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Abstract—With the increasing proportion of renewable en-
ergy in the power system, short-term electricity load forecasting
is crucial for optimizing grid operation and improving energy
efficiency. In this paper, we propose a comprehensive model that
integrates the Grey Wolf Optimizer (GWO), Variational Mode
Decomposition (VMD), Improved Sparrow Search Algorithm
(ISSA), and Long Short-Term Memory networks (LSTM) to
enhance the precision of short-term electricity load forecasting.
Firstly, the raw power load data are preprocessed using the
VMD optimized by the GWO algorithm to adaptively decom-
pose them into a collection of different frequency components in
order to eliminate the limitations of the traditional methods in
dealing with non-smooth signals. Secondly, the ISSA is used
to optimize the LSTM parameters to further enhance the
generalization ability and prediction accuracy of LSTM. Finally,
the optimized LSTM is utilized to forecast each frequency
component, resulting in the final forecasted value. The final
experimental results indicate that the model outperforms the
traditional LSTM and other benchmark models on the actual
electricity dataset, indicating that the proposed GWO-VMD-
ISSA-LSTM model has high practical value and potential for
generalization.

Index Terms—electricity load forecasting, VMD, ISSA,
LSTM.

I. INTRODUCTION

THE safe and stable operation of the power system
hinges on accurate electricity load forecasting[1]. With

the socio-economic development and the growth of people’s
demand for energy, the stability and reliability of power
systems are facing unprecedented challenges. Especially in
recent years, with the large-scale grid integration of renew-
able energy sources such as wind and solar, the uncertainty
of the electricity load system has increased significantly[2].
Accurate short-term electricity load forecasting not only
help power companies to rationalize their power generation
schedules and reduce unnecessary energy wastage, but also
facilitate the effective integration of renewable energy, there-
fore boosting the overall efficiency and profitability of the
power system’s operations[3][4].

Early short-term electricity load forecasting primarily re-
lied on statistical methods, such as time series analysis
and regression analysis. A widely employed method is the
Autoregressive Integrated Moving Average (ARIMA) model.
Reference[5]proposes an ARIMA-based short-term electric-
ity forecasting model, which performs well in handling linear
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time series data but its ability to capture nonlinear char-
acteristics is limited. To cope with the seasonal variations,
[6]used the Seasonal Autoregressive Integral Sliding Average
Model (SARIMA), which further improves the prediction
accuracy. However, these traditional methods have limitations
in dealing with complex non-linear relationships and cannot
produce excellent results for electricity load forecasting[7].
With the advancement of machine learning technology, an
increasing number of studies have begun to explore its appli-
cation in electric power load forecasting. Reference [8] pro-
poses a short-term electricity load forecasting model based
on Support Vector Machine (SVM), which significantly im-
proves the forecasting accuracy by choosing a suitable kernel
function and parameter optimization. Reference[9]explores
the possibility of using Random Forest (RF) for electricity
load forecasting, which performs well in dealing with high-
dimensional data and non-linear relationships. Even though
machine learning has solved many problems and produced
better predictions, overfitting still occurs when the data di-
mensions are large. In recent years, deep learning techniques
have received widespread attention due to their powerful non-
linear fitting capabilities, and various deep learning models
such as Artificial Neural Network (ANN)[10], Markov Chain
(MC)[11], Extreme Learning Machine (ELM)[12], Random
Forest (RF)[13], and Long Short-Term Memory networks
(LSTM)[14]have been used for electricity load forecasting,
and these deep learning models produced better predictions
than traditional machine learning methods[15]. Reference
[16] compares LSTM with other forecasting models and
shows that LSTM models can achieve better results than
other models in both long-term and short-term forecast-
ing. However, a single method may encounter obstacles
in the form of elevated error rates, substantial computa-
tional complexity, and diminished computational efficiency.
Therefore, attaining a high level of prediction accuracy can
pose a significant challenge[17]. In order to enhance the
prediction accuracy further, many studies have begun to
explore the combination of signal processing techniques
and optimization algorithms. Several widely-applied signal
processing methods encompass wavelet decomposition[18],
Empirical Mode Decomposition (EMD)[19], Ensemble Em-
pirical Mode Decomposition (EEMD)[20], as well as Vari-
ational Mode Decomposition (VMD)[21], and more. Exper-
imental verification in [22]confirms that VMD is capable
of effectively addressing the issue of modal overlap and
exhibits greater stability compared to traditional signal de-
composition techniques, and it is widely used in research
related to electricity forecasting. In [23], the VMD technique
is employed to decompose the multivariate load sequences
within an integrated energy system. Prior to inputting these
sequences into a deep learning fusion model for prediction,
distinct feature sequences are individually constructed. This
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approach mitigates the risk of overfitting during the training
phase and enhances the accuracy of the predictions.

