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ET-norms and n-roots on EBL-algebras

Tao Liu, Hongxing Liu*

Abstract—In this paper, we will define the notion of Et-
norms (Et-conorms) as an extension of t-norms (t-conorms).
We also introduce some important properties of Et-norms (Et-
conorms) on an chain. For example, we characterize strictly
monotonicity and continuity of Et-norms (Et-conorms) on
an chain. In addition, we introduce some important results
between an Et-norm T on an chain L and an EBL-algebra
(L,V,A,T,0). On the other hand, we give the notion of n-
roots on EBL-algebras and study their main properties. In
addition, we define the notion for an EBL-homomorphism to
preserve n-roots and prove a necessary and sufficient condi-
tion for an EBL-homomorphism to preserve n-roots. Finally,
we introduce the notion of strict m-roots and characterize
some properties of n-strict EBL-algebras. Particularly, we
prove each n-strict EBL-algebra is a BL-algebra.

Index Terms—BL-algebra, EBL-algebra, Et-norm, FEt-
conorm, n-root, Square root, n-strict EBL-algebra.

I. Introduction

HANG [2] defined the notion of MV-algebras, which

is an algebraic structure of the Lukasiewcz system of
many-valued logic. In addition, Mundici [20] proved the
categorical equivalent between MV-algebras and unital
Abelian lattice-ordered groups. Nowadays, MV-algebras
have been applied to graph theory, fuzzy theory, etc.

Hajek [10] defined the notion of BL-algebras. Particu-
larly, for a BL-algebra A and for all x € A, if 27~ =z,
then A is an MV-algebra. In addition, Dvurecenskij
and Zahiri [3] defined EMV-algebras as an extension of
MV-algebras. Similarly, Liu in 2020 [18], defined EBL-
algebras, which extended the notion of BL-algebras.

T-norms were original introduced by [21]. Tt is an
important tool in the aspect of fuzzy logic. A t-norm T
is a binary operation on [0, 1] such that ([0, 1], T, <) is an
abelian chain. The paper [14] provided some statements
about t-norms and their applications. In a series of three
papers [15], [16], [17] ,we known some basic analytical
properties of t-norms, general construction methods of t-
norms and properties of continuous t-norms. In the paper
[7], the authors studied pseudo-t-norms and pseudo-BL-
algebras.

In fact, n-roots as a tool for studying algebraic
structure is valuable. Nowadays, n-roots has been deeply
applied to many aspects. Maltsev [19] defined the notion
of R-groups. Over the years, Baumslay [1] studied R-
groups, divisible groups and divisible R-groups.

Square roots on MV-algebras were originally intro-
duced by Hohle [12]. In this paper, Hohle provided a
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classification method of MV-algebras with square roots.
In addition, Dvnrecenskij and Zahiri in [4] and [5] studied
square roots on EMV-algebras and pseudo MV-algebras,
respectively.

Recently, Dvurecenskij, Zahiri and Shenavaei [6] stud-
ied m-roots on MV-algebras. They defined n-roots on
MV-algebras and studied their main properties. In
addition, they presented the notion of n-strict MV-
algebras and established the relationship between n-
strict MV-algebras and n-divisible MV-algebras. Finally,
they proved each MV-algebra with an n-root as a product
of an n-strict MV-algebra and a Boolean algebra.

This paper is constructed as follows. In Section 2, we
will introduce some notions and results of EBL-algebras
and t-norms (t-conorms). In Section 3, we define the
notion of Et-norms (Et-conorms) and ¢-operators (¢'-
operators) on an chain L and study their main properties.
In addition, we use an Et-norm 7T and a ¢-operator on
L to construct an EBL-algebra (L, V,A,T,0). In Section
4, we define the notion of n-roots on EBL-algebras
and introduce some main properties of n-roots on EBL-
algebras. We also extend the notion of strict n-roots and
study some main properties of n-strict EBL-algebras.

II. Preliminaries

In this section, we will introduce some notions and
results on t-norms and EBL-algebras. In the following,
we will denote I(A) = {z € Alz © z = z}.

Definition II.1. [18] An EBL-algebra is defined as an alge-
braic structure (A, V, A, ®,0) that satisfies the following
axioms:

(EBL1) (A,V,A,0) forms a distributive lattice with
minimal element 0;

(EBL2) (A, ®,0) forms a commutative semigroup;
(EBL3) Let m,n € I(A) and m < n. For all z,y €
[m,n], there exists 2 ="y, defined as 2 =" y = V{z €
[m,n]|]z®z < y}. In addition, the interval [0, b] equipped
with the operations V, A, ®, 2 and bounds 0,b forms a
BL-algebra;

(EBL4) For all z € A, there exists an idempotent element
a satisfying = < a.

