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Abstract—This article delves into the realm of eccentricity-
based topological indices, focusing particularly on a class
of graphs called chain graphs. Topological indices serve as
numerical descriptors derived from molecular structures, aiding
in the elucidation of chemical properties and activities. Today,
topological indices remain a vibrant area of research, with
applications spanning various fields of chemistry, including
drug design, materials science, environmental chemistry, and
bioinformatics. Chain graphs are a special class of bipartite
graphs having the largest spectral radius among all the bipartite
graphs of prescribed order and size. Nevertheless, the high
significance of chain graphs in the field of spectral graph theory,
the domain of various topological indices remains unexplored.
This article categorizes generalized eccentricity-based topologi-
cal indices into two types and explores them. Some of the major
eccentricity-based topological indices like the total eccentricity
index, Zagreb eccentricity indices, ABC eccentricity index, and
geometric-arithmetic eccentricity index of chain graphs are
studied in detail and an inequality connecting their relationship
is provided. Further, the extremities for these indices among
chain graphs are presented.

Index Terms—Chain, Bipartite graph, Bi-star graph, Com-
plete bipartite graph.

I. INTRODUCTION

Topological indices have a rich historical background,
dating back to the mid-20th century when chemists and
mathematicians began exploring mathematical approaches
to describe molecular structures. The concept of topological
indices emerged as a result of this interdisciplinary
collaboration. In 1947, Harold Wiener introduced the
Wiener index, which was one of the earliest topological
indices. Wiener index is based on the sum of distances
between all pairs of vertices in a molecular graph. He
initially used this index to compare the boiling points
of alkane isomers, marking the beginning of topological
index applications in chemistry. Following Wiener’s
pioneering work, many other researchers contributed to
the development of topological indices. In the subsequent
decades, numerous other topological indices were proposed,
each focusing on different aspects of molecular structure
and properties. These indices include the Hosoya index,
Zagreb index, Balaban index, and many more. With the
advancement of graph theory and computational chemistry,
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researchers continued to refine existing indices and develop
new ones to address specific challenges in chemical research.

Chain graphs are {2K2, C3, C5}-free graphs, popularly
known as double nested graphs. In other words, a chain
graph is a bipartite graph G with V (G) = V1 ∪ V2 in which
each of the partite sets Vi (i = 1, 2) can be partitioned into
h non-empty cells V11, V12, . . . , V1h and V21, V22, . . . , V2h

such that NG(u) = V21 ∪ ... ∪ V2(h−i+1), for any u ∈ V1i,
1 ≤ i ≤ h. If mi = |V1i| and ni = |V2i|, then we write
G = DNG(m1,m2, ...,mh;n1, n2, ..., nh), whose order is

n =
h∑

i=1

mi+
h∑

i=1

ni (DNG stands for Double Nested Graphs)

[1]. The complete bipartite graph Kp,q = DNG(p, q) and the
bi-star graph B(p, q) = DNG(1, p − 1; 1, q − 1) (obtained
by adding an edge between the two apex vertices of K1,p−1

and K1,q−1). When each of mi = ni = 1 for 1 ≤ i ≤ h, the
graph is called a half graph [2]. Figure 2 represents a chain
graph, DNG(3, 2, 5, 1; 2, 1, 3, 3) of order 20.

Fig. 1. Chain graph, DNG(3, 2, 5, 1; 2, 1, 3, 3)

Chain graphs attain the maximum spectral radius among all
simple bipartite graphs of prescribed order and size ( [3]),
hence playing a signficant role in the field of spectral graph
theory. Further results concerned with properties of chain
graphs are available in the literature [4], [5], [6], [7] and
[8]. A great deal of knowledge on some topological indices
is accumulated in the recent literature [9], [10], [11], [12],
[13], [14], [15], [16] and [17]. Some degree and distance
based topological indices like Wiener index, Harary index,
Zagreb indices etc. of chain graphs explored in [18], [19],
[20] and [21]. They also provide algorithms for inverse
topological index problems for chain graphs.