Considering that the LSTM model has too many pa-
rameters, so if we use the method of setting parameters
manually, it is likely to affect the final prediction results
due to subjectivity. The incorporation of intelligent optimiza-
tion algorithms can effectively address and overcome this
limitation. Some of the commonly used algorithms include
Particle Swarm Optimization (PSO)[24], Genetic Algorithm
(GA)[25], Whale Optimization Algorithm (WOA)[26], Spar-
row Search Algorithm (SSA)[27], the Grey Wolf Optimizer
(GWO) algorithm[28]and so on. A VMD-SSA-LSTM algo-
rithm has been proposed in [29]. By utilizing the VMD,
the electricity load data is decomposed into modal functions
exhibiting diverse characteristics and frequencies. Subse-
quently, these processed data are employed to train LSTM
models, facilitated by the sparrow search algorithm. This
integrated approach can be effectively utilized for short-term
power load forecasting. Reference[30] proposed an Improved
Sparrow Search algorithm (ISSA) based on the improved
algorithm with higher optimization efficiency and accuracy
when doing a short-term power prediction study. At the
same time, considering that there are also key parameters
when decomposing power sequence signals using VMD,
such as the modal decomposition number K and the quadratic
penalty coefficients , it has been shown in[31] that using
the Grey Wolf Optimizer (GWO) algorithm to improve
VMD can more adequately extract the sequence features,
thus improving the stability and accuracy of the subsequent
prediction model.

In summary, this paper introduces a novel methodology
that integrates Variational Mode Decomposition (VMD) op-
timized through the Grey Wolf Optimizer (GWO) with Long
Short-Term Memory networks (LSTM) enhanced by the
Improved Sparrow Search Algorithm (ISSA), collectively
termed as the GWO-VMD-ISSA-LSTM model. The objec-
tive of this hybrid approach is to elevate the precision of
short-term electricity load forecasting and furnish robust
data insights for the optimal dispatch of power systems.
The subsequent sections delve into the technical specifics
of the proposed method, the experimental setup, and a
comprehensive analysis of its outcomes.

II. METHOD AND THEOREM

A. Grey Wolf Optimization Algorithm

The grey wolf optimization algorithm is a kind of intelli-
gent optimization algorithm proposed by the famous scholars
Mirjalili et al[32]by drawing on the process of wolf preda-
tion, which is widely used in all kinds of optimization models
for parameter optimization because of the advantages of few
initial parameters, high computational efficiency and good
performance of optimization search. There are 4 different
types of wolves in the grey wolf optimization algorithm
model: the wolf responsible for the decision-making part of
the hunting process is labelled as wolf; for the rest of the
population, the wolves are labelled as , and wolves according
to the population hierarchy. The calculation procedure is
divided into three parts: encirclement, pursuit and attack. The
corresponding algorithms are shown below. (1) Encirclement.
In the hunting process, grey wolves firstly need to encircle

the target prey, and encircle it within the range circle of the
wolf pack. The distance between the prey and the grey wolf
is calculated by the formula:

D = |CXp(t)−X(t)| (1)

X(t+ 1) = Xp(t)−AD (2)

Where: t is the number of iterations of the algorithm; X
p
(t)

is the location of the optimal solution of the algorithm; A
and C are the coefficient factors of the algorithms, and the
corresponding computational relationship between them is:

A = 2ar1 − a (3)

C = 2r2 (4)

where: a is the number that decreases monotonically from 2
to 0 as t increases; r1 and r2 are the random number in the
interval 0 to 1.

(2) Pursuit. Having surrounded the prey, the β , δ and
ω wolves will go to capture the target, led by the α
wolves. Because all the wolves in the above process are
changing randomly, we need to update the position of the
corresponding prey according to the position of each wolf
group, and the calculation expression is:

Dα = |C1Xα(t)−X(t)|
Dβ = |C2Xβ(t)−X(t)|
Dδ = |C3Xδ(t)−X(t)|

(5)


X1 = Xα(t)−A1Dα

X2 = Xβ(t)−A1Dβ

X3 = Xδ(t)−A1Dδ

(6)

Xp(t+ 1) =
X1 +X2 +X3

3
(7)

where Dα ,Dβ and Dδ denote the distances between α
wolves, β wolves, δ wolves and other wolves, respectively.
(3) Attack. The attack process of grey wolf optimization
algorithm is the optimization process of the algorithm, which
is accomplished by the incremental change of α in (3).
Employing the GWO algorithm to optimize the parameters
of VMD during the construction of the short-term electricity
load forecasting model can mitigate the errors arising from
empirical parameter settings.

B. Variational Modal Decomposition

VMD is a novel adaptive decomposition estimation
method for non-smooth signals proposed by Dragomiretskiy
[33]in 2014. The method uses a non-recursive approach
to process the original signal, so that the modal functions
obtained are characteristically different from each other, thus
effectively circumventing the occurrence of modal aliasing.
Compared with the traditional empirical modal decomposi-
tion (EMD) and ensemble empirical modal decomposition
(EEMD), VMD not only addresses the modal aliasing is-
sue present in EMD and EEMD, but also provides higher
frequency resolution and more stable decomposition results.
In addition, the adaptive bandwidth adjustment capability
of the VMD helps preserve the physical characteristics of
the signal while reducing noise interference. These features
make VMD an effective tool more suitable for the analysis
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of complex signals, so it is very suitable for non-stationary
sequences. In this paper, after optimization with the GWO
algorithm, the power load sequence is decomposed by VMD
and then multiple modal functions with different frequency
characteristics are obtained. Assuming that the original signal
is decomposed into components, its constrained variational
model is:{
min{uk},{ωk}

{∑K
k=1

∥∥∂t [(δ(t) + j
πt

)
uk(t)

]
e−jωkt

∥∥2
2

}
s.t.