Unless otherwise specified, the following A is expressed
as a EBL-algebra. Let a be an arbitrary idempotent
element of A. For all x,y € [0,a], we define a partial
ordering relation < as follows:

xﬁy@wiy:a.

additionally, we define the following operations: ¢

50,277 %=(230) 30,27 *=(z30) 303>
0,2 =a,2' = x,..,2" = 2" ' ® 2. In the following, for
an algebraic structure A, we will denote a as an arbitrary
idempotent element of A.
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Proposition I1.2. [18] For all z,y,z € [0,a], we have the
following properties:

(EBLPl) a Sz =z; 0 5z =q;

(EBLP2) 2 % (y 2 2) = (z @ y) > 2;

(EBLP3) z <z~ % 2~ % = u;
(EBLP4) (zVy) 5 2= (z 5 2) A
z=(x 35 2)V(yS2);

(EBLP5) If x < y, then (y = 2) < (z 5 2) and (z >
x) < (z S y);

(EBLP6) 20z =020y =0iff z <y~ %

(EBLP7) If x <y, then (z ©® 2) < (y ® 2);

(EBLPS) (z@y) =2 5y~ %

(EBLPY9) (zAy) =z *Vy % (xVy) *=z" Ny~ %
(EBLP10) (z S y) ¢ =27 S ¢y==% (xAy)~ % =
TTTUAYT TS (e Vy) T Tt =T VYT T (0y)T T =
YOy

(EBLP11) z® (y V 2) =
(zOy) Az O2);
(EBLP12) z Ay =z © (z 5 y);
(EBLP13) z 0y <z & 2 < (y = 2);
( )

(

(y 5 2); (xAy) >

(zOy)V(ro2);r0(yAz) =

EBLP14) (z % y) V (y = z) = a. In particularly, 2 V
r50) =

Definition I1.3. [18] Let ) # I C A. I is called an ideal
of A if it satisfies the following conditions:

(1) For all y € I, if x <y, then z € I;

(2) For all z,y € I, we have (z % 0) 5y I.

Definition I1.4. [18] Let A; and A be two EBL-algebras.
A map f: Ay — A, is an EBL-homomorphism if it
satisfies the following conditions:

(1) For all z,y € Ay, f(xVy) = f(x)V f(y), flxANy) =

f@)A fy) and f(z ©y) = f(z) © f(y);
(2) f(0) =0;
(3) For all 2,y € [0,a], f(z % y) = f(z) "9 f(y).

Proposition IL.5. [18] Let a,b € I(A). For all = € [0, a],
if a < b, then

Mz50=(2>0Aa

2) 2 50=(z%0)V (a0

B)z50<z>0;

(4) a > 0 € I(A). Further, a % 0 = 0.

Definition I1.6. [8] A binary operation T on [0, 1] is called
a t-norm if for all z,y, z € [0, 1], it satisfies the following
conditions:

(T1) T(x,y) =T(y, z);

(T2) T(T(z.9), ) = T(&, T(3 2));

(T3) If x <y, then T'(z,2) < T(y, 2);

(T4) T(z,1) =

Definition IL.7. [8] A binary operation S on [0,1] is
called a t-conorm if for all z,y,z € [0,1], it satisfies
the following conditions:

(S1) S(z,y) = S(y, );

(52) S(S ( y),z) = S(z,5(y,2));
(S )Ifx<y,then5(a? z) < S(y, 2);
(S4) S(z,0) =

Lemma IL.8. [9] Let T be a t-norm on [0, 1] and ¢ be a ¢-
operator connected with 7" on [0,1]. For all z,y € [0,1],
T(x,p(x,y)) =x Ay iff T is continuous.

Proposition I1.9. [18] If (A4,V,A,®,0) satisfies the fol-
lowing axioms, then it is an EBL-algebra.

(EBL1) (A, V, A,0) forms a lattice with minimal element
0;

(EBL2) (A,®,0) forms a commutative semigroup;
(EBL3') For all © € A, there exists an idempotent
element b satisfying @ < b. In addition, the interval [0, b]
equipped with the operations V, A, ®, b and bounds 0,6
forms a BL-algebra.

Definition I1.10. [18] Let I be an ideal of A. I is called
maximal ideal if for all z € A\ I, (IU{z}) =

In the following, we will denote N as the set of positive
integers.

Definition II.11. [10] An algebraic structure (A,®, —
0,1) of type (2,2,0,0) is BL-algebra if it satisfies the
following axioms for all x,y,z € A:

(BL1) (A, \/ , A, 0,1) forms a bounded lattice;

(BL3) (A,®,1) forms an abelian monoid,;

(BL3) x®y<21ffm<y%z

(BL4) s Ay =20 (z = y);

(BL3) (2 y) v

Definition II.12. [3] An EMV-algebra is an algebraic
structure (A,V, A, ®,0) of type (2,2,2,0) satisfies the
following conditions:

(EMV1) (A4,V,A,0) forms a distributive lattice with
minimal element 0;

(EMV2) (A, ®,0) forms a commutative monoid;
(EMV3) For all x € A, there exists b € I(A) satisfying
x < b, defined by Ay, (2) = min{z € [0,b]|z Dz = b}. In
addition, the interval [0,b] equipped with the operations
V, A, @, Ap(z) and bounds 0,b forms an MV-algebra.

Definition I1.13. [18] Let ) # F C A. For all z,y € A, F
is called a filter if it satisfies the following conditions:
(1) For all z € F, if x <y, then y € F}

(2) f z,ye F,then x ©y € F.

(y = x)=1.

ITI. Et-norms and EBL-algebras

In this section, we will introduce key concepts and
results related to Et-norms on an chain L. In addition,
we establish a construction between an Et-norm on L
and an EBL-algebra (L, V,A,T,0).

Definition ITI.1. An algebraic structure L is called an
chain if it satisfies the following conditions:

(1) Tts natural order is total;

(2) Let M be an binary operation on L. For all z € L,
there exists [ € I(L) satisfying « < I, where I(L) = {m €
L|M(m,m) =m}.