A. Eccentricity-based topological indices

Researches in the verge of refining the existing topological
indices, replaced degrees by eccentricities in well known
degree based topological indices. The detailed exploration
of such indices and analysis of their applications are being
studied in the recent years and hence currently, proved to be
one of the emerging research area in Molecular chemistry and
Molecular graph theory. Apparently, in this article we have
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categorized general eccentricity-based topological indices
into two types.
In the subsequent part of the article some abbreviations
as well as notations are used, which are given below. A
bipartite graph G with the bipartition V (G) = V1 ∪ V2 is
denoted by G(V1∪V2, E). The adjacency and non adjacency
between any two vertices u, v are denoted by u ∼ v and
u ≁ v, respectively. For a vertex v ∈ V (G) in G, d(v),
e(v) represent degree and eccentricity of v, respectively. The
distance between any two vertices u, v ∈ V (G) is denoted by
d(u, v). Given a vertex v, a vertex u is said to be an eccentric
vertex for v, if d(u, v) = e(v). A vertex in a graph G is said
to be dominating if it is adjacent to all other vertices of G.
But in the context of bipartite graphs, a dominating vertex
in a partite set refers to the one that is adjacent to all other
vertices of the other partite set.
We now categorize eccentricity-based topological indices
into two classes (type I and type II) depending on their
definitions.

Definition 1.1: For a graph G(V,E) of order n, a vertex
eccentricity-based topological index is said to be of type I
if it can be expressed as

Θe
I =

∑
v∈V (G)

θ
(
e(v)

)
(1)

Here the summation runs over all the vertices of G and θ is a
function of vertex eccentricity. The class {Θe

I} comprises all
the eccentricity-based topological indices of type I . When
the function θ is chosen appropriately, we get some popu-
lar eccentricity-based topological indices of graphs. When
θ(x) = x in Equation 1, we get the total eccentricity index
given by

τ(G) =
∑

v∈V (G)

e(v)

Similarly, when θ(x) = x2 in Equation 1, we get the first
Zagreb eccentricity index given by

ξ1(G) =
∑

v∈V (G)

e2(v)

Definition 1.2: For a graph G(V,E), a vertex eccentricity-
based topological index is said to be of type II if it can be
expressed as

Θe
II =

∑
uv∈E(G)

θ
(
e(u), e(v)

)
(2)

Here the summation runs over all the edges of G and
θ is a symmetric function of vertex eccentricities, that is
θ (e(u), e(v)) = θ

(
e(v), e(u)

)
. The class {Θe

II} comprises
all the eccentricity-based topological indices of type II .
Some of the well-known eccentricity-based topological in-
dices belonging to the class Θe

II , namely the second Zagreb
eccentricity index, eccentric connectivity index, Atom bond
connectivity eccentricity index (ABC eccentricity index) and
Geometric arithmetic eccentricity index (GA eccentricity
index) are given in the following table.

II. SOME INDICES FROM CLASS {Θe
I}

As per the definition of chain graphs, eccentricity of any
vertex is either 1, 2 or 3. Most of the indices from this class

θ(x, y) Index obtained Expression
θ = xy The second Zagreb eccentricity index ξ2(G) =

∑
uv∈E(G)

e(v)e(u)

θ = x+ y Eccentric connectivity index ξc(G) =
∑

uv∈E(G)

e(u) + e(v)

θ =
√

x+y−2
xy Atom bond connectivity eccentricity index ABCe(G) =

∑
uv∈E(G)

√
e(u)+e(v)−2

e(u)e(v)

θ =
2
√
xy

x+y Geometric arithmetic eccentricity index GAe(G) =
∑

uv∈E(G)

2
√

e(u)e(v)

e(u)+e(v)

will be sum of θ(1), θ(2) and θ(3). The following is the
expression.

