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Abstract—In this paper, we will define the notion of Et-
norms (Et-conorms) as an extension of t-norms (t-conorms).
We also introduce some important properties of Et-norms (Et-
conorms) on an chain. For example, we characterize strictly
monotonicity and continuity of Et-norms (Et-conorms) on
an chain. In addition, we introduce some important results
between an Et-norm T on an chain L and an EBL-algebra
(L,∨,∧, T, 0). On the other hand, we give the notion of n-
roots on EBL-algebras and study their main properties. In
addition, we define the notion for an EBL-homomorphism to
preserve n-roots and prove a necessary and sufficient condi-
tion for an EBL-homomorphism to preserve n-roots. Finally,
we introduce the notion of strict n-roots and characterize
some properties of n-strict EBL-algebras. Particularly, we
prove each n-strict EBL-algebra is a BL-algebra.

Index Terms—BL-algebra, EBL-algebra, Et-norm, Et-
conorm, n-root, Square root, n-strict EBL-algebra.

I. Introduction

CHANG [2] defined the notion of MV-algebras, which
is an algebraic structure of the Lukasiewcz system of

many-valued logic. In addition, Mundici [20] proved the
categorical equivalent between MV-algebras and unital
Abelian lattice-ordered groups. Nowadays, MV-algebras
have been applied to graph theory, fuzzy theory, etc.

Hajek [10] defined the notion of BL-algebras. Particu-
larly, for a BL-algebra A and for all x ∈ A, if x−− = x,
then A is an MV-algebra. In addition, Dvurecenskij
and Zahiri [3] defined EMV-algebras as an extension of
MV-algebras. Similarly, Liu in 2020 [18], defined EBL-
algebras, which extended the notion of BL-algebras.

T-norms were original introduced by [21]. It is an
important tool in the aspect of fuzzy logic. A t-norm T
is a binary operation on [0, 1] such that ([0, 1], T,≤) is an
abelian chain. The paper [14] provided some statements
about t-norms and their applications. In a series of three
papers [15], [16], [17] ,we known some basic analytical
properties of t-norms, general construction methods of t-
norms and properties of continuous t-norms. In the paper
[7], the authors studied pseudo-t-norms and pseudo-BL-
algebras.

In fact, n-roots as a tool for studying algebraic
structure is valuable. Nowadays, n-roots has been deeply
applied to many aspects. Maltsev [19] defined the notion
of R-groups. Over the years, Baumslay [1] studied R-
groups, divisible groups and divisible R-groups.

Square roots on MV-algebras were originally intro-
duced by Hohle [12]. In this paper, Hohle provided a
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classification method of MV-algebras with square roots.
In addition, Dvnrecenskij and Zahiri in [4] and [5] studied
square roots on EMV-algebras and pseudo MV-algebras,
respectively.

Recently, Dvurecenskij, Zahiri and Shenavaei [6] stud-
ied n-roots on MV-algebras. They defined n-roots on
MV-algebras and studied their main properties. In
addition, they presented the notion of n-strict MV-
algebras and established the relationship between n-
strict MV-algebras and n-divisible MV-algebras. Finally,
they proved each MV-algebra with an n-root as a product
of an n-strict MV-algebra and a Boolean algebra.

This paper is constructed as follows. In Section 2, we
will introduce some notions and results of EBL-algebras
and t-norms (t-conorms). In Section 3, we define the
notion of Et-norms (Et-conorms) and φ-operators (φ′-
operators) on an chain L and study their main properties.
In addition, we use an Et-norm T and a φ-operator on
L to construct an EBL-algebra (L,∨,∧, T, 0). In Section
4, we define the notion of n-roots on EBL-algebras
and introduce some main properties of n-roots on EBL-
algebras. We also extend the notion of strict n-roots and
study some main properties of n-strict EBL-algebras.

II. Preliminaries
In this section, we will introduce some notions and

results on t-norms and EBL-algebras. In the following,
we will denote I(A) = {x ∈ A|x� x = x}.

Definition II.1. [18] An EBL-algebra is defined as an alge-
braic structure (A,∨,∧,�, 0) that satisfies the following
axioms:
(EBL1) (A,∨,∧, 0) forms a distributive lattice with
minimal element 0;
(EBL2) (A,�, 0) forms a commutative semigroup;
(EBL3) Let m,n ∈ I(A) and m ≤ n. For all x, y ∈
[m,n], there exists x

m,n→ y, defined as x
m,n→ y = ∨{z ∈

[m,n]|x�z ≤ y}. In addition, the interval [0, b] equipped
with the operations ∨,∧,�,

b→ and bounds 0, b forms a
BL-algebra;
(EBL4) For all x ∈ A, there exists an idempotent element
a satisfying x ≤ a.

Unless otherwise specified, the following A is expressed
as a EBL-algebra. Let a be an arbitrary idempotent
element of A. For all x, y ∈ [0, a], we define a partial
ordering relation ≤ as follows:

x ≤ y ⇔ x
a→ y = a.

additionally, we define the following operations: x−a =
x

a→ 0, x−−a = (x
a→ 0)

a→ 0, x−−−a = ((x
a→ 0)

a→ 0)
a→

0, x0 = a, x1 = x, ..., xn = xn−1�x. In the following, for
an algebraic structure A, we will denote a as an arbitrary
idempotent element of A.
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Proposition II.2. [18] For all x, y, z ∈ [0, a], we have the
following properties:
(EBLP1) a

a→ x = x; x a→ x = a;
(EBLP2) x

a→ (y
a→ z) = (x� y)

a→ z;
(EBLP3) x ≤ x−−a; x−−−a = x;
(EBLP4) (x ∨ y)

a→ z = (x
a→ z) ∧ (y

a→ z); (x ∧ y)
a→

z = (x
a→ z) ∨ (y

a→ z);
(EBLP5) If x ≤ y, then (y

a→ z) ≤ (x
a→ z) and (z

a→
x) ≤ (z

a→ y);
(EBLP6) x� x−a = 0; x� y = 0 iff x ≤ y−a;
(EBLP7) If x ≤ y, then (x� z) ≤ (y � z);
(EBLP8) (x� y)−a = x

a→ y−a;
(EBLP9) (x∧ y)−a = x−a ∨ y−a; (x∨ y)−a = x−a ∧ y−a;
(EBLP10) (x

a→ y)−−a = x−−a a→ y−−a; (x ∧ y)−−a =
x−−a ∧ y−−a; (x ∨ y)−−a = x−−a ∨ y−−a; (x� y)−−a =
x−−a � y−−a;
(EBLP11) x� (y ∨ z) = (x� y) ∨ (x� z); x� (y ∧ z) =
(x� y) ∧ (x� z);
(EBLP12) x ∧ y = x� (x

a→ y);
(EBLP13) x� y ≤ z ⇔ x ≤ (y

a→ z);
(EBLP14) (x

a→ y) ∨ (y
a→ x) = a. In particularly, x ∨

(x
a→ 0) = a.