Definition II1.2. A binary operation 7" on an chain L is
an Et-norm, if for all a € L satisfying T'(a,a) = a, the
following conditions hold for all x,y, z € [0, al:

(BT Tl ) = 700 )

(ET2) T(T(2,y), 2) = T(w, T(y, 2));

(ET3) If « <y, then T(x,z) < T(y, 2);

(ET4) T(z,a) = x.

Obviously, the following properties hold:
(1) T(0,z) = 0 since T(0,z) < T(0,a) = 0;
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(2) T(x,y) < T(x,a) = x. Similarly,
Ys
(3) T(z1,91) < T(x2,y2) iff 21 < 22 and y1 < yp.

T(xvy) < T(a’y) =

Definition I11.3. A binary operation S on an chain L is
an Et-conorm, if for all a € L satisfying S(a,a) = a, the
following conditions hold for all z,y, z € [0, al:

(ES1) S(z,y) = S(y, z);

(ES2) S(S (96 y),2) = S(x,5(y, 2));
(ES3) if z <y, then S(z,z) < S(y, 2);
(ES4) S(z,0) = z.

Similarly, we have:

(1) S(x,a) = a since a = S(0,a) < S(z,a);
(2) T = S(:L‘,O) < S(x,y) Similarly, Yy = S(O,y) <
5, y);

(3) S(w1,31) < S(w2,92) iff 21 < @2 and y1 < yo.

In the following, unless stated otherwise, we will denote
L as an chain and denote a as an arbitrary element on
L such that T'(a,a) = a (or S(a,a) = a) in this section.

Example II1.4. [13] The two basic Et-norms on L to-
gether with their dual Et-conorms are as follow:
(1) For all z,y € [0, a], we define

TM(( y)=min(z,y);

Swm(z,y)=max(z,y).
(2) For all z,y € [0, a], we define

min(z,y), max(z,y)=a
Buta - { e (e

0, x #a and y # a.

max(z,y), min(z,y) =0,
SW(‘T7y) =

a, x # 0 and y # 0.

Proposition II1.5. Let T" be an Et-norm on L. For all
x,y € L, the following statements hold:

(1) Tw < T < T

(2) Sy <S5 < Sw.

Proof: (1) For all z,y € [0,al], if z,y # a, we
have Tw(z,y) = 0 < T(z,y); f x = a or y = a,
we have Tw (z,y) = T(x,y). So Tw(x,y) < T(z,y). In
addition, from T'(z,y) < z and T(z,y) < y, it follows
that T'(x,y) < Ta(x,y).

(2) The proof is similar to (1). |

Definition III.6. Let T be an Et-norm on L and S be an
Et-conorm on L. For all n € N, we define 27} by

x, n=1,
I?ﬂ — { n—times
TZ,z,---x), n>1L
and define x4 by
x, n=1,
l'g' — { n—times
S(x,x,---x), n>1

In the following, we will give some notions of Et-norms
on L, which are similar to the notions in [13].
e An Et-norm T is said to be continuous, if for every
pair of convergent sequences (z,)nen and (Yn)nen
€ [0,a]", the following holds:

T( lim z,, hm Yn) =
n—oo n—

Jm T (2, yn)-

e An Et-norm T is called strictly monotone, if for all
x € (0,a) and y < z, the following inequality holds:
T(x,y) <T(z,z2).
An Et-norm T is strict if it is both continuous and
strictly monotone.
e An Et-norm T is called Archimedean, if for all z,y €
[0,a] and n € N, the following holds:

2 <y,

e An element z € (0,a) is nilpotent on Et-norm T, if
there exists n € N satisfying argfl) =0.

e An Et-norm T is nilpotent, if it is continuous and
x is nilpotent for all z € (0,a).

e An element = € (0,a) is called a zero divisor on
Et-norm T, if there exists y € (0,a) satisfying
T(x,y)=0.

Similarly, we will give some notions of Et-conorms on

L.

e An Et-conorm S is said to be continuous, if for every
pair of convergent sequences (ZTn)nen, (Yn)nen €
[0,a]Y, the following holds:

S(lim z,, lim y,) = lim S(z,,yns).
n—oo n—o0 n—oo

e An Et-conorm S is called strictly monotone, if for
all z € (0,a) and y < z, the following inequality
holds:

S(z,y) < S(z,2)
An Et-conorm S is strict if it is both continuous
and strictly monotone.

e An Et-conorm S is co-Archimedean, if for each z,y €
[0,a] and n € N, we have xfg") > y.

e An element z € (0,a) is co-nilpotent on Et-conorm
S, if there exists n € N satisfying mg") =a.

e An Et-conorm S is co-nilpotent, if it is continuous
and z is co-nilpotent for each x € (0,a).

e An element x € (0,a) is called a co-zero divisor on
Et-conorm S, if there exists y € (0,a) satisfying
S(Z‘, y) =

Remark II1.7. (1) Let T be a strictly monotone Et-norm
on L. For all x € (0,a), we have T'(z,z) < T(z,a) = x,
which implies T'(z,z) < x.

(2) For all 0 # z € L, an Et-norm T : L? — L is
strictly monotone iff T'(z,y) = T(z,2) = y = 2.

(3) For each z € (0,a), if an Et-norm T : L? — L has
no zero divisors, then T'(z,z) > 0.

(4) Let S be a strictly monotone Et-conorm on L.
For all € (0,a), we have z = S(z,0) < S(z,z), which
implies S(z,z) > x.