∑K
k=1 uk = f(t)

(8)
where f(t) is the original undecomposed signal; K is
the number of decomposed modal components; j is the
imaginary unit; δ(t) is the unit shock function; ∂t is the
derivative of δ(t) ;

{
uk

}
=

{
u1, u2, · · ·uK

}
and

{
ωk

}
={

ω1, ω2, · · ·ωK

}
are the kth modal component and the centre

frequency, respectively. Adding the quadratic penalty factor
and the Lagrange multiplication operator transforms Eq. (8)
into an unconstrained variational model:

L ({uk} , {ωk} , λ) = α
K∑

k=1

∥∥∥∥∂t [(δ(t) + j

πt

)
uk(t)

]
e−jωkt

∥∥∥∥2
2

+

∥∥∥∥∥f(t)−
K∑

k=1

uk(t)

∥∥∥∥∥
2

2

+

[
λ(t), f(t)−

K∑
k=1

uk(t)

]
(9)

where: L is the Lagrange operator; α is the quadratic penalty
factor; λ(t) is the variation function of the Lagrange operator.
By employing the multiplier alternating direction method to
update each modal component

{
uk

}
and its corresponding

center frequency cyclically, the final modal component and
center frequency can be expressed as follows:

ûn+1
k (ω) =

f̂(ω)−
∑K

i=1.i̸=k û
n
i (ω) +

λ̂n(ω)
2

1 + 2α(ω − ωn
k )

2
(10)

ωn+1
k =

∫∞
0

ω
∣∣ûn+1

k (ω)
∣∣2 dω∫∞

0

∣∣ûn+1
k (ω)

∣∣2 dω (11)

where: f̂(ω), ûn
i (ω), λ̂

n(ω), ûn
k (ω) are the Fourier transforms

of f(t), un
i (t), λ

n
i (t), u

n
k (t) respectively; n is the number of

iterations, and is the frequency. And ûk
n+1(ω), ωn+1

k are
the updated first modal component and centre frequency,
respectively.

The cycle stops when the set condition is satisfied, and its
stopping condition is:

K∑
k=1

∥∥ûn+1
k (ω)− ûn

k (ω)
∥∥2
2

∥ûn
k (ω)∥

2
2

< ε (12)

Where, ε is the convergence threshold.
By applying the inverse Fourier transform, the original

electricity sequence is decomposed into k IMFs (Intrinsic
Mode Function) components, allowing for adaptive segmen-
tation of the original electricity signal in the frequency
domain.

C. Improved Sparrow Search Algorithm

Sparrow Search Algorithm (SSA) is an optimization al-
gorithm proposed by scholars drawing on the behavior of a
flock of sparrows in search of food[34]. The sparrow popu-
lation contains explorers and followers, firstly the explorers

in the population are used to find the location of the food,
and then the followers follow the best-performing explorer
to move the location until the population searches for the
globally optimal solution. In this case, sparrows close to
natural enemies need to move to a safe area to obtain food.
Explorer locations are updated below:

Xt+1
i,j =

{
Xt

i,j × exp(− 1
α×it ) if R2 < ST

Xt
i,j +Q× L if R2 ≥ ST

(13)

where: t is the current number of iterations; it is the
maximum number of iterations; ST is a predefined safety
threshold; R2 is the value of the warning signal emitted
by individuals that have detected a predator; is the individ-
ual position information of the first sparrow in dimension;
α ∈ (0, 1] is a random number; Q is a random number
obeying a normal distribution; and L is a 1 x d-dimensional
matrix.

The follower positions are updated below:

Xt+1
i,j =

{
Q× exp

(
Xverzt−Xt

i,j

i2

)
if ι > n

2

Xt+1
p +

∣∣Xt
i,j −Xt+1

p + 1
∣∣A+L if i ≤ n

2

A+ = AT (AAT )−1 (14)

where: Xp is the position of the follower; Xworst is the
current position with the lowest adaptation; Q denotes a 1
x d-dimensional matrix in which each element is randomly
assigned a value of 1 or -1.

When an individual within the population senses danger,
those situated on the periphery swiftly relocate to a safer
zone, whereas sparrows previously positioned in the center
of the group will relocate randomly to establish a new
population.

Xt+1
i,j =

{
Xt

best + β
∣∣Xt

i,j −Xt
best

∣∣ if fi > fg

Xt
i,j +K

|Xt
i,j−Xt

best|
(fi−fw)+ε if fi = fg

(15)

Where: Xt
best is the global optimal position of the sparrow

population; β is the step control parameter, which is a
random number that obeys a normal distribution with mean
0 variance 1; K is a random number of [-1,1]; fi is the
current individual fitness value; fg and fw are the current
global optimal fitness value and global worst fitness value
respectively; ε is the smallest constant.

The SSA boasts strong optimization capabilities, rapid
convergence speed, and minimal parameter adjustment re-
quirements. However, it is difficult to obtain a better search
speed because the standard sparrow search algorithm uses
the same position update formula for all the explorers’
and followers’ positions, which does not allow the most
appropriate search behavior according to the characteristics
of each individual. During the iteration of the algorithm,
individual positions gradually cluster, making it difficult to
maintain good population diversity and prone to the issue of
being trapped in local extrema, which is hard to escape. Con-
sidering the analysis presented above, this paper introduces
the following enhancements to the sparrow search algorithm:
1) A sinusoidal search strategy is added, which not only
elevates the significance of promising individuals but also
bolsters the algorithm’s convergence rate while harmonizing
its global and local search efficacies; 2) With the concept
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of aggregation degree in biology, Cauchy variation is added
to enhance the algorithm’s population diversity when the
aggregation degree is high, thereby aiding the algorithm in
escaping from local optima.