Definition II.3. [18] Let ∅ 6= I ⊆ A. I is called an ideal
of A if it satisfies the following conditions:
(1) For all y ∈ I, if x ≤ y, then x ∈ I;
(2) For all x, y ∈ I, we have (x

a→ 0)
a→ y ∈ I.

Definition II.4. [18] Let A1 and A2 be two EBL-algebras.
A map f : A1 → A2 is an EBL-homomorphism if it
satisfies the following conditions:
(1) For all x, y ∈ A1, f(x ∨ y) = f(x) ∨ f(y), f(x ∧ y) =
f(x) ∧ f(y) and f(x� y) = f(x)� f(y);
(2) f(0) = 0;
(3) For all x, y ∈ [0, a], f(x a→ y) = f(x)

f(a)→ f(y).

Proposition II.5. [18] Let a, b ∈ I(A). For all x ∈ [0, a],
if a ≤ b, then
(1) x

a→ 0 = (x
b→ 0) ∧ a;

(2) x
b→ 0 = (x

a→ 0) ∨ (a
b→ 0);

(3) x
a→ 0 ≤ x

b→ 0;
(4) a

b→ 0 ∈ I(A). Further, a a→ 0 = 0.

Definition II.6. [8] A binary operation T on [0, 1] is called
a t-norm if for all x, y, z ∈ [0, 1], it satisfies the following
conditions:
(T1) T (x, y) = T (y, x);
(T2) T (T (x, y), z) = T (x, T (y, z));
(T3) If x ≤ y, then T (x, z) ≤ T (y, z);
(T4) T (x, 1) = x.

Definition II.7. [8] A binary operation S on [0, 1] is
called a t-conorm if for all x, y, z ∈ [0, 1], it satisfies
the following conditions:
(S1) S(x, y) = S(y, x);
(S2) S(S(x, y), z) = S(x, S(y, z));
(S3) If x ≤ y, then S(x, z) ≤ S(y, z);
(S4) S(x, 0) = x.

Lemma II.8. [9] Let T be a t-norm on [0, 1] and φ be a φ-
operator connected with T on [0, 1]. For all x, y ∈ [0, 1],
T (x, φ(x, y)) = x ∧ y iff T is continuous.

Proposition II.9. [18] If (A,∨,∧,�, 0) satisfies the fol-
lowing axioms, then it is an EBL-algebra.
(EBL1) (A,∨,∧, 0) forms a lattice with minimal element
0;
(EBL2) (A,�, 0) forms a commutative semigroup;
(EBL3′) For all x ∈ A, there exists an idempotent
element b satisfying x ≤ b. In addition, the interval [0, b]
equipped with the operations ∨,∧,�,

b→ and bounds 0, b
forms a BL-algebra.

Definition II.10. [18] Let I be an ideal of A. I is called
maximal ideal if for all x ∈ A \ I, 〈I ∪ {x}〉 = A.

In the following, we will denote N as the set of positive
integers.

Definition II.11. [10] An algebraic structure (A,�,→
, 0, 1) of type (2, 2, 0, 0) is BL-algebra if it satisfies the
following axioms for all x, y, z ∈ A:
(BL1) (A,∨,∧, 0, 1) forms a bounded lattice;
(BL3) (A,�, 1) forms an abelian monoid;
(BL3) x� y ≤ z iff x ≤ y → z;
(BL4) x ∧ y = x� (x → y);
(BL5) (x → y) ∨ (y → x) = 1.

Definition II.12. [3] An EMV-algebra is an algebraic
structure (A,∨,∧,⊕, 0) of type (2, 2, 2, 0) satisfies the
following conditions:
(EMV1) (A,∨,∧, 0) forms a distributive lattice with
minimal element 0;
(EMV2) (A,⊕, 0) forms a commutative monoid;
(EMV3) For all x ∈ A, there exists b ∈ I(A) satisfying
x ≤ b, defined by λm,n(x) = min{z ∈ [0, b]|x⊕z = b}. In
addition, the interval [0, b] equipped with the operations
∨,∧,⊕, λb(x) and bounds 0, b forms an MV-algebra.

Definition II.13. [18] Let ∅ 6= F ⊆ A. For all x, y ∈ A, F
is called a filter if it satisfies the following conditions:
(1) For all x ∈ F , if x ≤ y, then y ∈ F ;
(2) If x, y ∈ F , then x� y ∈ F .

III. Et-norms and EBL-algebras
In this section, we will introduce key concepts and

results related to Et-norms on an chain L. In addition,
we establish a construction between an Et-norm on L
and an EBL-algebra (L,∨,∧, T, 0).

Definition III.1. An algebraic structure L is called an
chain if it satisfies the following conditions:
(1) Its natural order is total;
(2) Let M be an binary operation on L. For all x ∈ L,
there exists l ∈ I(L) satisfying x ≤ l, where I(L) = {m ∈
L|M(m,m) = m}.

Definition III.2. A binary operation T on an chain L is
an Et-norm, if for all a ∈ L satisfying T (a, a) = a, the
following conditions hold for all x, y, z ∈ [0, a]:
(ET1) T (x, y) = T (y, x);
(ET2) T (T (x, y), z) = T (x, T (y, z));
(ET3) If x ≤ y, then T (x, z) ≤ T (y, z);
(ET4) T (x, a) = x.

