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Abstract—The topics concerning the solution of differential
equations with variable coefficients attracts the interest of
numerous academics. We investigate the non-homogeneous third-
order self-adjoint Euler-Cauchy operator-differential equation
for the first time. The Laplace transform method is applied in
this study to determine the general solution of the self-adjoint
Euler-Cauchy problem. We demonstrated the effectiveness of this
approach in solving the self-adjoint Cauchy-Euler differential
equation in the form of the exponential functions.

Index Terms—self-adjoint Euler-Cauchy equations, operator-
differential equation, variable coefficients, self-adjoint operator,
Laplace transform.

I. INTRODUCTION

THE The Euler-Cauchy equation t2y
′′
+ aty

′
+ by = 0

[12] has several applications in engineering and physics.
The time-harmonic vibrations of a thin elastics rod can
be more conveniently described by the differential equation
d

dx

(
E(x)

du

dx

)
+ ρω2u = 0 [11], in which E(x) denotes the

Young’s modulus and equals ρω2x2, ρ denotes the material
density and ω denotes the angular frequency of the vibration.
Additionally, Euler-Cauchy differential equations appear when
solving second-order partial differential equations (Laplace’s
equations.) Moreover, in financial mathematics, the Euler-
Cauchy DE provides an abstract estimate of the cost of
European call options.
More precisely, the solutions of the non-homogeneous self-
adjoint Euler-Cauchy DE of the form

t2v
′′
(t) + 2Atv

′
(t) +A2G(t) = f(t), t ∈ [0,∞)

were obtained using Laplace transform in our work [5]. The
Laplace transform methodology is powerful and effective
method to solve both ODEs and PDEs [4], [5]. Moreover,
there are many different methods to solve self-adjoint Euler-
Cauchy differential equations: differential transform method
[6], [15], [18], Sumudu and Elzaki transforms as integral
transform methods [16], [17], method of variation of param-
eters [8], [10], [13] and finally the reduction of the order
method [13].

In this paper, for the first time using Laplace transform
method to solve third-order non-homogeneous self-adjoint
Euler-Cauchy operator-differential equation ;l, with variable
coefficients. We approved that the LT technique works well for
obtaining the general solutions of the Euler-Cauchy differen-
tial equation with variable coefficients. Through this approach
we formulated a certain relation between the self-adjoint
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differential operator and the given Neumann conditions.In the
last theorem of this paper we took the right hand side of our
differential equations to be equal the bulge function.

II. PROBLEM FORMULATION

Let H = L2[0, π] be a separable Hilbert space, then in H
we would present the following problem(

t
∂

∂t
+∆

)(
t
∂

∂t
−∆

)2
u(t, x) = f(t, x),

t ∈ R+ = [0,+∞), x ∈ [0, π],
(1)

u(t, x)|t=0 = u0(x), ut(t, x)|t=0 = u1(x), (2)

on R2
+ = R+× [0, π] with is a given scalar function f(t, x) ∈

L2(R+;L2[0, π]) ([7], [14])

∥f∥2L2(R2
+;H) =

∫ +∞

0

∫ π

0

∥f(t, x)∥2dxdt < +∞,

and the unknown function u(t, x) in the space W 3
2 (R

2
+;H)

in which

W 3
2 (R

2
+;H) =

{
u : u(t, x) ∈ L2(R

2
+;H),

d3u

dt3
∈ L2(R

2
+;H), u(0, x) = u0(x), ut(0, x) = u1(x)

}
.

In this problem, in L2[o, π], We provide a self-adjoint operator
A ≡ −∆, where ∆ is the Laplacian differential operator that
involved in a variety of physical and engineering problems,
like as heat conduction or diffusion in viscoelastic substances
(A = A∗ ≥ λ0E, where λ0 is the lower spectral boundary
and E is the identity operator [3].) Thus problem (1)-(2)
would convert to third-order non-homogeneous self-adjoint
Euler-Cauchy operator differential with variable coefficients
as follow:

t3
d3G(t)

dt3
+At2

d2G(t)

dt2
−A2t

dG(t)

dt
−A3G(t) = f(t),

t ∈ R+[0,+∞)
(3)