(5) For all 0 # = € L, an Et-conorm S : L? — L is
strictly monotone iff S(x,y) = S(x,2) = y = 2.

(6) For each x € (0,a), if an Et-conorm S : L? — L
has no co-zero divisors, then S(z,x) < a.

Proposition II1.8. For all x,y € (0,a), an Et-norm T :
L? — L is Archimedean iff Jim. x( "=

Proof: Let T be an Archimedean Et-norm. There
exists m € N satisfying a:gpm) < y. From ,735,7) < xg«m)
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(n)

(n > m), which follows lim z4’ = 0. Conversely, it is
n—oo

obvious. [ ]

Proposition IIL.9. For all z,y € (0,a), an Et-conorm
S : L2 — L is co-Archimedean iff lim I(S") = aq.
n— oo

Proof: Let S be an co-Archimedean Et-conorm.
There exists m € N satisfying :E(S m) s y. From xgn) >

xgm) (n > m), which follows h_>m xg) = a. Conversely,

it is obvious.
|
In the following, we will characterize some properties
of continuous Archimedean Et-norms and continuous co-
Archimedean Et-conorms.

Theorem II1.10. Let T be a continuous Archimedean Et-
norm on L. The following statements are equivalent:
(1) There exists a nilpotent element of T
(2) T is nilpotent;
(3) T has zero divisors;
(4) T is not strict.
Proof: (1) = (2): Let y be a nilpotent element of
T. There exists m € N satisfying ygfn) = 0. Since T is
Archimedean, there exists N1 € N satisfying x(T ) < <y
for all z € L. So "™ < 4™ = 0. Hence, we have
that x is a niplotent element.
(2) = (1): It is obvious.
(1) = (3): Let x be a nilpotent element of T. There
exists the smallest m satisfying x(m) = 0. That is,
T ) = 0.
(3) = (1): Let « be a zero divisor of T There exists
€ (0,a) satisfying T(z,y) = 0. Assume that z < y.
Then T(z,z) < T(z,y) = 0. That is, xg,?) = 0. Hence,
we have that z is a niplotent element of T
(3) = (4): Let = be a zero divisor of T. There exists
y € (0, a) satistying T'(z,y) = 0. (i) If = # y, we assume
that # < y. Then T'(z,z) < T(x,y) = 0. So T is not
strict; (ii) If # = y, then T'(y,y) = T(x,y) = 0, which
follows T'(0,y) < T(y,y) = 0. Hence, T is not strict.
(4) = (3): Let T be an not strict Et-norm on L.
There exist u,v,w € [0,a], u > 0, v < w satisfying
T(u,v) = T(u,w). Since T(v,w) < v < w = T(a,w)
and continuity of T, there exists z € [v,a] satisfying
v =T(z,w). Then T(u,w) = T(u,v) = T(u,T(w,z)) =
T(T(u,w), z). In addition, by mathematical induction,
for all n € N, T(u,w) = T(T(u,w), z{™). Finally, by
continuity of T" again, T'(u, w) = nhﬁrr;(j T(T (u,w), z(T")) =
T(T(u,w), li_>m Z(Tn)) = T(T(u,w),0) = 0. Hence, u and
w are zero divisors. ]

Theorem IIT.11. Let S be a continuous co-Archimedean
Et-conorm on L. The following statements are equivalent:
(1) There exists a co-nilpotent element of S;

(2) S is co-nilpotent;

(3) S has co-zero divisors;

(4) S is not strict.

Proof: (1) = (2): Let y be a co-nilpotent element of

S. There exists m € N satisfying y(sm) = qa. Since S is co-

Archimedean, there exists Ny € N satlsfylng a:( DS Y

for all z € L. So xg (Nam) yém)

(2) = (1): It is obvious.

(1) = (3): Let = be a co-nilpotent element of S. There
exists the smallest m such that x(s ™) — 4. That is,
S(z gm 1),30) = a.

(3) = (1): Let = be a co-zero divisor of S. There exists
y € (0,a) satisfying S(z,y) = a. Assume that y < z.
Then a = S(z,y) < S(z,z). That is, ;vg) = a. So we
have that = is a co-niplotent element of S.

(3) = (4): Let « be a co-zero divisor of S. There exists
y € (0,a) such that S(z,y) = a. (i) If x # y, we assume
that © < y. We have a = S(z,y) < S(y,y). So S is not
strict; (ii) If =y, S(y,y) = S(x,y) = a, which follows
S(y,y) < S(y,a) =a.

(4) = (3): Let S be an not strict Et-conorm on L.
There exist u,v,w € [0,a], © < a, v > w satisfying
S(u,v) = S(u,w). Since S(v,w) > v > w = S(w,0)
and continuity of S, there exists z € [0,v] satisfying
v = S(z,w). Then S(u,w) = S(u,v) = S(u, S(w,z)) =
S(S(u,w),z). In addition, by mathematical induction,
for all n € N, S(u,w) = S(S(u,w), (n)) Finally, by

continuity of S again, S(u,w) = lim S(S(u,w), zg")) =
n— oo

S(S(u,w), li_>m zgn)) = S(S(u,w),a) = a. Hence, u and
w are co-zero divisors. ]

Definition II11.12. A map F : L? — L is called an Et-
submorm, if for each z,y € [0, a], it satisfies the following
conditions:

(F1) F(z,y) = F(y,z);

(F2) F(F(x,y),2) = F(z, F(y, 2));

(F3) if x <y, then F(z, z) < F(y, z);

(F4) F(z,y) < min(z,y).