1) Sine Search Strategy: Considering that only two indi-
vidual types are distinguished in the standard SSA, explorers
and followers, and in both types all individuals are updated
according to the same position update formula regardless
of their positional superiority, it is not possible to give a
suitable update strategy based on their own position. To
address this problem, this paper introduces a sinusoidal
search strategy, which can be assigned weights with different
values depending on the location of the individual. The
sinusoidal search strategy dynamically adjusts the step size
and direction of the search process through the periodic
and oscillatory properties of the sinusoidal function, thus
enhancing the algorithm’s global exploration capability and
local exploitation. The formula of sinusoidal search strategy
is as follows:

w = wmin+(wmax−wmin)(sin((
f t
i − f t

best

f t
worst − f t

best

+1)
π

2
+π)+1)

(16)
Where: wmin, wmax are the minimum and maximum val-

ues of the weight variation range, respectively; f t
i is the

fitness value of the ith sparrow in the tth iteration popu-
lation; fbest is the optimal fitness value of the tth iteration
population, and f t

worst is the worst fitness value of the tth
iteration population.

As the individual fitness value f t
i approaches the optimal

fitness value fbest , the weight W is relatively small and
the algorithm continues to search near the current individual
position. As the individual fitness value f t

i approaches the
worst fitness value fworst , the weight W gradually increase
to wmax , and the algorithm starts searching far away from
the current individual position.

By incorporating the W value derived from the sine search
strategy into SSA, the updated formulae for the explorers and
followers of the ISSA are as follows:

Xt+1
i,j =

{
Xt

i,j × exp
(
− 1

α×it

)
if R2 < ST

Xt
i,j + wQL if R2 ≥ ST

(17)

Xt+1
i,j =

{
Q× exp

(
Xworst−Xt

i,j

i2

)
if i > n

2

Xt+1
p + w

∣∣Xt
i,j −Xt+1

p + 1
∣∣A+L if i ≤ n

2

A+ = AT (AAT )−1 (18)

Xt+1
i,j =

{
Xt

best + wβ
∣∣Xt

i,j −Xt
best

∣∣ if fi > fg

Xt
i,j + wK

|Xt
i,j−Xt

best|
(fi−fw)+ε if fi = fg

(19)

As can be seen from Fig. 1, the SSA with the addition of
the sinusoidal search strategy approaches the global optimal
solution faster in the early iterations and finds lower fitness
values in multiple runs, with a final average optimal fitness
value of 74.8031, which is a significant improvement over the
average optimal fitness value of 419.387 for the conventional
SSA.

Fig. 1. Average Convergence Curves (1)

2) Kersey Variation Strategy: During the iterative conver-
gence of the algorithm, individuals are highly prone to clus-
tering excessively at a specific location, leading to a reduction
in the algorithm’s population diversity and subsequently
trapping it in a local optimum. In order to address this
issue, this paper proposes a metric that quantifies population
aggregation in biology A :

A =
δ − x

x2 (20)

Where: δ denotes the variance of sparrow population
fitness; x̄ denotes the mean of sparrow population fitness.
When A >> 0 , the population exhibits an aggregated state;
when A tends to 0, the population exhibits a stochastic state.
In order to avoid the emergence of an aggregated state at the
beginning of the iteration, this paper uses the Cauchy variant
for the population.

The global optimal solution is mutated using (21) when
t ≤ it

2 and if it is larger than a predefined threshold.

X = Xbest +Xbest · Cauchy(0, 1) (21)

The Cauchy variation strategy enhances the algorithm’s
capability to explore a broader range by boosting the pop-
ulation’s diversity. This approach facilitates the discovery
of more potential optimal solution areas during the initial
iterations, thereby preventing the algorithm from overlooking
the global optimal solution. The experimental results as
shown in Fig. 2, show that the SSA with the introduction
of the diversity variance treatment approaches the global
optimal solution faster in the early iterations and finds lower
fitness values in multiple runs, with the final average optimal
fitness value of 417.6718 compared to 423.7532 for the
conventional SSA, which is an improvement in the global
search capability.

3) ISSA Algorithm Flow: The steps of ISSA incorporat-
ing the sinusoidal search strategy and the Kersey variation
strategy are as follows:

(1) Initialize population parameters such as number of
iterations, population size, and so on;

(2) Divide the population into explorers and followers
according to appropriate proportions, set the threshold for
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Fig. 2. Average Convergence Curves (2)

Fig. 3. Flowchart of ISSA Algorithm

sparrows to sound an alarm , and update the positions of in-
dividuals in the explorer and follower populations according
to equations (17) and (18), respectively;

(3) Determine the number of individual sparrows in the
population that are aware of the danger and update the
position according to equation (19);

(4) Adding the Cauchy variation strategy, which utilizes
Cauchy variation to disrupt the optimal position whenever
the aggregation level of individuals attains a predefined
threshold;

(5) Repeat steps (2) through (4) iteratively until the max-
imum number of iterations is reached or the optimization
result meets the specified condition.

4) Comparative Analysis of SSA and ISSA: In this ex-
periment, we test the convergence speed and stability of the
standard SSA and the ISSA by using the Sphere function as
the objective function, and compare and analyse the effect
of the two algorithms through the generated parameter space
plot and target space plot. The comparison chart is shown in
Fig. 4.