G(t)|t=0 = φ, v
′
(t)|t=0 = ψ (4)

in which G(t) ∈W 3
2 (R+;H),

W 3
2 (R+;H) =

{
G(t) ∈ L2(R+;H),

d3G(t)

dt3
∈ L2(R+;H), A3G(t) ∈ L2(R+;H)

}
,

with the norm [14], [2]

∥G(t)∥2W 3
2 (R+;H) =

∥∥∥∥∥d3G(t)dt3

∥∥∥∥∥
2

L2(R+;H

+

∥∥∥∥∥A3G(t)

∥∥∥∥∥
2

L2(R+;H

.
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Moreover, equation (3) can be rewritten in an operator-
differential form as follow:

P0G(t) = f(t),

where P0 =
(
t
∂

∂t
+ ∆

)(
t
∂

∂t
−∆

)2
acting in W 3

2 (R+;H)

onto L2(R+;H).

III. METHODOLOGY AND RESULTS

We say that a continuous function f(t) has its Laplace
transform F (s),

L(f(t)) =
∫ +∞

0

f(t)e−stdt = F (s),

The Laplace transform of f(t) is said to be exists if the inte-
gral converges for some values os s. other words the Laplace
transform of f(t) exists if f(t) is piecewise continuous and
should be of exponential order (limt→∞ e−stf(t) = 0).
Therefor, the frequency domain function F (s) can be con-
verted to its corresponding time domain equivalent f(t) using
the Laplace Inverse L−1 and is given by:

L−1(F (s)) =
1

2πi
lim

T→∞

∫ α+iT

α−iT

F (s)estds

=
1

2π

∫ ∞

−∞
e(α+iξ)tF (α+ iξ)dξ.

Remark 1. L
(
tkf(t)

)
= (−1)kF (k)(s).

Applying Laplace transform for the third-order self-adjoint
Euler-Cauchy operator-differential equation (3), yields

L
(
t3
d3G(t)

dt3

)
+ L

(
At2

d2G(t)

dt2

)
−
(
A2t

dG(t)

dt

)
− L

(
A3G(t)

)
= L

(
f(t)

)
.

Using Laplace transform’s property L(tf(t)) = − d

ds
F (s),

we get

L(tv
′
(t)) = −sdV (s)

ds
− V (s),

L(t2v
′′
(t)) = s2

d2V (s)

ds2
+ 4s

dV (s)

ds
+ 2V (s),

L(t3v
′′′
(t)) = −s3 d

3V (s)

ds3
− 9s2

d2V (s)

ds2

− 18s
dV (s)

ds
− 6V (s)

s3
d3V (s)

ds3
+ (9s2 − s2A)

d2V (s)

ds2

+ (18s− 4sA− sA2)
dV (s)

ds
+ (A3 −A2 − 2A+ 6E)V (s) = 0,

(5)

where V (s) is the Laplace transform of G(t) and E denotes
the unit operator.
According to [19], by the Frobenius Method, the self-adjoint
Euler-Cauchy (3) has a basis of the a0xr1 , b0xr2 , and c0xr3 ,
a0, b0, c0 are constants and

r3 + (6E −A)r2 + (−A2 − 3A+ 11E)r

+ (−A2 − 2A+A3 + 6E) = 0.

Next, we want to apply the J. L. Lagrange method to lessen
the order of the equation (5).

Lemma 2. The equation (5) has the form of a basis v1 and

v1(t)

∫ (∫ sA−9E

v13
ds
)
ds, v1(t)

(∫ (∫ sA−9E

v13
ds
)
ds

)2

of solutions.
Proof: Assuming that there exists a solution v1(t) ∈

W 3
2 (R+;H) of equation (5) and we want to find a basis.

Now Let’s find the other solutionsv2(t) and v3(t).
Substitute

G(t) = v2(t) = uv1(t), v3(t) = u2v1(t),

v
′
(t) = u

′
v1(t) + uv

′

1(t),

v
′′
(t) = u

′′
v1(t) + 2u

′
v

′

1(t) + uv
′′

1 (t),

v
′′′
(t) = u

′′′
v1(t) + 3u

′′
v

′

1(t) + 3u
′
v

′′

1 (t) + uv
′′′

1 (t)

into the equation (5), we get

u
′′′
{s3v1(t)}+ u

′′
{3s3v

′

1(t) + (9s2 − s2A)v1(t)}
+ u

′
{3s3v

′′

1 (t) + (18s2 − 2s2A)v
′

1(t)

+ (18s− 4sA− sA2)v1(t)}
+ u{s3v

′′′

1 (t) + (9s2 − s2A)v
′′

1 (t)

+ (18s− 4sA− sA2)v
′

1(t)

+ (A3 −A2 − 2A+ 6E)v1(t)} = 0.