Obviously, each Et-norm is an Et-subnorm, but not
vice versa. For example, for x,y € [0,a], the map f :
L? — L,(z,y) — 0 is an Et-subnorm but not an Et-
norm.

Definition III.13. A map F’ : L? — L is called an
Et-subcomorm, if for each x,y € [0,a], it satisfies the
following conditions:

(F1) Fla,) = F'(y,2);

(F'2) F/(F(2,9), 2) = F'(z, F'(y, 2));

(F 3) if x <y, then F'(z,2) < F'(y, 2);

(F'4) F'(z,y) = maz(z,y).

Similarly, each Et-conorm is an Et-subconorm, but
not vice versa. For example, for z,y € [0,a], the map
f'+L? = L,(z,y) — a is an Et-subconorm but not an
Et-conorm.

Proposition II1.14. Let F : L? — L be an Et-subnorm.
For all z,y € [0,b], the map T : L? — L defined by

T(z,y) = {F(%y), if (z,y) € [0,b),

min(z,y), x=0bory=>.
is an Et-norm, where b € I(L) satisfying F'(b,b) = b.
Proof: It is obvious. |

Proposition IT1.15. Let F’ : L? — L be an Et-subconorm.
For all z,y € [0,b], the map S : L? — L defined by

S(a.y) {F’(w,y), if (2,y) € (0,0],
x,y) =
Y maz(z,y), ==0ory=0.
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is an Et-conorm, where b € I(L) satisfying F’(b,b) = b.
Proof: It is obvious. |

Definition II1.16. A binary operation ¢ on L is called a
p-operator connected with a given Et-norm T : L? —
L, if for each z,y,z € [0,qa], it satisfies the following
conditions:

(1) If y < z, then p(z,y) < o(z, 2);

(2) T(p(z,y),2) < y;

() y <oz, T(y,x)).

Definition II1.17. A binary operation ¢’ on L is called a
@'-operator connected with a given Et-conorm S : L? —
L, if for each x,y,z € [0,qa], it satisfies the following
conditions:

(1) If y < z, then ¢'(z,y) < ¢'(z, 2);

(2) S(¢'(z,y),2) > v

(3) ¢'(z,5(y, x)) <.

In the following, we will give some equivalent condi-
tions of a w-operator connected with an Et-norm 7" and
a ¢'-operator connected with an Et-conorm S.

Theorem III.18. Let T be an Et-norm on L and ¢ be a
p-operator connected with 7. For all z,y,z € [0, a], the
following conditions are equivalent:

(1) () If y < 2, then ¢(z,y) < (=, 2);

(i) T(p(2,y), x) < y;

(it}) y < oo, T(y, 2);

(2) ¢(z,y) = sup{z € [0,a]|T(z,x) < y};
() T'(z,2) Sy 2 < p(z,y).

Proof: (1) = (2): By (i), ¢(z,y) € {z €
[0,a]|T(z,z) < y}, which implies p(z,y) < sup{z €
0,a]|T(2,2) < }. Let ¢(z,y) < suplz € [0, allT(z ) <
= z9. We have T(zp,2) < y, which follows zg <
T(z0,z)) < @(x,y) < 2o, which is a contradiction.
(2) = (3): It is obvious.
(3) = (1): By (3), T(¢(z,y), ) <y iff p(z,y) < p(z,y).
So (ii) holds. By (3) again, y < ¢(z,T(y,z)) iff T(y,z) <
T(y,z). So (iii) holds. In addition, if y < z, by (ii), we
have T'(¢(z,y),z) <y < z, which implies T(p(z,y),x) <
z. By (3) again, ¢(x,y) < p(x,2). So (i) holds.

0
y}
o(z,

Theorem II1.19. Let S be an Et-conorm on L and ¢’ be
a ¢’-operator connected with S. For all z,y,z € [0, d],
the following conditions are equivalent:

(1) (i) If y < 2, then ¢'(z,y) < ¢'(z, 2);

(i) S(¢'(z,y),z) > y;

(iil) ¢'(z, S(y, 7)) < y;

(2) ¢'(x,y) = inf{z €[0,a][S(z,2) > y};
(3) S(z,z) >y & 2> ¢ (z,y).

Proof: (1) = (2): By (i), ¢'(z,y) € {z €
[0,a]|S(z,2) > y}, which implies ¢'(z,y) > inf{z €
[0,a]|S(z,z) > y}. Let @' (z,y) > inf{z € [0,a]|S(z,z) >
y} = zo. Then S(zp,z) > y, which follows zy >
o' (x,S(z0,2)) > ¢'(x,y) > 29, which is a contradiction.
(2) = (3): It is obvious.
3)=

(1): By (3), S(¢(=,y), ) > yiff ' (z,y) > ¢'(z,y).

n
o
=
=
o
=

(ii) holds. By (3) again, y > ¢'(x, S(y, x)) iff S(y,z) >
S(y,x). So (iii) holds. In addition, if y > z, by (ii),
S(¢'(x,y),x) > y > 2, which implies S(¢'(2,y),2) > 2.

By (3) again, ¢'(z,y) > ¢'(z, z). So (i) holds.
|
In the following propositions, we will study the re-
lationship between Et-norms (Et-conorm) and EBL-
algebras (EMV-algebras).