Obviously, the following properties hold:
(1) T (0, x) = 0 since T (0, x) ≤ T (0, a) = 0;
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(2) T (x, y) ≤ T (x, a) = x. Similarly, T (x, y) ≤ T (a, y) =
y;
(3) T (x1, y1) ≤ T (x2, y2) iff x1 ≤ x2 and y1 ≤ y2.

Definition III.3. A binary operation S on an chain L is
an Et-conorm, if for all a ∈ L satisfying S(a, a) = a, the
following conditions hold for all x, y, z ∈ [0, a]:
(ES1) S(x, y) = S(y, x);
(ES2) S(S(x, y), z) = S(x, S(y, z));
(ES3) if x ≤ y, then S(x, z) ≤ S(y, z);
(ES4) S(x, 0) = x.

Similarly, we have:
(1) S(x, a) = a since a = S(0, a) ≤ S(x, a);
(2) x = S(x, 0) ≤ S(x, y). Similarly, y = S(0, y) ≤
S(x, y);
(3) S(x1, y1) ≤ S(x2, y2) iff x1 ≤ x2 and y1 ≤ y2.

In the following, unless stated otherwise, we will denote
L as an chain and denote a as an arbitrary element on
L such that T (a, a) = a (or S(a, a) = a) in this section.

Example III.4. [13] The two basic Et-norms on L to-
gether with their dual Et-conorms are as follow:
(1) For all x, y ∈ [0, a], we define

TM (x, y)=min(x, y);
SM (x, y)=max(x, y).

(2) For all x, y ∈ [0, a], we define

TW (x, y) =

{ min(x, y), max(x, y) = a,
0, x 6= a and y 6= a.

SW (x, y) =

{ max(x, y), min(x, y) = 0,
a, x 6= 0 and y 6= 0.

Proposition III.5. Let T be an Et-norm on L. For all
x, y ∈ L, the following statements hold:
(1) TW ≤ T ≤ TM ;
(2) SM ≤ S ≤ SW .

Proof: (1) For all x, y ∈ [0, a], if x, y 6= a, we
have TW (x, y) = 0 ≤ T (x, y); If x = a or y = a,
we have TW (x, y) = T (x, y). So TW (x, y) ≤ T (x, y). In
addition, from T (x, y) ≤ x and T (x, y) ≤ y, it follows
that T (x, y) ≤ TM (x, y).
(2) The proof is similar to (1).

Definition III.6. Let T be an Et-norm on L and S be an
Et-conorm on L. For all n ∈ N , we define xn

T by

xn
T =

{ x, n = 1,

T (

n−times︷ ︸︸ ︷
x, x, · · ·x), n > 1.

and define xn
S by

xn
S =

{ x, n = 1,

S(

n−times︷ ︸︸ ︷
x, x, · · ·x), n > 1.

In the following, we will give some notions of Et-norms
on L, which are similar to the notions in [13].

• An Et-norm T is said to be continuous, if for every
pair of convergent sequences (xn)n∈N and (yn)n∈N

∈ [0, a]N , the following holds:
T ( lim

n→∞
xn, lim

n→∞
yn) = lim

n→∞
T (xn, yn).

• An Et-norm T is called strictly monotone, if for all
x ∈ (0, a) and y < z, the following inequality holds:

T (x, y) < T (x, z).
An Et-norm T is strict if it is both continuous and
strictly monotone.

• An Et-norm T is called Archimedean, if for all x, y ∈
[0, a] and n ∈ N , the following holds:

x
(n)
T < y.

• An element x ∈ (0, a) is nilpotent on Et-norm T , if
there exists n ∈ N satisfying x

(n)
T = 0.

• An Et-norm T is nilpotent, if it is continuous and
x is nilpotent for all x ∈ (0, a).

• An element x ∈ (0, a) is called a zero divisor on
Et-norm T , if there exists y ∈ (0, a) satisfying
T (x, y) = 0.

Similarly, we will give some notions of Et-conorms on
L.

• An Et-conorm S is said to be continuous, if for every
pair of convergent sequences (xn)n∈N , (yn)n∈N ∈
[0, a]N , the following holds:

S( lim
n→∞

xn, lim
n→∞

yn) = lim
n→∞

S(xn, yn).
• An Et-conorm S is called strictly monotone, if for

all x ∈ (0, a) and y < z, the following inequality
holds:

S(x, y) < S(x, z)

An Et-conorm S is strict if it is both continuous
and strictly monotone.

• An Et-conorm S is co-Archimedean, if for each x, y ∈
[0, a] and n ∈ N , we have x

(n)
S > y.

• An element x ∈ (0, a) is co-nilpotent on Et-conorm
S, if there exists n ∈ N satisfying x

(n)
S = a.

• An Et-conorm S is co-nilpotent, if it is continuous
and x is co-nilpotent for each x ∈ (0, a).

• An element x ∈ (0, a) is called a co-zero divisor on
Et-conorm S, if there exists y ∈ (0, a) satisfying
S(x, y) = a.

Remark III.7. (1) Let T be a strictly monotone Et-norm
on L. For all x ∈ (0, a), we have T (x, x) < T (x, a) = x,
which implies T (x, x) < x.

(2) For all 0 6= x ∈ L, an Et-norm T : L2 → L is
strictly monotone iff T (x, y) = T (x, z) ⇒ y = z.

(3) For each x ∈ (0, a), if an Et-norm T : L2 → L has
no zero divisors, then T (x, x) > 0.

(4) Let S be a strictly monotone Et-conorm on L.
For all x ∈ (0, a), we have x = S(x, 0) < S(x, x), which
implies S(x, x) > x.

(5) For all 0 6= x ∈ L, an Et-conorm S : L2 → L is
strictly monotone iff S(x, y) = S(x, z) ⇒ y = z.

(6) For each x ∈ (0, a), if an Et-conorm S : L2 → L
has no co-zero divisors, then S(x, x) < a.

Proposition III.8. For all x, y ∈ (0, a), an Et-norm T :

L2 → L is Archimedean iff lim
n→∞

x
(n)
T = 0.