The parameter space plot shows the distribution of the
Sphere function in two dimensions. As illustrated in the
figure, the Sphere function presents a bowl-shaped surface
with its global minimum located at the origin (0,0). The
target space plot shows the trend of the best solution found
by SSA and ISSA in each iteration. By comparing the two
curves, it becomes evident how the two algorithms differ in
their convergence process and overall performance.

(1) Regarding the convergence speed, the ISSA curve
drops rapidly in the early iterations, indicating that ISSA is
able to quickly find regions close to the global optimal solu-
tion. This indicates that ISSA is more efficient in exploring
the search space and can find better solutions in a shorter
time.

(2) Regarding the quality of the final solution, the ISSA
curves flatten out in the later stages and eventually converge
to a very low value which is very close to the global
optimum. This shows that ISSA not only converges faster
but also finds results closer to the global optimal solution.
Even though the SSA curve exhibits stabilization in the later
phases, its ultimate convergence point lies notably above
that of ISSA. This reveals that SSA falls short of ISSA
in optimization precision, leading to a final solution of
comparatively inferior quality.

In summary, by comparing the graphs of the parameter
space and the target space, it is evident that ISSA not only
converges more swiftly, enabling it to quickly locate regions
close to the global optimal solution during early iterations,
but also yields a final solution of higher quality that is able
to approximate the global optimal solution more closely.

D. Long Short-Term Memory networks

Long Short-Term Memory networks (LSTM) are enhanced
algorithms derived from Recurrent Neural Networks (RNNs)
designed to address the issues of gradient vanishing and
gradient explosion in RNNs. They are more proficient at
capturing long-term dependencies in sequential data and are
better suited for nonlinear prediction tasks. The fundamental
principle of the LSTM algorithm hinges on the design of
three critical components: the input gate, the forget gate, and
the output gate, as schematically illustrated in Fig. 5.

In Fig. 5,Ct−1 and Ct are the memory units of the
t − 1 and t moment, respectively. The specific operation
process is shown in (22)-(25). (1) The forget gate is the part
responsible for controlling the transmission of information,
mainly responsible for extracting some effective information
from the input of the outside world.

ft = σ(Wf [ht−1, Xt] + bf ) (22)

Where: ft is the input of the forget gate; δ is the activation
function; Wf is the weight of the input of the forget gate;
ht−1 is the value of the output state in the previous moment;
Xt is the input quantity; bf is the deviation of the forget
gate.

(2) The input gate determines whether new information is
added to memory.

it = σ(Wi[ht−1, Xt] + bi) (23)

gt = tanh(Wc[ht−1, Xt] + bc) (24)
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Fig. 4. Comparison of SSA and ISSA

Fig. 5. LSTM Structure

Where: it is the input of the input gate; Wi is the input
gate weight; bi is the input gate deviation; gt is the candidate
cell state; Wc is the memory cell weight; bc is the memory
cell deviation.

(3) The output gate is responsible for deciding what
information to output.

ot = σ(Wo[ht−1, Xt] + bo) (25)

where: 0t is the state of the output gate; W0 is the weight
of the output gate; b

0
is the deviation of the output gate.

E. GWO-VMD-ISSA-LSTM Model

The algorithmic flow of the GWO-VMD-ISSA-LSTM
model is shown in Fig. 6.

In this paper, we propose a multi-algorithm coupling
model that leverages LSTM networks for efficiently learning
and training time series data to extract temporal features.

The model includes three main stages: First, the Grey Wolf
Optimizer (GWO) algorithm is utilized to determine the
optimal values for two key parameters, K and α, of the
Variational Mode Decomposition (VMD). Then, the GWO-
optimized VMD algorithm is utilized to decompose the
original power sequences into k components. In the second
stage, the Improved Sparrow Search Algorithm (ISSA) is
employed to optimize the three critical parameters of LSTM,
leading to the establishment of a coupled model integrating
the Improved Sparrow Search Algorithm with LSTM, termed
ISSA-LSTM. This step constructs the ISSA-LSTM coupled
model. Finally, in the third stage, each component is individ-
ually input into the ISSA-LSTM model for prediction, and
the predicted values of all components are summed to obtain
the final prediction result.

III. EXPERIMENT AND RESULT ANALYSIS

A. Experimental Data

To assess the feasibility of the GWO-VMD-ISSA-LSTM
forecasting model, this paper employs the electricity load
dataset for Panama, which is publicly available on the Kaggle
platform. The dataset is available in the form of hourly
records and includes electricity load data for Panama from
January 2015 to June 2020 as well as weather data for three
major cities. In this paper, a total of 8,760 data points from
0:00 January 1, 2019 to 23:00 December 30, 2019 were
selected for the study, and we allocated the first 70% of the
data to the training set, reserving the final 30% for the test
set, aiming to study short-term electricity load forecasting at
1-hour intervals. Weather data is taken as average of three
cities.