Proposition IT1.20. Let (L, V, A, ®, 0) be an EBL-algebra.
We have that ® is an Et-norm on L.

Proof: Let b be an arbitrary element on L. By the
notion of EBL-algebras, for all z,y € [0,b], we have that
© satisfies the following conditions:

i) z0y=y0Ou;

(i) (z0y)0z=206(y© 2);

(iii) if y < z, then 2 Oy < z © z;

(iv) @b =z.

Hence, ® is an Et-norm on L. [ ]

Proposition II1.21. Let (L,V,A,®,0) be an EMV-
algebra. We have that & is an Et-conorm on L.

Proof: Let b be an arbitrary element on L. By the
notion of EBL-algebras, for all z,y € [0,b], we have that
@ satisfies the following conditions:
jroy=ydu;

(i) z@y) ®z=0& (y & 2);

(i) if y < z, then 2 @y <z P z;

(iv) 0=z

Hence, @ is an Et-conorm on L. [ ]

Proposition II1.22. Let T' be a continuous Et-norm on L
and ¢ be a p-operator connected with 7. We have that
(L,V,N\,T,0) is an EBL-algebra.

Proof: By Proposition I1.9, (L,V,A,T,0) satisfies
the following conditions:
(1) (L,V,A,0) forms a distributive lattice;
(2) (L,T,0) forms a commutative semigroup;
(3) Let b be the biggest element that satisfies T'(b,b) = b
on L. Then the interval [0,b] equipped with the oper-
ations \/,/\,@,—b> and bounds 0,b forms a BL-algebra,
where z <y < Ay =x < xVy = y. In fact, it satisfies
the following conditions:
(i) (L,V,A,0,b) forms a bounded lattice;
(ii) (L,T,b) forms an abelian monoid,;
(iii) for x,y,z € [0,0], T(z,y) < z iff © < ¢(y, 2);
(iv) For z,y € [0, b], by Lemma I1.8, Ay = T'(x
(v

(s y);

) For all z,y € [0,b], by Theorem IIL.18 (2), ¢(z,y) V
e(y,z)=b.

Hence, (L,V,A,T,0) is an EBL-algebra. [ |

IV. n-roots of EBL-algebras

In this section, we aim to introduce the notion and
some results of n-roots on EBL-algebras. In addition, we
characterize some properties of n-strict EBL-algebras.

Definition IV.1. Let n € N. Amapr : A — Aiscalled an

n-root if for all z € A, it satisfies the following conditions:
n—times

R1) r(2)" =r(x) Or(r) ©---r(z) = z;

(R2) For all y € A, y™ < z implies that y < r(x) .

A 2-root can be called a square root. In addition, we
define r(z)° = x and r* = r o™ L,
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Remark IV.2. Let r be an n-root on A.

(1) r is a one-to-one map. For some x1,29 € A, if r(z1) =
r(xzz2), by (R1), we have 1 = (r(x1))"” = (r(z2))" = 2 .
(2) If there exists an n-root s on A, then r(x) = s(x).
Since (r(z))"” < z, by (R2), we have r(z) < s(z).
Similarly, we have s(z) < r(x). Hence, r(z) = s(x).
(3) Let m € N. For all € A, (r™(z))"
(r(r™ ()" = ™ Y(z). Similarly, (r"(z))"
(rm @) == (a).

(4) We define a map I: A — A by [ :=r". Then [ is an
n"-root. For all z € A, by (3), (I(zx))™" = (r"(z))""
" ™(z) = z. So (R1) holds. In addition, let y € A
satisfying (y)"" < z. By (R1), ()™ <z = (I(z))"" =
(r™(z))™". Tt implies that y < 7"(z) = I(x), so (R2
holds.

(5) Let s be an m-root on A. For all x € A, if m <mn,
then s(z) < r(x). Since (s(z))” < (s(x))™ = z, by (R2),
s(z) < r(x).

Proposition IV.3. Let r be an n-root on A and a € I(A).
For all z,y € [0, a], the following statements hold:
(1) If <y, then r(z) < r(y);

~—

(2) z <z Vr) <r(x);
(3) If r(a) < a, then r(a) = a;
(4) r(@) or(y) <r(zoy);
(5) z ANy < r(x) ®r(y). In addition, if r(0) > a, then
a = 0;
(6) x =r(z) iff r(z) € I(A)
(1) = < r(z") < ()
(8) z Az—* < r(0);
(9) If r(y) € [0,a], r(y) € {x A (a2t B y): 2z € A},
10) (@) = (@) )
(11) If r(z),r(y) < a, then r(z) = r(y) =r(z = y) Ag;
(12) (r(z) Ar(z=2))? < 7(0) for each x € A.

Proof: (1) By r(z)" = 2 <y and (R2), r(z) < r(y).
(2) Clearly, r(0)™ = 0 < z. By (R2), r(0) < r(z). So

z Vr(0) <r(z).

(3) Since r(a)™ = a < r(a), we have r(a) = a.

(4) By (r(z) & 7(y))" = r(z)" ©r(y)" = 2Oy and (R2),
we have r(z) @ r(y) <r(z ©y).

(5) By (1), we have zAy = r(xAy)™ < r(zAy)O r(zAy) <
r(z) ©®r(y). In addition, a = ™ < r(0)™ = 0.