Upon dividing by s3v1(t) for

s3v
′′′

1 (t) + (9s2 − s2A)v
′′

1 (t) + (18s− 4sA− sA2)v
′

1(t)

+ (A3 −A2 − 2A+ 6E)v1(t) = 0,

we obtain

u
′′′
+ u

′′
{
3
v

′

1(t)

v1(t)
+

9E −A

s

}
+ u

′
{
3
v

′′

1 (t)

v1(t)

+
18E − 2A

s

v
′

1(t)

v1(t)
+

18E − 4A−A2

s2

}
= 0.

Let

3s3v
′′

1 (t)+(18E−2A)s2v
′

1(t)+(18E−4A−A2)sv1(t) = 0

has auxiliary equation

3s3λ2 + (18E − 2A)s2λ+ (18E − 4A−A2)s = 0.

Then put u
′′
= G(t), we get:

v
′
(t) +G(t)

(3v′

1(t)

v1(t)
+

9E −A

s

)
= 0.

Through a few simple calculations, yields

u =

∫ (∫ sA−9E

v13
ds
)
ds

and also

v2(t) = v1(t)

∫ (∫ sA−9E

v13
ds
)
ds,

v3(t) = v1(t)

(∫ (∫ sA−9E

v13
ds
)
ds

)2

.
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As a result of u > 0, the quotient
v3(t)

v2(t)
=

v2(t)

v1(t)
= u =∫ ( ∫

vds
)
ds cannot be constant, so that v1(t), v2(t) and v3(t)

form a basis of solutions.

Theorem 3. The operator P0 : W 3
2 (R+;H) → L2(R+;H)

is an isomorphism and the general solution of problem (3)-(4)
will be

G(t) =

∫ +∞

0

G(t− τ)f(τ)dτ + φeAm−1t

+Am−1φ teAm−1t − 1

2
A2m−2φ t2eAm−1t + ψteAm−1t.

Proof: By Applying Laplace transform to equation (3),
we have

(
−A− (sm+ 1)E

)(
A− (sm+ 1)E

)2
V (s) = F (s)

where V (s), F (s) are Laplace transforms of G(t), f(t) re-

spectively and m =
d

ds
.

Additionally, since
(
−A− (sm+1)E

)
(A− (sm+1)E

)2
is

invertible polynomial operator, thus

V (s) =
(
−A− (sm+ 1)E

)−1(
A− (sm+ 1)E

)−2
F (s),

G(t) =
1

2πi
lim

T→∞

∫ δ+iT

δ−iT

(
−A− (sm+ 1)E

)−1
.

(A− (sm+ 1)E
)−2

F (s)estdt

=
1

2πi
lim

T→∞

∫ δ+iT

δ−iT

(
−A− (sm+ 1)E

)−1
.

(A− (sm+ 1)E
)−2

(∫ +∞

0

f(τ)e−stdt

)
estdt

=

∫ +∞

0

( 1

2πi

∫ δ+iT

δ−iT

(
−A− (sm+ 1)E

)−1
.

(A− (sm+ 1)E
)−2

es(t−τ)dt
)
f(τ)dτ

=

∫ +∞

0

G(t− τ)f(τ)dτ.

We will now show that G(t) ∈W 3
2 (R+;H).

Based on Parseval’s Theorem in the frequency domain, we

obtain

∥G(t)∥2W 3
2 (R+;H) =

∥∥∥∥d3G(t)dt3

∥∥∥∥2
L2(R+;H)

+
∥∥A3G(t)

∥∥2
L2

=
∥∥(−m3s3 − 9m2s2 − 18ms− 6)V (s)

∥∥2
L2(R+;H)

+
∥∥A3V (s)

∥∥2
L2(R+;H)

=

∥∥∥∥ −m3s3 − 9m2s2 − 18ms− 6(
−A− (sm+ 1)E

)
(A− (sm+ 1)E

)2F (s)∥∥∥∥2
L2

+

∥∥∥∥A3

(
−A− (sm+ 1)E

)−1

(A− (sm+ 1)E
)−2 F (s)