In this paper, we analyze the data for 2019 electricity
data, the raw data is shown in Fig. 7(a). The time span
of the data is too small, which leads to a relatively strong
data oscillation and it is not easy to see the trend of
the data, so in order to analyze the long term trend of
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Fig. 6. Flowchart of GWO-VMD-ISSA-LSTM Algorithm

Fig. 7. Data Analysis Chart

the electricity load consumption, we use a 7-day moving
average method to calculate the trend components The trend

component was obtained by calculating the average of the
data points every 168 hours (7 days). Fig. 7(b) shows the
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trend components, which shows the overall trend of electrical
energy consumption throughout 2019. As can be seen from
the graph, Panama’s electricity consumption figures show
a very stable overall performance throughout the year, a
phenomenon that is mainly attributed to the country’s tropical
climate, where temperatures are relatively stable throughout
the year, with small temperature differences, so that air-
conditioning use in the summer and heating needs in the
winter are not as pronounced as they would be in a temperate
country. Slightly higher figures were recorded for the March
to July and November to December periods, a phenomenon
that is mainly due to a combination of several factors: 1) the
hot weather during the Panamanian summer months of March
to July leads to a significant increase in air conditioning use,
which pushes up the demand for electricity; 2) November to
December is the peak seasons for tourism, especially during
the important festivals of Christmas and New Year’s Day,
when the number of tourists rises and the number of hotels,
restaurants and other tourism-related facilities; 3) electricity
consumption in residential households also increases during
these two time periods due to summer cooling and winter
heating demand. The combination of these factors has led
to higher electricity consumption figures for Panama during
these two periods than the average for the year as a whole.

In order to analyze the cyclical variations in electrical
energy consumption, we calculated the seasonal component
for 24 hours per day. The seasonal component was obtained
by calculating the average of the difference between the data
points and the trend component for each time period. Fig.
7(c) is a seasonal component plot, which shows the pattern
of variation in electrical energy consumption over a 24-hour
period within a day. By seasonally decomposing Panama’s
hourly electricity consumption data for 2019, we can see
that the seasonal component curves are relatively smooth,
indicating that Panama’s daily electricity consumption pat-
tern is relatively stable and does not fluctuate dramatically.
Specifically, the seasonal component value from 8:00 to
around 22:00 is positive, indicating that the actual electricity
consumption is higher than the trend component during this
period, due to the fact that this is the time when the most
residential and commercial activities take place, including
activities such as going to work, going to school, shopping
and entertainment. However, after 22:00 and before 5:00
a.m. when most of the residents are at rest, the demand for
electricity decreases and the value of the seasonal component
turns negative. The trend of the curve shows that Panama’s
daily electricity consumption pattern is consistent with the
distribution of people’s daily work and rest schedules.

B. Indicators for Data Preprocessing and Model Evaluation

As the dataset is devoid of any missing values or outliers,
we proceed directly to normalize the data using the equation
provided below.

xnorm
i,s =

xi,s − xmin
s

xmax
s − xmin

s

(26)

where: xnorm
i,s denotes the normalized value of the s-

th component of the eigenvector of the i-th sample, xi,s

is the value before normalization, xmax
s and xmin

s are the
maximum and minimum values of the first component of
the eigenvector, respectively.

TABLE I
OPTIMAL PARAMETERS FOR VMD

VMD K α

value 10 3000

In this paper, the predictive ability of the model is
evaluated using a variety of assessment metrics, includ-
ing root mean square error (RMSE), mean absolute error
(MAE),mean squared error (MSE) and mean absolute per-
centage error (MAPE). These metrics are calculated using
the following formulas:

RMSE =

√√√√ 1

N

N∑
t=1

(
ut
actual − ut

predict

)2

(27)

MAE =
1

N

N∑
t=1

∣∣ut
actual − ut

predict

∣∣ (28)

MSE =
1

N

N∑
t=1

(
ut

actual − ut
predict

)2
(29)

MAPE =
1

N

N∑
t=1

∣∣∣∣∣ut
actual − ut

predict

ut
actual

∣∣∣∣∣ (30)

A lower error value signifies that the predicted value is
closer to the actual value, indicating a higher prediction
accuracy for the model.

C. The GWO-VMD Model

To guarantee the quality of the input data and mitigate
the impact of noise on predictions, this paper employs
Variational Mode Decomposition (VMD) to decompose the
electricity load input sequence. Given that applying VMD
to decompose power load data necessitates setting multiple
parameters, this paper utilizes the Grey Wolf Optimizer
(GWO) algorithm to identify the optimal VMD parameters.
After optimization, the optimal penalty factor α and the
optimal number of modal component decompositions K are
obtained, which are then used to decompose the original
signal through VMD. In this paper, the minimum envelope
entropy is selected as the fitness function for the GWO
algorithm, and the resulting optimal parameter values are
presented in Table I.

Fig. 8 displays the time-domain waveforms of the ten
Intrinsic Mode Functions (IMFs) decomposed by the GWO-
optimized VMD. It is evident from the figure that the
eigenfrequencies of the IMFs across different time domains
are distinctly differentiated and exhibit a more regular dis-
tribution. This effectively circumvents the issue of modal
aliasing.

D. ISSA-LSTM Model

This paper utilizes the Improved Sparrow Search Algo-
rithm (ISSA) to determine the optimal values for three key
LSTM parameters: the number of hidden units, the maximum
number of training period, and the initial learning rate. To
ensure fairness, the key parameters such as initial population
size and iteration number are kept the same for SSA and
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Fig. 8. GWO-VMD Frequency Domain Analysis

TABLE II
OPTIMAL PARAMETERS OF LSTM

LSTM Number of
hidden units

Maximum
training period

Initial
learning rate

value 181 300 0.0027838

ISSA in this paper. Fig. 9 shows the evolution curve graphs
obtained by SSA and ISSA on the parameters of LSTM for
optimization search, and it can be clearly seen that ISSA is
able to find the suitable hyperparameter combinations faster
during the training process relative to SSA to decrease the
training time , and the best fitness value of SSA-LSTM is
0.0302, and the best fitness value of ISSA-LSTM is 0.0291,
the lower adaptation value indicates the higher quality of its
final solution.