(6) If r(z) = x, we have r(z) = z = r(z)" < r(z)? <
r(x). It implies that r(x)? = r(z). Conversely, if r(z) €
I(A), we have z = r(x)" = r(x).

(7) Since 2™ < z™, we have x < r(z"). In addition, by
(1), we have r(z™) < r(x).

(8) By (zAz")" < (zA27%)? <z®z~* =0 and (R2),
we have z A 27 < r(0).

(9) By 7(y)" =y, we have r(y) < r7(y)"~* = y, which
follows

ry) =r) A"t Sy e{feA@ ™ Sy)xe AL
(10) By (R1), (r(z"))" = 2™ = (r(x)™)".

(11) We have

r® (r(z) % r(;g) "
=r(@)" © (r(z) = r(y)"
= (r(@) Ar(y)"
<r(y)"
= y_
It implies that (r(z) % r(y))" <z % y. By (R2), r(z) %
r(y) < r(z 5 y). Hence, r(z) = r(y) < r(z 3 y) Aa.

Conversely, by (1) and (4), r(z)Or(z > y) <r(z®(z >
y)) =r(z Ay) <r(y). In addition,
(@) © (r(z % y) A a)
=(r(@z)or(z=y) A(r(z) ©a)
=r(z) Or(z = y)
<r(y).
It implies that r(z % y) Aa < r(z) 5 r(y).
(12) We have
((r(2) A r(@))"
= (r(@) Ar(z=)" © (r(z) Ar(z=))"
<r@)"eor(z-*)"
=@z ®
=0.
It implies that (r(z) Ar(z=2))% < r(0). ]

Proposition IV.4. Let A be an EBL-algebra and a €
I(A). For all z,y € [0,a], we have 20y < (z@z)V (yOy).

Proof: We have
rOyY
=(z0y)Oa
= (oY) Oz >y V(y>2)
— (20PN @Sy V(Eoy oY)
<(zoz)V(yoy). [

Proposition IV.5. Let r be a square-root on A and a €
I(A). For all z,y € [0,a], the following statements hold:
(1) rx)©r(y) <z Vy;

(2) r(x) Ar(y) = r(z Ay);

(3) If r(z),r(y) <aand y < r(z) ©r(y), then y < z;
(4) z A (x5 0) <r(0).

Proof: (1) By Proposition IV .4, we have r(z)or(y) <
(r(z) © () V (r(y) ©7(y) =2 V.
(2) By Proposition IV.3 (1), r(z Ay) < r(z) Ar(y). In
addition,

<z Ay.
Hence, r(z) Ar(y) < r(zAy).

(3) Let r(z),7(y) < a. Then
Yy
=yA(r(z) ©r(y))
= (r(y) ©ory) A (r(z) ©r(y))
=r(y) © (r(z) Ar(y)
=r(y) © (r(y) © (r(y) = (@)
<r(z)o(r(y) © (r(y) = r(x)))
=r(z) © (r(z) Ar(y))
<r(z)or(z)
(4) We_ha\.fe
(x/\(x&O))@(x/\(xiO))a .
=({(zAN(xz—=>0)0z)A({(zA(x—0)06 (z—0))
<((z30e2)A(z 30 0x)
= 0.
It implies that 2 A (z % 0) < r(0). ]

Proposition IV.6. Let  be an n-root on A and a € I(A).
For all z,y € [0,a], we define r, : [0,a] — [0,a] by
ro(x) =r(z) Aa. If r(z) < a, then r, is an n-root.
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Proof: Clearly, ro ()" = (r(x)Aa)™ = . In addition,
if y™ <z, we have y < r(x), which follows y < r(z)Aa =
ro(T). |

Proposition IV.7. Let r be an n-root on A. For all X C A,
we have A r(X) =r(AX).

Proof: For all x € X, by Proposition IV.3 (1), we
have (A X) < r(x). So r(AX) < Ar(x). Assume that
y € A such that y < r(z). We have y" < r(z)" =z. In
addition, by (R2), we have y" < A X and y <r(AX) .
So Ar(xz) <r(AX). Hence, Ar(X) =r(AX).

|

In the following, we will prove that sor: A — A is

an mn-root on the EBL-algebra A, where s is an m-root
and r is an n-root on A.

Proposition IV.8. Let s be an m-root and r be an n-root
on A. Then sor is an mn-root on A.

Proof: For all © € A, we have (s o r(x))™ =
(s(r(x))™)™ = r(x)™ = x. So (R1) holds. In addition,
if y € A such that y™" < z, we have y™ < r(z) and
y < s(r(x)). So (R2) holds. Hence, sor: A — A is an
mn-root on A.

|
In the following, we will give some properties of n-roots
connected with EBL-homomorphisms.

Proposition IV.9. Let r be an n-root on A; and f: A; —
As be an EBL-homomorphism. We define ¢ : f(A;) —
f(A1) by t(f(x)) = f(r(z)). Then ¢ is an n-root on
f(Ay).