∥∥∥∥2
L2(R+;H)

≤ sup
s∈R

∥∥∥∥ −m3s3 − 9m2s2 − 18ms− 6(
−A− (sm+ 1)E

)
(A− (sm+ 1)E

)2 ∥∥∥∥2
H→H

.
∥∥F (s)∥∥2

L2(R+;H)

+ sup
s∈R

∥∥∥∥ A3(
−A− (sm+ 1)E

)
(A− (sm+ 1)E

)2 ∥∥∥∥2
H→H

.
∥∥F (s)∥∥2

L2(R+;H)

(6)

From the spectral decomposition of operator A for sm+1 ≥
0, we have∥∥∥∥ −m3s3 − 9m2s2 − 18ms− 6(

−A− (sm+ 1)E
)
(A− (sm+ 1)E

)2 ∥∥∥∥2
H→H

≤ sup
µ∈σ(A)

∣∣∣∣ (ms+ 1)3

µ3 + (ms+ 1)3

∣∣∣∣ ≤ 1,

(7)

∥∥∥∥ A3(
−A− (sm+ 1)E

)
(A− (sm+ 1)E

)2 ∥∥∥∥2
H→H

≤ sup
µ∈σ(A)

∣∣∣∣ µ3

µ3 + (ms+ 1)3

∣∣∣∣ ≤ 1,

(8)

from (7) and (8) into (6) where σ(A) is the spectrum of
operator A, yields

∥G(t)∥2W 3
2 (R+;H) ≤ 2

∥∥F (s)∥∥2
L2(R+;H)

= 2
∥∥f(t)∥∥2

L2(R+;H)
,

Consequently, G(t) ∈W 3
2 (R+;H).

For the homogeneous solution, take the LT to the third-
order homogeneous self-adjoint Euler-Cauchy DE, yields

L
(
t3
d3G(t)

dt3

)
+ L

(
At2

d2G(t)

dt2

)
−
(
A2t

dG(t)

dt

)
− L

(
A3G(t)

)
= 0,

− d3

ds3
(s3V (s)− s2φ− sψ) +A

d2

ds2
(s2V (s)− sφ− ψ)

+A2 d

ds
(sV (s)− φ)−A3V (s) = 0.

Put
d

ds
, where V (s) = L(G(t)):

−m3(s3V (s)− s2φ− sψ) +Am2(s2V (s)− sφ− ψ)

+A2m(sV (s)− φ)−A3V (s) = 0,

and then solve for V (s) i.e.,

V (s) =
m3s2φ+m3sψ −Am2sφ−Am2ψ −A2mφ

m3s3 −Am2s2 −A2ms+A3
,
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ms ̸= A.
for all values of t, the homogeneous solution G(t) take the
form

G(t)

= L−1
[m3s2φ+m3sψ −Am2sφ−Am2ψ −A2mφ

m3s3 −Am2s2 −A2ms+A3

]
= L−1

[s2φ+ sψ −Am−1sφ−Am−1ψ −A2m−2φ

s3 −Am−1s2 −A2m−2s+A3m−3

]
= L−1

[ φ

(sE −Am−1)
+

Am−1φ

(sE −Am−1)2

− A2m−2φ

(sE −Am−1)3
+

ψ

(sE −Am−1)2

]
.

Consequently,

G(t) = φeAm−1t +Am−1φ teAm−1t

− 1

2
A2m−2φ t2eAm−1t + ψteAm−1t.

Theorem 4. For the initial value problem (3)-(4) of a self-
adjoint operator-differential equation we have:
(i) The Neumann boundary conditions can be expressed by

φ = (2s− 18sA−2 + 4sA−1)V (s),

ψ = (18s2A−2 − 4s2A−1)V (s).

(ii)

V (s) =(3A− 6E) ln s

− 3(A− E)2

2s2
L
[G(t)

t

]
− 3

s
F (s)

(iii) We’ll express the general solution G(t) as follows:

G(t) = φeAm−1t +Am−1φ teAm−1t

− 1

2
A2m−2φ t2eAm−1t + ψteAm−1t

+ L−1
[ F (s)

m3s3 −Am2s2 −A2ms+A3

]
.