Proof: Let T be an Archimedean Et-norm. There
exists m ∈ N satisfying x

(m)
T < y. From x

(n)
T ≤ x

(m)
T
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(n > m), which follows lim
n→∞

x
(n)
T = 0. Conversely, it is

obvious.

Proposition III.9. For all x, y ∈ (0, a), an Et-conorm
S : L2 → L is co-Archimedean iff lim

n→∞
x
(n)
S = a.

Proof: Let S be an co-Archimedean Et-conorm.
There exists m ∈ N satisfying x

(m)
S > y. From x

(n)
S ≥

x
(m)
S (n > m), which follows lim

n→∞
x
(n)
S = a. Conversely,

it is obvious.

In the following, we will characterize some properties
of continuous Archimedean Et-norms and continuous co-
Archimedean Et-conorms.

Theorem III.10. Let T be a continuous Archimedean Et-
norm on L. The following statements are equivalent:
(1) There exists a nilpotent element of T ;
(2) T is nilpotent;
(3) T has zero divisors;
(4) T is not strict.

Proof: (1) ⇒ (2): Let y be a nilpotent element of
T . There exists m ∈ N satisfying y

(m)
T = 0. Since T is

Archimedean, there exists N1 ∈ N satisfying x
(N1)
T < y

for all x ∈ L. So x
(N1m)
T < y

(m)
T = 0. Hence, we have

that x is a niplotent element.
(2) ⇒ (1): It is obvious.
(1) ⇒ (3): Let x be a nilpotent element of T . There
exists the smallest m satisfying x

(m)
T = 0. That is,

T (x
(m−1)
T , x) = 0.

(3) ⇒ (1): Let x be a zero divisor of T . There exists
y ∈ (0, a) satisfying T (x, y) = 0. Assume that x ≤ y.
Then T (x, x) ≤ T (x, y) = 0. That is, x

(2)
T = 0. Hence,

we have that x is a niplotent element of T .
(3) ⇒ (4): Let x be a zero divisor of T . There exists
y ∈ (0, a) satisfying T (x, y) = 0. (i) If x 6= y, we assume
that x < y. Then T (x, x) ≤ T (x, y) = 0. So T is not
strict; (ii) If x = y, then T (y, y) = T (x, y) = 0, which
follows T (0, y) ≤ T (y, y) = 0. Hence, T is not strict.
(4) ⇒ (3): Let T be an not strict Et-norm on L.
There exist u, v, w ∈ [0, a], u > 0, v < w satisfying
T (u, v) = T (u,w). Since T (v, w) ≤ v < w = T (a,w)
and continuity of T , there exists z ∈ [v, a] satisfying
v = T (z, w). Then T (u,w) = T (u, v) = T (u, T (w, z)) =
T (T (u,w), z). In addition, by mathematical induction,
for all n ∈ N , T (u,w) = T (T (u,w), z

(n)
T ). Finally, by

continuity of T again, T (u,w) = lim
n→∞

T (T (u,w), z
(n)
T ) =

T (T (u,w), lim
n→∞

z
(n)
T ) = T (T (u,w), 0) = 0. Hence, u and

w are zero divisors.

Theorem III.11. Let S be a continuous co-Archimedean
Et-conorm on L. The following statements are equivalent:
(1) There exists a co-nilpotent element of S;
(2) S is co-nilpotent;
(3) S has co-zero divisors;
(4) S is not strict.

Proof: (1) ⇒ (2): Let y be a co-nilpotent element of
S. There exists m ∈ N satisfying y

(m)
S = a. Since S is co-

Archimedean, there exists N1 ∈ N satisfying x
(N1)
S > y

for all x ∈ L. So x
(N1m)
S > y

(m)
S = a.

(2) ⇒ (1): It is obvious.
(1) ⇒ (3): Let x be a co-nilpotent element of S. There
exists the smallest m such that x

(m)
S = a. That is,

S(x
(m−1)
S , x) = a.

(3) ⇒ (1): Let x be a co-zero divisor of S. There exists
y ∈ (0, a) satisfying S(x, y) = a. Assume that y ≤ x.
Then a = S(x, y) ≤ S(x, x). That is, x

(2)
S = a. So we

have that x is a co-niplotent element of S.
(3) ⇒ (4): Let x be a co-zero divisor of S. There exists
y ∈ (0, a) such that S(x, y) = a. (i) If x 6= y, we assume
that x < y. We have a = S(x, y) ≤ S(y, y). So S is not
strict; (ii) If x = y, S(y, y) = S(x, y) = a, which follows
S(y, y) ≤ S(y, a) = a.
(4) ⇒ (3): Let S be an not strict Et-conorm on L.
There exist u, v, w ∈ [0, a], u < a, v > w satisfying
S(u, v) = S(u,w). Since S(v, w) ≥ v > w = S(w, 0)
and continuity of S, there exists z ∈ [0, v] satisfying
v = S(z, w). Then S(u,w) = S(u, v) = S(u, S(w, z)) =
S(S(u,w), z). In addition, by mathematical induction,
for all n ∈ N , S(u,w) = S(S(u,w), z

(n)
S ). Finally, by

continuity of S again, S(u,w) = lim
n→∞

S(S(u,w), z
(n)
S ) =

S(S(u,w), lim
n→∞

z
(n)
S ) = S(S(u,w), a) = a. Hence, u and

w are co-zero divisors.

Definition III.12. A map F : L2 → L is called an Et-
submorm, if for each x, y ∈ [0, a], it satisfies the following
conditions:
(F1) F (x, y) = F (y, x);
(F2) F (F (x, y), z) = F (x, F (y, z));
(F3) if x ≤ y, then F (x, z) ≤ F (y, z);
(F4) F (x, y) ≤ min(x, y).

Obviously, each Et-norm is an Et-subnorm, but not
vice versa. For example, for x, y ∈ [0, a], the map f :
L2 → L, (x, y) 7→ 0 is an Et-subnorm but not an Et-
norm.