Proof: For all z € Ay, t(f(x))" = f(r(x)" =
flr(x)™) = f(x). So (R1) holds. In addition, let z,y € A;

such that f(y)" < f(z). Then f(y™ = z) = f(y™) 1)
f(z) = f(a). In addition, .
Yy =

<ra(y" %x)

=ra(y" 7 Ta(T)

< ra(ay)” = ra(T)

=y = rq(x).
So f(a) = f(y* = ) < f(y = ra(x)) < f(a). Then
fy 5 ra(@)) = f(a) and f(y) 8 fra(@) = f(a).
That is, £(3) < 7(ra(e)) < F(r(e)) = £(7(a)). Hence,
(R2) hold Finally, we prove that f(x) = f(y) implies
that t(f(2)) = t(f(y)). In fact, f(r(z))" = f(r(z)") =
f(@) = f(y). By (R2), t(f(z)) = f(r(z)) < f(r(y) =
t(f(y))- Similarly, t(f(y)) = f(r(y) < [f(r(z)) =

t(f (). u

Corollary IV.10. Let I be an ideal of A and r be an n-
root on A. We define a map t: A/T — A/I by t(x/I) =
r(x)/I. Then ¢ is an n-root on A/I.

Proof: For all x+ € A, there exists an EBL-
homomorphism f: A — A/I defined by x — x/I. Then
t(f(x)) = t(z/I) = r(x)/I = f(r(z)). By Proposition
IV.9, we have that ¢t : A/I — A/I is an n-root on A/I.

|
Let r1: A1 — Ay and ry: Ay — Ay be two n-roots. If
f A1 = A is an EBL-homomorphism, for all x € Ay,

flri(x)" = f(z) and f(ri(z)) < r2(f(2)).

Definition IV.11. Let f : Ay — Ay be an EBL-
homomorphism, r1: A1 — Ay and ro: Ay — Ao be two
n-roots. For all x € A, we say [ preserves n-roots if

fri(@)) = ra(f(2)-

Theorem IV.12. Let f : Ay — As be an EBL-
homomorphism, r1: A1 — A; and ro: Ay — Ay be two
n-roots. We have f preserves n-roots iff f(A;) is closed
under ro.

Proof: Let f preserves n-roots. For all f(x) € f(A41),
we have ro(f(2)) = f(r1(x)) € f(A1). So f(A;) is closed
under r9. Conversely, let f(A;) be closed under ry. By
Proposition IV.9, we have ¢ : f(A;) — f(A;) defined
by t(f(z)) = f(ri(z)) is an n-root on f(A;). That is,
Ta2lf(a,) = t is an n-root on f(A;). Hence, ro(f(z)) =
t(f(x)) = f(ri(z)).

|
Definition IV.13. An EBL-algebra (4, V, A, ®,0) with an
n-root r : A — A is called strict if, for all b > r(0), we

have 73,(0)"~! = 14,(0) ", where 7,(0)~" = ;,(0) % 0.

In the following, we will characterize some properties
of n-strict EBL-algebras.

Theorem IV.14. Each n-strict EBL-algebra has a top
element.

Proof: Let r be a strict n-root on EBL-algebra A
and a € I(A) such that r(0) < a. We have r,(0)""! =
r(0)"'Aa = r(0)""! = r(0) % 0. In addition, we choose
b € I(A) such that a < b. Similarly, we have r,(0)"~! =
()"t Ab=r0)"t = r(0) % 0. By Proposition IL5
(ii), we have 7(0)"~! = r(0) % 0 = (r(0) % 0)V (a > 0).
That is, a % 0 < r(0)"~1. Hence, we have b=a V (a LA
0)<aVr0)" ' <aVa=a. Soa=>. Hence, a is the
top element of A. [ |

Corollary IV.15. (i) Let r be an n-root on an EBL-
algebra (A4,V,A,®,0). If b € I(A) such that r(0) < b and
rp is strict, for each a € I(A) satisfying 7(0) < a < b,
then r, cannot be strict.

(ii) Each n-strict EBL-algebra is a n-strict BL-algebra.

Proof: (i) If r, is strict, by Theorem IV.14, we have
a = b, which is a contradiction.
(ii) It is obvious. |

Proposition 1V.16. Let r be an m-root on A. For all
m,p € N such that n = mp, if r(2P) = r(x)P, then r(z)?
is an m-root, of A.

Proof: For all x € A, we have (r(x)P)™ = r(z)™? =
r(z)™ = x. In addition, let y™ < x. Then y"™ < zP. From
r is an n-root, it follows that y < r(zP) = r(z)P. Hence,
r(x)P is an m-root of A.

|
In the following, we will give some properties of n-roots
connected with filters.

Proposition IV.17. Let F be a filter of A and r be an
n-root on A. For all x € F, {r(z)|lx € F} C F.

Proof: By Proposition IV.3 (7), we have z < r(z).
From the definition of filters, it follows that {r(z)|z €
F}CF.
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Proposition IV.18. Let F' be a filter of A and r be an
n-root on A. For all x,y € F, we have r(x) ©r(y) € F.

Proof: By Definition I1.13, we have x ®y € F. In
addition, from z ©y < r(z) ®r(y), it follows that r(z) ®
r(y) € F.

|

V. Conclusion

In this paper, we extended the notion of Et-norms
(Et-conorms) as an extension of t-norms (t-conorms).
We characterize some algebraic properties of Et-norms
(Et-norms). In addition, we established an relationship
between an Et-norm on chain L and EBL-algebra
(L,V,A,T,0). On the other hand, we also defined the
notion of an n-root on EBL-algebras and studied their
important properties. Some results on EBl-algebras are
obvious. Particularly, we proved that each n-strict EBL-
algebra is a BL-algebra.

In the following study, there are many valued topics
can be studied: (1) Does there exists a classification of
EBL-algebras with n-roots? (2) Is it possible to extend
Et-norms to partial order lattice structure?
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