The final optimal parameter values obtained are shown in
Table II.

E. Forecasting Results

1) Single Model Prediction Results: To evaluate the pre-
dictive performance of various models, we have forecasted
Panama’s 2019 electricity data using five models, LSTM,
VMD-LSTM, VMD-SSA-LSTM, VMD-ISSA-LSTM and
GWO-VMD-ISSA-LSTM, and plotted line graphs of the
forecasts of each model against the original data.

Fig. 9. Evolutionary Curve

From Fig. 10(a) to Fig. 10(e), as the model complexity
rises, it becomes evident that the prediction accuracy pro-
gressively improves. Among the five models, the prediction
results of the single LSTM model differed the most from the
original data, mainly due to the difficulty of the LSTM model
in handling complex nonlinear relationships. In contrast, the
VMD-LSTM model introduces the VMD to preprocess the
raw data, which adequately separates the modes at different
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Fig. 10. Single Model Prediction

Fig. 11. Comparison of Model Prediction Errors

frequencies and makes the model perform better in dealing
with high-frequency fluctuations. Further, the VMD-SSA-
LSTM model in turn incorporates the SSA algorithm, which
not only separates the modes at different frequencies, but
also optimizes the key parameters of the LSTM model,
resulting in a more stable performance in predicting long-
period trends. The VMD-ISSA-LSTM model replaces the
original SSA with the improved ISSA. By incorporating
the sinusoidal search strategy and the Cauchy mutation
strategy, it balances the global and local search performance.
Additionally, when the aggregation degree is high, it aids
the algorithm in escaping from local optima, resulting in a

stronger prediction capability for the overall model. Finally,
the GWO-VMD-ISSA-LSTM model introduces GWO to
optimize the two key parameters of VMD, which avoids
the subjectivity of manual parameter tuning, and achieves
the highest accuracy prediction, almost eliminating all the
significant prediction errors.

The prediction error values for the five models are shown
in Table III.

Among the five models, the GWO-VMD-ISSA-LSTM
model exhibits the lowest values for MAE, RMSE, MSE and
MAPE, which are 23.8017, 32.1823, 1035.6991 and 1.9095%
respectively, indicating its superior performance in terms
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Fig. 12. Comparison of Model Prediction Errors

Fig. 13. Detail View

of prediction accuracy and stability.This model offers fresh
perspectives and methodologies for forecasting complex time

TABLE III
MODEL PREDICTION ERRORS

Model MAE RMSE MSE MAPE

LSTM 104.5225 125.9036 15851.7244 8.4250%

VMD-LSTM 61.2528 75.3523 5677.9719 4.8933%

VMD-SSA-LSTM 42.7666 51.9493 2698.7259 3.4268%

VMD-ISSA-LSTM 39.8720 49.6835 2468.4520 3.1770%

GWO-VMD-ISSA-LSTM 23.8017 32.1823 1035.6991 1.9095%

series data.

Fig. 11 presents the error bar chart generated based on the
prediction results of various models, from which it is evident
that the error values of the five models exhibit a gradual
decrease from the LSTM model to the GWO-VMD-ISSA-
LSTM model. This indicates that with the increase in model
complexity and the introduction of improved algorithms,
the prediction performance has been significantly enhanced.
Firstly, the LSTM model, serving as the baseline model,
exhibits the poorest performance across all error metrics.
Subsequently, the introduction of VMD significantly en-
hances the model’s capability to process raw data by decom-
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Fig. 14. Model Prediction Error Density Chart

posing complex signals into multiple frequency components,
rendering each sub-signal more manageable for modeling
and thereby improving prediction accuracy. Furthermore, the
incorporation of SSA and ISSA further elevates the model’s
performance, with ISSA demonstrating a superior ability
in finding optimal solutions compared to SSA, resulting in
relatively lower prediction errors. Finally, the integration of
GWO further optimizes the selection of model parameters,
ensuring that the ultimate GWO-VMD-ISSA-LSTM model
achieves the best performance across all error metrics. This
provides reliable technical support for time series forecasting
in practical applications.

2) Multi-model Comparison: To provide a more intuitive
comparison of the performance of the five models mentioned
above, we plot the predictive value curves of all models on a
single graph for comparison. Fig. 12 shows the comparison
between the predicted value curves of the five models and the
original data value curves, in which the black line indicates
the original data value, and the blue, green, purple, yellow
and red lines indicate the predicted result values of the
different models, respectively, and it can be clearly seen that
GWO-VMD-ISSA-LSTM outperforms the other four models
in terms of performance.To better visualize the details, Fig.
13 provides a detail view of the region enclosed by the
black rectangle in Fig. 12. This magnified section highlights
the detailed prediction curves of the models. Fig. 14 shows
the density plot of the prediction error of different models,
the density plot shows the distribution of the prediction
error of different models, by observing the density curve
of each model, we can understand the concentration of the
error, the distribution pattern and whether there are obvious
outliers. As can be seen from Fig. 14, the prediction errors of
the GWO-VMD-ISSA-LSTM model are mainly concentrated
near zero, and the maximum point of the density curve is
higher, evidencing that most of the prediction errors are
smaller; and the density curve shows a more symmetrical
shape, indicating that the distribution of positive and negative
errors is more uniform and the prediction bias of the model is
smaller; the shorter tails of the density curves indicate fewer
extreme errors and better robustness of the model.

