.0041

50000 1.0025 0.0025

Hence, the γ-path Xγ
t (0 < γ < 1) is the solution for

given ordinary differential equation:

dXγ
t = 2.1817Xγ

t dt+ 0.8

√
3

π
ln

γ

1− γ
dt.

TABLE IV
OBSERVATIONS OF UNCERTAIN HYPERBOLIC MODEL

n 1 2 3 4 5 6 7 8 9 10

ti 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Xti 0.51 1.29 1.12 1.93 1.45 2.03 2.87 3.92 2.58 2.90

n 11 12 13 14 15 16 17 18 19 20

ti 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Xti 2.77 3.67 3.75 3.31 3.53 1.30 2.05 2.87 1.56 2.61

Based on the data shown in Figure 1, every observation is
within the range of 0.05-path X0.05

t to 0.93-path X0.93
t . As

a result, the techniques for determining parameters prove to
be successful.

V. CONCLUSION

This study explores parameter estimation challenges for
general UDEs using discrete observations. Our analysis
includes establishing the consistency and asymptotic distri-
bution of the estimator. Future investigations will focus on
estimating uncertain delay differential equations.
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