Proof: (i) Applying LT to equation (3), yields

− d3

ds3
(s3V (s)− s2φ− sψ) +A

d2

ds2
(s2V (s)− sφ− ψ)

+A2 d

ds
(sV (s)− φ)−A3V (s) = F (s)

(9)

From equation (5) and equation (9), we get

−s3V (s) + s2φ+ sψ = s3V (s),

sφ+ ψ = 2s2V (s)

A2sV (s)−A2φ = 18sV (s)− 4sAV (s)− sA2V (s).

Hence,
φ = (2s− 18sA−2 + 4sA−1)V (s),

ψ = (18s2A−2 − 4s2A−1)V (s).

(ii) two times Integrate equation (5) w.r.t s from s to ∞, we
get

1

20
s5
dV (s)

ds
+
(3
4
s4 − 1

12
s4A

)
+
(
3s3 − 2

3
s3A− 1

6
s3A2

)
+ (A3 −A2 − 2A+ 6E)

∫ +∞

0

L
[G(t)

t

]
ds =

1

2
s2F (s),

dV (s)

ds
=

5A/3− 15

s
− 60− 40A/3− 10A2/3

s2

− 20(A3 −A2 − 2A+ 6E)

s5

∫ +∞

0

L
[G(t)

t

]
ds+

10F (s)

s3
.

Integrating the above equation with respect to s, we get

V (s) = (5A/3− 15) ln s+
60− 40A/3− 10A2/3

s

+
5(A3 −A2 − 2A+ 6E)

s4

∫ +∞

0

L
[G(t)

t

]
ds− 5F (s)

s2
.

(iii) This follows directly from Theorem 3.1.

Consider a continuous-time signal h(t), a discrete-time
signal h(k), k ∈ N can be obtained by taking samples of
h(t) at equal intervals of T . Since the frequency domain
representation of the equation (5) is

V (s) =
m3s2φ+m3sψ −Am2sφ−Am2ψ −A2mφ

m3s3 −Am2s2 −A2ms+A3
,

(d/ds = m,ms ̸= A) (∗∗)
Evidently, the equation

(∗∗) ≈ Th∗(t) = T
∞∑
k=0

h(k)δ(t− kT ),

is a weighted impulses, where h∗(t). Alternatively, the final
result implies that the third-order self-adjoint Euler-Cauchy
equation is oscillatory on T if it has a complex characteristic
root.

On the other hand, the result shows that if the self-adjoint
Euler-Cauchy equation has a complex characteristic root, it is
oscillatory on T .

Example 5. Consider the third-order self-adjoint Euler-
Cauchy equation

t3v
′′′
(t)+At2v

′′
(t)−A2tv

′
(t)−A3G(t) = 0, t ∈ R+[0,+∞)

(10)
Applying Laplace transform to equation (10), yields

s3
d3V (s)

ds3
+ (9s2 − s2A)

d2V (s)

ds2

+ (18s− 4sA− sA2)
dV (s)

ds
+ (A3 −A2 − 2A+ 6E)V (s) = 0.

Suppose the solution of (10) is of the form V (s) = sr, where
the constant r ∈ R. i.e.,

sr[r(r − 1)(r − 2) + (9− µ)r(r − 1)

+ (−µ2 − 4µ+ 18)r − µ2 − 2µ+ µ3 + 6] = 0.

Where, µ ∈ σ(A).
Since sr ̸= 0, we get

sr[r(r − 1)(r − 2) + (9− µ)r(r − 1) + (−µ2 − 4µ+ 18)r

− µ2 − 2µ+ µ3 + 6] = 0.

Rearranging the equation, yields

r3+(6−µ)r2+(−µ2−3µ+11)r+(−µ2−2µ+µ3+6) = 0.

In the case of µ = 0, then

r3 + 6r2 + 11r + 6 = 0,

and so
(r + 1)(r + 2)(r + 3) = 0.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 5, May 2025, Pages 1146-1151

 
______________________________________________________________________________________ 



Thus, we have r = −1,−2,−3 three real roots. Therefore, the
solutions of (10) are V (s) = s−1, V (s) = s−2, V (s) = s−3.

In case of the nonhomogeneous self-adjoint Euler-Cauchy
with right hand side equals a bulge function which is given by
e−(t−l)2/2 is a positive constant. We introduce the following
lemma

Lemma 6.