Definition III.13. A map F ′ : L2 → L is called an
Et-subcomorm, if for each x, y ∈ [0, a], it satisfies the
following conditions:
(F ′1) F ′(x, y) = F ′(y, x);
(F ′2) F ′(F ′(x, y), z) = F ′(x, F ′(y, z));
(F ′3) if x ≤ y, then F ′(x, z) ≤ F ′(y, z);
(F ′4) F ′(x, y) ≥ max(x, y).

Similarly, each Et-conorm is an Et-subconorm, but
not vice versa. For example, for x, y ∈ [0, a], the map
f ′ : L2 → L, (x, y) 7→ a is an Et-subconorm but not an
Et-conorm.

Proposition III.14. Let F : L2 → L be an Et-subnorm.
For all x, y ∈ [0, b], the map T : L2 → L defined by

T (x, y) =

{
F (x, y), if (x, y) ∈ [0, b),
min(x, y), x = b or y = b.

is an Et-norm, where b ∈ I(L) satisfying F (b, b) = b.

Proof: It is obvious.

Proposition III.15. Let F ′ : L2 → L be an Et-subconorm.
For all x, y ∈ [0, b], the map S : L2 → L defined by

S(x, y) =

{
F ′(x, y), if (x, y) ∈ (0, b],
max(x, y), x = 0 or y = 0.
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is an Et-conorm, where b ∈ I(L) satisfying F ′(b, b) = b.

Proof: It is obvious.

Definition III.16. A binary operation φ on L is called a
φ-operator connected with a given Et-norm T : L2 →
L, if for each x, y, z ∈ [0, a], it satisfies the following
conditions:
(1) If y ≤ z, then φ(x, y) ≤ φ(x, z);
(2) T (φ(x, y), x) ≤ y;
(3) y ≤ φ(x, T (y, x)).

Definition III.17. A binary operation φ′ on L is called a
φ′-operator connected with a given Et-conorm S : L2 →
L, if for each x, y, z ∈ [0, a], it satisfies the following
conditions:
(1) If y ≤ z, then φ′(x, y) ≤ φ′(x, z);
(2) S(φ′(x, y), x) ≥ y;
(3) φ′(x, S(y, x)) ≤ y.

In the following, we will give some equivalent condi-
tions of a φ-operator connected with an Et-norm T and
a φ′-operator connected with an Et-conorm S.

Theorem III.18. Let T be an Et-norm on L and φ be a
φ-operator connected with T . For all x, y, z ∈ [0, a], the
following conditions are equivalent:
(1) (i) If y ≤ z, then φ(x, y) ≤ φ(x, z);
(ii) T (φ(x, y), x) ≤ y;
(iii) y ≤ φ(x, T (y, x));
(2) φ(x, y) = sup{z ∈ [0, a]|T (z, x) ≤ y};
(3) T (z, x) ≤ y ⇔ z ≤ φ(x, y).

Proof: (1) ⇒ (2): By (ii), φ(x, y) ∈ {z ∈
[0, a]|T (z, x) ≤ y}, which implies φ(x, y) ≤ sup{z ∈
[0, a]|T (z, x) ≤ y}. Let φ(x, y) < sup{z ∈ [0, a]|T (z, x) ≤
y} = z0. We have T (z0, x) ≤ y, which follows z0 ≤
φ(x, T (z0, x)) ≤ φ(x, y) < z0, which is a contradiction.
(2) ⇒ (3): It is obvious.
(3) ⇒ (1): By (3), T (φ(x, y), x) ≤ y iff φ(x, y) ≤ φ(x, y).
So (ii) holds. By (3) again, y ≤ φ(x, T (y, x)) iff T (y, x) ≤
T (y, x). So (iii) holds. In addition, if y ≤ z, by (ii), we
have T (φ(x, y), x) ≤ y ≤ z, which implies T (φ(x, y), x) ≤
z. By (3) again, φ(x, y) ≤ φ(x, z). So (i) holds.

Theorem III.19. Let S be an Et-conorm on L and φ′ be
a φ′-operator connected with S. For all x, y, z ∈ [0, a],
the following conditions are equivalent:
(1) (i) If y ≤ z, then φ′(x, y) ≤ φ′(x, z);
(ii) S(φ′(x, y), x) ≥ y;
(iii) φ′(x, S(y, x)) ≤ y;
(2) φ′(x, y) = inf{z ∈ [0, a]|S(z, x) ≥ y};
(3) S(z, x) ≥ y ⇔ z ≥ φ′(x, y).

Proof: (1) ⇒ (2): By (ii), φ′(x, y) ∈ {z ∈
[0, a]|S(z, x) ≥ y}, which implies φ′(x, y) ≥ inf{z ∈
[0, a]|S(z, x) ≥ y}. Let φ′(x, y) > inf{z ∈ [0, a]|S(z, x) ≥
y} = z0. Then S(z0, x) ≥ y, which follows z0 ≥
φ′(x, S(z0, x)) ≥ φ′(x, y) > z0, which is a contradiction.
(2) ⇒ (3): It is obvious.
(3) ⇒ (1): By (3), S(φ(x, y), x) ≥ y iff φ′(x, y) ≥ φ′(x, y).
So (ii) holds. By (3) again, y ≥ φ′(x, S(y, x)) iff S(y, x) ≥
S(y, x). So (iii) holds. In addition, if y ≥ z, by (ii),
S(φ′(x, y), x) ≥ y ≥ z, which implies S(φ′(x, y), x) ≥ z.

By (3) again, φ′(x, y) ≥ φ′(x, z). So (i) holds.

In the following propositions, we will study the re-
lationship between Et-norms (Et-conorm) and EBL-
algebras (EMV-algebras).

Proposition III.20. Let (L,∨,∧,�, 0) be an EBL-algebra.
We have that � is an Et-norm on L.

Proof: Let b be an arbitrary element on L. By the
notion of EBL-algebras, for all x, y ∈ [0, b], we have that
� satisfies the following conditions:
(i) x� y = y � x;
(ii) (x� y)� z = x� (y � z);
(iii) if y ≤ z, then x� y ≤ x� z;
(iv) x� b = x.
Hence, � is an Et-norm on L.