To more comprehensively evaluate the consistency and
systematic bias of predictive models, as well as to identify

Fig. 15. Bland-Altman Plot for Multiple Models

potential outliers and anomalies, this paper incorporates
Bland-Altman plots to compare the prediction results of five
different models. The Bland-Altman plot not only uncovers
systematic bias issues that arise as measured values change;
it also demonstrates the error range for 95% of the data
points through the Limits of Agreement (LoA). This allows
us to clearly see which predictions fall outside the expected
error interval. From Fig. 15, it is evident that the GWO-
VMD-ISSA-LSTM model exhibits significant advantages
compared to other models. Firstly, in terms of scatter plot
distribution, the points for the GWO-VMD-ISSA-LSTM
model are most densely clustered around the zero-difference
line (Target line), indicating that the deviations between the
model’s predictions and actual values are minimal, thereby
demonstrating high accuracy. Furthermore, the Limits of
Agreement (LoA) for the GWO-VMD-ISSA-LSTM model
are the narrowest among all models, reflecting a high degree
of consistency in its predictions and low random variation,
which attests to the model’s reliability and stability.

Additionally, the optimized model has the smallest number
of outliers, suggesting its excellent performance in handling
extreme situations and its ability to effectively avoid abnor-
mal predictions. This characteristic is crucial for ensuring
the robustness of the model in practical applications. Lastly,
in contrast to the obvious upward trends exhibited by other
models, the scatter plot distribution of the optimized model
is closer to a horizontal line, implying that the prediction
error of this model remains stable as the measured values
change, without significant systematic bias occurring.

In summary, the GWO-VMD-ISSA-LSTM model dis-
tinguishes itself among all tested models due to its high
accuracy and consistency, excellent robustness, and stable
prediction performance. These advantages are not only at-
tributed to the optimizations made by ISSA to the traditional
SSA but also to the enhancement provided by GWO to VMD,
collectively driving the overall performance of the model to
new heights.

IV. CONCLUSION

As society and the economy advance, and people’s energy
demands increase, the stability and reliability of power
systems are facing unprecedented challenges. Especially in
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recent times, the integration of large-scale renewable energy
sources like wind and solar into the grid has led to a substan-
tial increase in the power system’s uncertainty. Against this
background, accurate short-term power forecasts not only
help power companies to rationalize their power genera-
tion schedules and reduce unnecessary energy wastage, but
also promote the effective integration of renewable energy
sources, therefore improving the operational efficiency and
economic benefits of the entire power system. In this paper,
a combined model combining the Grey Wolf Optimizer
(GWO) algorithm, Variational Mode Decomposition (VMD),
Improved Sparrow Search Algorithm (ISSA), and Long
Short-Term Memory networks (LSTM) is proposed to predict
the Panama’s electricity data in conjunction with the four
environmental factors: temperature, humidity, precipitation,
and wind speed, and a high prediction accuracy is achieved.
The key findings are outlined below:

(1) The VMD decomposition algorithm effectively miti-
gates noise and eliminates the non-smoothness inherent in
original electricity load data. To address the challenge of
selecting the optimal values for the quadratic penalty sum
factor and modal decomposition number in VMD, we intro-
duce the GWO-VMD model. This model utilizes the GWO
algorithm as the optimization algorithm to determine the best
parameters for VMD. The minimum envelope entropy serves
as the fitness function, allowing us to evaluate the quality
of the features extracted through VMD. Using the GWO
algorithm in combination with the VMD to decompose the
power series overcomes the limitation of the traditional VMD
that requires manual parameter tuning, and can significantly
enhance the predictive capability of the model.

(2) In this paper, the traditional SSA is enhanced by in-
corporating a sinusoidal search strategy. This strategy boosts
the weights of promising individuals, accelerates the algo-
rithm’s convergence speed, and achieves a balance between
global and local search performance. Additionally, a Cauchy
variation strategy is introduced to enhance the algorithm’s
population diversity when the aggregation degree is high,
thereby assisting the algorithm in escaping from local optima.
ISSA is able to be faster than SSA during the training process
to find a suitable combination of hyperparameters and reduce
the training time and resource consumption, and the best
fitness value of SSA-LSTM is lower than that of ISSA-
LSTM, which indicates that the quality of its final solution
is higher, and verifies the effectiveness of the improvement
of the traditional sparrow search algorithm.

(3) The GWO-VMD-ISSA-LSTM coupled model pro-
posed in this paper outperforms traditional LSTM and other
benchmark models on actual power datasets, indicating that
this model has significant practical value and broad promo-
tion potential.

V. OUR FURTHER WORK
Although the GWO-VMD-ISSA-LSTM model proposed

in this paper has achieved high-accuracy short-term elec-
tricity load forecasting on actual datasets, the dataset used
in this study only includes climate-related factors such as
temperature. However, the factors influencing power load are
diverse. Therefore, to further enhance the comprehensiveness
and prediction accuracy of the model, various types of
influencing factors can be incorporated in future work, such

as socioeconomic factors, policy and regulatory factors, and
holiday effects. By introducing these non-climatic factors,
not only can the forecasting model be enriched, but it can
also be made more aligned with real-world scenarios, thereby
providing more precise and valuable decision support for
power sectors. In summary, future efforts will be dedicated
to collecting relevant data and developing corresponding
algorithms to integrate these new factors, with the aim of
further improving the performance of short-term power load
forecasting.
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