L
[
e−(t−l)2/2

]
= e−l2/2

[1
s
+

−1 + l2

s3
+
l(s2 − 3 + l2)

s4

]
.

(11)
See [9].

Theorem 7. The general solution of the self-adjoint Euler-
Cauchy equation with bulge function of the form

t3v
′′′
+At2v

′′
−A2tv

′
−A3G(t) = e−(t−l)2/2,

t ∈ R+ = [0,+∞), v(0) = φ, v
′
(0) = ψ,

(12)

where G(t) is unknown function can be expressed by

G(t) = φeAm−1t +Am−1φ teAm−1t

− 1

2
A2m−2φ t2eAm−1t + ψteAm−1t

+
1

2
e−l2/2

∫ t

0

t2e−Am−1tdt

+
l

2
e−l2/2

∫ t

0

∫ t

0

t2e−Am−1tdt

+
−1 + l2

2
e−l2/2

∫ t

0

∫ t

0

∫ t

0

t2e−Am−1tdt

+
l3 − 3l

2
e−l2/2

∫ t

0

∫ t

0

∫ t

0

∫ t

0

t2e−Am−1tdt.

Proof of Theorem 7. can be directly obtained from Theorem
1. and equation (11).

Another case of the right hand side of (1) is a function in-
volving a Gaussian e−at2 , a > 0. We introduce the following
lemma

Lemma 8.

L
[
e−at2

]
=

1

2
e

as2

4 erfc
(√as

2

)
, (13)

where the Error Function erfc(x) = 1− 2

d
√
a

∫ x

0
e−t2dt.

Proof:

L
[
e−at2

]
=

∫ ∞

0

e−at2e−stdt =

∫ ∞

0

e−a(t2+ts)dt

=

∫ ∞

0

e
−a

((
t+
s

2

)2
−
s2

4

)
dt = e

π
s2

4

∫ ∞

0

e
−a
(
t+
s

2

)2
dt

= e
π
s2

4

∫ ∞

s

2

e−au2

du+

= e
π
s2

4

[∫ ∞

0

e−au2

du−
∫ s

2

0

e−au2

du

]

It is known that
∫∞
0
e−au2

du =
1

2
and the Error Function

erf(x) =
2√
a

∫ x

0
e−t2dt and erfc (x) = 1− erf (x)

By substitution x =
√
au, yields

∫ s

2

0

e−au2

du =
1√
a

∫ s
√
a

2

0

e−x2

dx =
1

2
erf
(s√a

2

)
.

Consequently,

L
[
e−at2

]
= e

as2

4
[1
2
− 1

2
erf
(√as

2

)]
=

1

2
e

as2

4 erfc
(√as

2

)
.

(14)

Theorem 9. The general solution of the self-adjoint Euler-
Cauchy equation involving a Gaussian is

t3G
′′′
+At2v

′′
−A2tG

′
−A3G(t) = e−at2 ,

t ∈ [0,+∞), G(0) = g0, G
′
(0) = g1,

(15)

where G(t) is unknown function can be expressed by

G(t) = g0e
Am−1t +Am−1g0 te

Am−1t

− 1

2
A2m−2g0 t

2eAm−1t + g1te
Am−1t

+ L−1

[
e

as2

4 erfc
(√as

2

)
2(sE −Am−1)3

]
Theorem 10. The general solution of initial value problem

t3Λ
′′′
+At2v

′′
−A2tΛ

′
−A3Λ(t) =

∞∑
n=0

ant
n,

t ∈ [0,+∞), Λ(0) = λ0, Λ
′
(0) = λ1,

(16)

is

Λ(t) = λ0e
Am−1t +Am−1λ0 te

Am−1t

− 1

2
A2m−2λ0 t

2eAm−1t + λ1te
Am−1t

+ L−1

[
(sE −Am−1)−3

∞∑
n=0

n!

sn+1

]
.

Proof of Theorem 9 and Theorem 10. can be directly
obtained from Theorem 1.

IV. CONCLUSION

The Laplace transform method is a potent technique that
can be used for accurately determining the general solutions
of non-homogeneous third-order self-adjoint Euler-Cauchy
operator-differential equations with variable coefficients.
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value problem for mixed-type operator-differential equations,” IAENG
International Journal of Applied Mathematics, vol. 51. no. 4, pp. 984-
989, 2021.