Proposition III.21. Let (L,∨,∧,⊕, 0) be an EMV-
algebra. We have that ⊕ is an Et-conorm on L.

Proof: Let b be an arbitrary element on L. By the
notion of EBL-algebras, for all x, y ∈ [0, b], we have that
⊕ satisfies the following conditions:
(i) x⊕ y = y ⊕ x;
(ii) (x⊕ y)⊕ z = x⊕ (y ⊕ z);
(iii) if y ≤ z, then x⊕ y ≤ x⊕ z;
(iv) x⊕ 0 = x.
Hence, ⊕ is an Et-conorm on L.

Proposition III.22. Let T be a continuous Et-norm on L
and φ be a φ-operator connected with T . We have that
(L,∨,∧, T, 0) is an EBL-algebra.

Proof: By Proposition II.9, (L,∨,∧, T, 0) satisfies
the following conditions:
(1) (L,∨,∧, 0) forms a distributive lattice;
(2) (L, T, 0) forms a commutative semigroup;
(3) Let b be the biggest element that satisfies T (b, b) = b
on L. Then the interval [0, b] equipped with the oper-
ations ∨,∧,�,

b→ and bounds 0, b forms a BL-algebra,
where x ≤ y ⇔ x∧y = x ⇔ x∨y = y. In fact, it satisfies
the following conditions:
(i) (L,∨,∧, 0, b) forms a bounded lattice;
(ii) (L, T, b) forms an abelian monoid;
(iii) for x, y, z ∈ [0, b], T (x, y) ≤ z iff x ≤ φ(y, z);
(iv) For x, y ∈ [0, b], by Lemma II.8, x∧y = T (x, φ(x, y));
(v) For all x, y ∈ [0, b], by Theorem III.18 (2), φ(x, y) ∨
φ(y, x) = b .
Hence, (L,∨,∧, T, 0) is an EBL-algebra.

IV. n-roots of EBL-algebras
In this section, we aim to introduce the notion and

some results of n-roots on EBL-algebras. In addition, we
characterize some properties of n-strict EBL-algebras.

Definition IV.1. Let n ∈ N . A map r : A → A is called an
n-root if for all x ∈ A, it satisfies the following conditions:

(R1) r(x)n =

n−times︷ ︸︸ ︷
r(x)� r(x)� · · · r(x) = x;

(R2) For all y ∈ A, yn ≤ x implies that y ≤ r(x) .

A 2-root can be called a square root. In addition, we
define r(x)0 = x and rn = r ◦ rn−1.
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Remark IV.2. Let r be an n-root on A.
(1) r is a one-to-one map. For some x1, x2 ∈ A, if r(x1) =
r(x2), by (R1), we have x1 = (r(x1))

n = (r(x2))
n = x2 .

(2) If there exists an n-root s on A, then r(x) = s(x).
Since (r(x))n ≤ x, by (R2), we have r(x) ≤ s(x).
Similarly, we have s(x) ≤ r(x). Hence, r(x) = s(x).
(3) Let m ∈ N . For all x ∈ A, (rm(x))n =
(r(rm−1(x)))n = rm−1(x). Similarly, (rm(x))n

t

=

(rm−1(x))n
(t−1)

= · · · = rm−t(x).
(4) We define a map l: A → A by l := rn. Then l is an
nn-root. For all x ∈ A, by (3), (l(x))n

n

= (rn(x))n
n

=
rn−n(x) = x. So (R1) holds. In addition, let y ∈ A
satisfying (y)n

n ≤ x. By (R1), (y)n
n ≤ x = (l(x))n

n

=
(rn(x))n

n . It implies that y ≤ rn(x) = l(x), so (R2)
holds.
(5) Let s be an m-root on A. For all x ∈ A, if m ≤ n,
then s(x) ≤ r(x). Since (s(x))n ≤ (s(x))m = x, by (R2),
s(x) ≤ r(x).

Proposition IV.3. Let r be an n-root on A and a ∈ I(A).
For all x, y ∈ [0, a], the following statements hold:
(1) If x ≤ y, then r(x) ≤ r(y);
(2) x ≤ x ∨ r(0) ≤ r(x);
(3) If r(a) ≤ a, then r(a) = a;
(4) r(x)� r(y) ≤ r(x� y);
(5) x ∧ y ≤ r(x) � r(y). In addition, if r(0) ≥ a, then
a = 0;
(6) x = r(x) iff r(x) ∈ I(A);
(7) x ≤ r(xn) ≤ r(x);
(8) x ∧ x−a ≤ r(0);
(9) If r(y) ∈ [0, a], r(y) ∈ {x ∧ (xn−1 a→ y) : x ∈ A};
(10) (r(xn))n = (r(x)n)n;
(11) If r(x), r(y) ≤ a, then r(x)

a→ r(y) = r(x
a→ y) ∧ a;

(12) (r(x) ∧ r(x−a))2 ≤ r(0) for each x ∈ A.

Proof: (1) By r(x)n = x ≤ y and (R2), r(x) ≤ r(y).
(2) Clearly, r(0)n = 0 ≤ x. By (R2), r(0) ≤ r(x). So
x ∨ r(0) ≤ r(x).
(3) Since r(a)n = a ≤ r(a), we have r(a) = a.
(4) By (r(x)� r(y))n = r(x)n � r(y)n = x� y and (R2),
we have r(x)� r(y) ≤ r(x� y).
(5) By (1), we have x∧y = r(x∧y)n ≤ r(x∧y)� r(x∧y) ≤
r(x)� r(y). In addition, a = an ≤ r(0)n = 0.
(6) If r(x) = x, we have r(x) = x = r(x)n ≤ r(x)2 ≤
r(x). It implies that r(x)2 = r(x). Conversely, if r(x) ∈
I(A), we have x = r(x)n = r(x).
(7) Since xn ≤ xn, we have x ≤ r(xn). In addition, by
(1), we have r(xn) ≤ r(x).
(8) By (x∧x−a)n ≤ (x∧x−a)2 ≤ x�x−a = 0 and (R2),
we have x ∧ x−a ≤ r(0).
(9) By r(y)n = y, we have r(y) ≤ r(y)n−1 a→ y, which
follows
r(y) = r(y)∧ (r(y)n−1 a→ y) ∈ {x∧ (xn−1 a→ y) : x ∈ A}.
(10) By (R1), (r(xn))n = xn = (r(x)n)n.
(11) We have

x� (r(x)
a→ r(y))n

= r(x)n � (r(x)
a→ r(y))n

= (r(x) ∧ r(y))n

≤ r(y)n

= y.
It implies that (r(x) a→ r(y))n ≤ x

a→ y. By (R2), r(x) a→
r(y) ≤ r(x

a→ y). Hence, r(x)
a→ r(y) ≤ r(x

a→ y) ∧ a.

Conversely, by (1) and (4), r(x)�r(x
a→ y) ≤ r(x�(x

a→
y)) = r(x ∧ y) ≤ r(y). In addition,

r(x)� (r(x
a→ y) ∧ a)

= (r(x)� r(x
a→ y)) ∧ (r(x)� a)

= r(x)� r(x
a→ y)

≤ r(y).
It implies that r(x

a→ y) ∧ a ≤ r(x)
a→ r(y).

(12) We have
((r(x) ∧ r(x−a))2)n

= (r(x) ∧ r(x−a))n � (r(x) ∧ r(x−a))n

≤ r(x)n � r(x−a)n

= x� x−a

= 0.
It implies that (r(x) ∧ r(x−a))2 ≤ r(0).

Proposition IV.4. Let A be an EBL-algebra and a ∈
I(A). For all x, y ∈ [0, a], we have x�y ≤ (x�x)∨(y�y).

Proof: We have
x� y

= (x� y)� a

= (x� y)� ((x
a→ y) ∨ (y

a→ x))

= ((x� y)� (x
a→ y)) ∨ ((x� y)� (y

a→ x))
≤ (x� x) ∨ (y � y).

Proposition IV.5. Let r be a square-root on A and a ∈
I(A). For all x, y ∈ [0, a], the following statements hold:
(1) r(x)� r(y) ≤ x ∨ y;
(2) r(x) ∧ r(y) = r(x ∧ y);
(3) If r(x), r(y) ≤ a and y ≤ r(x)� r(y), then y ≤ x;
(4) x ∧ (x

a→ 0) ≤ r(0).

Proof: (1) By Proposition IV.4, we have r(x)�r(y) ≤
(r(x)� r(x)) ∨ (r(y)� r(y)) = x ∨ y.
(2) By Proposition IV.3 (1), r(x ∧ y) ≤ r(x) ∧ r(y). In
addition,

(r(x) ∧ r(y))� (r(x) ∧ r(y))
= (r(x) � r(x)) ∧ (r(x) � r(y)) ∧ (r(y) � r(x)) ∧

(r(y)� r(y))
= x ∧ y ∧ (r(x)� r(y))
≤ x ∧ y.

Hence, r(x) ∧ r(y) ≤ r(x ∧ y).
(3) Let r(x), r(y) ≤ a. Then

y
= y ∧ (r(x)� r(y))
= (r(y)� r(y)) ∧ (r(x)� r(y))
= r(y)� (r(x) ∧ r(y))

= r(y)� (r(y)� (r(y)
a→ r(x)))

≤ r(x)� (r(y)� (r(y)
a→ r(x)))

= r(x)� (r(x) ∧ r(y))
≤ r(x)� r(x)
= x.

(4) We have
(x ∧ (x

a→ 0))� (x ∧ (x
a→ 0))

= ((x ∧ (x
a→ 0))� x) ∧ ((x ∧ (x

a→ 0))� (x
a→ 0))

≤ ((x
a→ 0)� x) ∧ ((x

a→ 0)� x)
= 0.

It implies that x ∧ (x
a→ 0) ≤ r(0).

Proposition IV.6. Let r be an n-root on A and a ∈ I(A).
For all x, y ∈ [0, a], we define ra : [0, a] → [0, a] by
ra(x) = r(x) ∧ a. If r(x) ≤ a, then ra is an n-root.
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Proof: Clearly, ra(x)n = (r(x)∧a)n = x. In addition,
if yn ≤ x, we have y ≤ r(x), which follows y ≤ r(x)∧a =
ra(x).

Proposition IV.7. Let r be an n-root on A. For all X ⊆ A,
we have

∧
r(X) = r(

∧
X).

Proof: For all x ∈ X, by Proposition IV.3 (1), we
have r(

∧
X) ≤ r(x). So r(

∧
X) ≤

∧
r(x). Assume that

y ∈ A such that y ≤ r(x). We have yn ≤ r(x)n = x. In
addition, by (R2), we have yn ≤

∧
X and y ≤ r(

∧
X) .

So
∧

r(x) ≤ r(
∧
X). Hence,

∧
r(X) = r(

∧
X).

In the following, we will prove that s ◦ r : A → A is
an mn-root on the EBL-algebra A, where s is an m-root
and r is an n-root on A.

Proposition IV.8. Let s be an m-root and r be an n-root
on A. Then s ◦ r is an mn-root on A.

Proof: For all x ∈ A, we have (s ◦ r(x))mn =
(s(r(x))m)n = r(x)n = x. So (R1) holds. In addition,
if y ∈ A such that ymn ≤ x, we have ym ≤ r(x) and
y ≤ s(r(x)). So (R2) holds. Hence, s ◦ r : A → A is an
mn-root on A.

In the following, we will give some properties of n-roots
connected with EBL-homomorphisms.

Proposition IV.9. Let r be an n-root on A1 and f : A1 →
A2 be an EBL-homomorphism. We define t : f(A1) →
f(A1) by t(f(x)) = f(r(x)). Then t is an n-root on
f(A1).

Proof: For all x ∈ A1, t(f(x))n = f(r(x))n =
f(r(x)n) = f(x). So (R1) holds. In addition, let x, y ∈ A1

such that f(y)n ≤ f(x). Then f(yn
a→ x) = f(yn)

f(a)→
f(x) = f(a). In addition,

yn
a→ x

≤ ra(y
n a→ x)

= ra(y
n)

a→ ra(x)

≤ ra(y)
n a→ ra(x)

= y
a→ ra(x).