[2] A. B. I. Ahmed “Existence and Uniqueness Results for an Initial-
Boundary Value Problem of Parabolic Operator-Differential Equations
in a Weight Space,” TWMS Journal of Applied and Engineering
Mathematics, vol. 11. no. 3, pp. 628-635, 2021.

[3] A. B. I. Ahmed “On the Solvability of Higher-Order Operator-
Differential Equations in a Weighted Sobolev Space,” International
Journal of Applied Mathematics, vol. 34 no. 1, pp. 147-167, 2021. doi:
http://dx.doi.org/10.12732/ijam.v34i1.8

[4] A. B. I. Ahmed and M. A. Labeeb, (2023) “ Investigating Korteweg -
de Vries Dynamics via laplace Transform Methodology,” Mathematical
Modelling of Engineering Problems, Vol. 10, no. 6, pp. 2233-2238,
2023. https://doi.org/10.18280/mmep.100638

[5] A. B. I. Ahmed and M. A. Labeeb “ The general solution of the non-
homogeneous self-adjoint Euler-Cauchy operator-differential equation
with Neumann boundary conditions using the Laplace transform,”
Partial Differential Equations in Applied Mathematics, vol. 9, 2024.
https://doi.org/10.1016/j.padiff.2023.100613

[6] C. Bervillier “Status of the differential transformation method,” Appl.
Math.Comput., vol. 218, pp. 10158-10170, 2012.

[7] N. Farid, A. B. I. Ahmed and M. A. Labeeb “ Sufficient Conditions
for Regular Solvability of an Arbitrary Order Operator-Differential
Equation with Initial-Boundary Conditions,” Advances in Difference
Equations, vol. 2020, no. 1, pp. 1-14, 2020.

[8] Frank Ayres, Jr.: Schaum’s Outline of Differential Equations, Mc-
GrawHill Book Company, 1952.

[9] P. Haarsa and S. Pothat “A bulge function on Volterra integral equations
of the second kind by using the Laplace transform,” Applied Math. Sci,
vol. 9. no. 1. pp. 45-50, 2015.

[10] Haarsa and S. Pothat “The Reduction of Order on Cauchy-Euler
Equation with a Bulge Function,” Appl. Math. Sci. vol. 9. pp. 1139-
1143, 2015.

[11] S. Huff, G. Olumolode and N. Pennington “Peterson A.: Oscillation of
an self-adjoint Euler-Cauchy daynamic equation,” Proc. four. int. conf.
dyna. sys. & diff. eqs, pp. 423-431, 2002.

[12] R. Kent Nagle, E. B. Saff and A. D. Snider: Fundamental of Differential
Equation. Pearson, Inc., Boston, 1989.

[13] E. Kreyszig: Advanced Engineering Mathematics. John Willy & Sons,
Inc., New York, 2012.

[14] M. A. Labeeb, A. B. I. Ahmed, Labib Rashed “Conditional Solv-
ability of the Boundary Value Problem of a Self-Adjoint Operator-
Differential Equations in a Sobolev-Type Space,” International Jour-
nal of Applied Mathematics, vol. 32 no. 3, pp. 469-478, 2019. doi:
http://dx.doi.org/10.12732/ijam.v32i3.8

[15] G. E. Pukhov “Differential transforms and circuit theory,” Circuit
Theory and Appl., vol. 10. pp. 265-276, 1982.

[16] T. M. Elzaki, S. M. Ezaki and E. M. A. Hilal “ELzaki and Sumudu
transform for solving some differential equations,” Glob. J.Pure & Appl.
Math., vol.8, no. 2. pp. 167-173, 2012.

[17] G. K. Watugula “Sumudu Transform: a new integral transform to solve
differential equations and control engineering problems,” Int.J. Math.
Edu. Sci. & Tech., vol. 24, pp. 409-421, 1993.

[18] J. K. Zhou: Differential transformation and its applications for electrical
circuits. Huarjung University Press, wuuhahn, 1986.

[19] Y. Zhang “New grammian solutions for a variable-coefficient MKPI
equation,” International Journal of Pure and Applied Mathematics, vol.
79, no. 3, pp. 375-379, 2012 .

IAENG International Journal of Applied Mathematics

Volume 55, Issue 5, May 2025, Pages 1146-1151

 
______________________________________________________________________________________ 