So f(a) = f(yn
a→ x) ≤ f(y

a→ ra(x)) ≤ f(a). Then
f(y

a→ ra(x)) = f(a) and f(y)
f(a)→ f(ra(x)) = f(a).

That is, f(y) ≤ f(ra(x)) ≤ f(r(x)) = t(f(x)). Hence,
(R2) holds. Finally, we prove that f(x) = f(y) implies
that t(f(x)) = t(f(y)). In fact, f(r(x))n = f(r(x)n) =
f(x) = f(y). By (R2), t(f(x)) = f(r(x)) ≤ f(r(y)) =
t(f(y)). Similarly, t(f(y)) = f(r(y)) ≤ f(r(x)) =
t(f(x)).

Corollary IV.10. Let I be an ideal of A and r be an n-
root on A. We define a map t : A/I → A/I by t(x/I) =
r(x)/I. Then t is an n-root on A/I.

Proof: For all x ∈ A, there exists an EBL-
homomorphism f : A → A/I defined by x → x/I. Then
t(f(x)) = t(x/I) = r(x)/I = f(r(x)). By Proposition
IV.9, we have that t : A/I → A/I is an n-root on A/I.

Let r1: A1 → A1 and r2: A2 → A2 be two n-roots. If
f : A1 → A2 is an EBL-homomorphism, for all x ∈ A1,
f(r1(x))

n = f(x) and f(r1(x)) ≤ r2(f(x)).

Definition IV.11. Let f : A1 → A2 be an EBL-
homomorphism, r1: A1 → A1 and r2: A2 → A2 be two
n-roots. For all x ∈ A1, we say f preserves n-roots if
f(r1(x)) = r2(f(x)).
Theorem IV.12. Let f : A1 → A2 be an EBL-
homomorphism, r1: A1 → A1 and r2: A2 → A2 be two
n-roots. We have f preserves n-roots iff f(A1) is closed
under r2.

Proof: Let f preserves n-roots. For all f(x) ∈ f(A1),
we have r2(f(x)) = f(r1(x)) ∈ f(A1). So f(A1) is closed
under r2. Conversely, let f(A1) be closed under r2. By
Proposition IV.9, we have t : f(A1) → f(A1) defined
by t(f(x)) = f(r1(x)) is an n-root on f(A1). That is,
r2|f(A1) = t is an n-root on f(A1). Hence, r2(f(x)) =
t(f(x)) = f(r1(x)).

Definition IV.13. An EBL-algebra (A,∨,∧,�, 0) with an
n-root r : A → A is called strict if, for all b ≥ r(0), we
have rb(0)

n−1 = rb(0)
−b, where rb(0)

−b = rb(0)
b→ 0.

In the following, we will characterize some properties
of n-strict EBL-algebras.
Theorem IV.14. Each n-strict EBL-algebra has a top
element.

Proof: Let r be a strict n-root on EBL-algebra A
and a ∈ I(A) such that r(0) ≤ a. We have ra(0)

n−1 =
r(0)n−1∧a = r(0)n−1 = r(0)

a→ 0. In addition, we choose
b ∈ I(A) such that a ≤ b. Similarly, we have rb(0)

n−1 =

r(0)n−1 ∧ b = r(0)n−1 = r(0)
b→ 0. By Proposition II.5

(ii), we have r(0)n−1 = r(0)
b→ 0 = (r(0)

a→ 0)∨ (a
b→ 0).

That is, a b→ 0 ≤ r(0)n−1. Hence, we have b = a ∨ (a
b→

0) ≤ a ∨ r(0)n−1 ≤ a ∨ a = a. So a = b. Hence, a is the
top element of A.
Corollary IV.15. (i) Let r be an n-root on an EBL-
algebra (A,∨,∧,�, 0). If b ∈ I(A) such that r(0) ≤ b and
rb is strict, for each a ∈ I(A) satisfying r(0) ≤ a < b,
then ra cannot be strict.
(ii) Each n-strict EBL-algebra is a n-strict BL-algebra.

Proof: (i) If ra is strict, by Theorem IV.14, we have
a = b, which is a contradiction.
(ii) It is obvious.
Proposition IV.16. Let r be an n-root on A. For all
m, p ∈ N such that n = mp, if r(xp) = r(x)p, then r(x)p

is an m-root of A.
Proof: For all x ∈ A, we have (r(x)p)m = r(x)mp =

r(x)n = x. In addition, let ym ≤ x. Then yn ≤ xp. From
r is an n-root, it follows that y ≤ r(xp) = r(x)p. Hence,
r(x)p is an m-root of A.

In the following, we will give some properties of n-roots
connected with filters.
Proposition IV.17. Let F be a filter of A and r be an
n-root on A. For all x ∈ F , {r(x)|x ∈ F} ⊆ F .

Proof: By Proposition IV.3 (7), we have x ≤ r(x).
From the definition of filters, it follows that {r(x)|x ∈
F} ⊆ F .
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Proposition IV.18. Let F be a filter of A and r be an
n-root on A. For all x, y ∈ F , we have r(x)� r(y) ∈ F .

Proof: By Definition II.13, we have x � y ∈ F . In
addition, from x� y ≤ r(x)� r(y), it follows that r(x)�
r(y) ∈ F .

V. Conclusion
In this paper, we extended the notion of Et-norms

(Et-conorms) as an extension of t-norms (t-conorms).
We characterize some algebraic properties of Et-norms
(Et-norms). In addition, we established an relationship
between an Et-norm on chain L and EBL-algebra
(L,∨,∧, T, 0). On the other hand, we also defined the
notion of an n-root on EBL-algebras and studied their
important properties. Some results on EBl-algebras are
obvious. Particularly, we proved that each n-strict EBL-
algebra is a BL-algebra.

In the following study, there are many valued topics
can be studied: (1) Does there exists a classification of
EBL-algebras with n-roots? (2) Is it possible to extend
Et-norms to partial order lattice structure?
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