Theorem 2.1: Let G(V1 ∪ V2, E) =
DNG(m1,m2, ...,mh;n1, n2, ..., nh) be a chain graph
of order n with |V1| = p and |V2| = q, where p, q > 1.
Then an eccentricity-based topological index of type I
Θe

I ∈ {Θe
I} is given by

Θe
I = (m1 + n1)θ(2) + (n−m1 − n1)θ(3) (3)

Proof: Let V1 = V11∪V12∪· · ·∪V1h with V1i = mi and
V2 = V21 ∪ V22 ∪ · · · ∪ V2h with V2i = ni for 1 ≤ i ≤ h. By
definition, the vertices of V11 and V21 are dominating, for any
vertex v ∈ V11∪V21, e(v) = 2, with eccentric vertices being
the ones in the same partite set. For any vertex v ∈ V1 \V11,
all the vertices u ∈ V21 are adjacent and there exists at least
one vertex u ∈ V2\V21 such that d(u, v) = 3 (since p, q > 1),
hence e(v) = 3. The same is true for the vertices of V2 \V21.
Thus,

e(v) =

{
2 v ∈ V11 ∪ V21

3 else
.

On enumerating the vertex eccentricities appropriately and
substituting in Equation 1, we get the expression.
When either of p, q is one, say, p = 1 and q > 1, then

e(v) =

{
1 v ∈ V1

2 else
. Thus Θe

I = θ(1) + qθ(2). Suppose

both p = q = 1, then e(v) = 1 ∀v ∈ V (G), in which case
Θe

I = 2θ(1). The total eccentricity index and the first Zagreb
eccentricity index can be obtained from the above theorem
as the special cases.

Corollary 2.2: Let G(V1∪V2, E) be a chain graph of order
n with |V1| = p and |V2| = q, where p, q > 1. Let τ(G) and
ξ1(G) be the total eccentricity index and the first Zagreb
eccentricity index of G, respectively. Then

τ(G) = 3n− k

ξ1(G) = 9n− 5k

where k is the number of dominating vertices in G.
Half graphs are the special type of chain graphs where

each of the cells contain exactly one vertex. A graph graph
has even number of vertices, where the number of vertices
in each partite set equlas the number of cells itself. Further,
a graph graph G(V1 ∪ V2, E) has |V1| = |V2|.

Fig. 2. A Half graph, DNG(1, 1, 1, 1; 1, 1, 1, 1)
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Corollary 2.3: Let G(V1∪V2, E) be a half graph of order
n ≥ 2. Then an eccentricity-based topological index of type
I Θe

I ∈ {Θe
I} is given by

Θe
I = 2θ(2) + (n− 2)θ(3) (4)

Proof: The above result follows by substituting m1 =
n1 = 1.
Next we have the theorem giving bounds for these indices.

Theorem 2.4: Let G(V1 ∪ V2, E) =
DNG(m1,m2, ...,mh;n1, n2, ..., nh) be a chain graph
of order n with |V1| = p and |V2| = q, where p, q > 1.
Let τ(G), ξ1(G) be the total eccentricity index and the first
Zagreb eccentricity index of G, respectively. Then

2n ≤ τ(G) ≤ 3n− 2

4n ≤ ξ1(G) ≤ 9n− 10

Proof: From Corollary 2.2, both τ(G), ξ1(G) are mini-
mum when k is maximum, that is the number of dominating
vertices are the maximum. Since |V1| = p and |V2| = q, the
number of dominating vertices is at most p + q. The graph
G has the minimum total eccentricity index/the first Zagreb
eccentricity index when all the vertices are dominating, that
is G = Kp,q and k = p + q = n. Thus τ(G) ≥ 2n
and ξ1(G) ≥ 4n. Similarly, they attain the maxima when
k is as minimum as possible. That is when the number of
dominating vertices is the minimum. This happens only when
each of V1, V2 has exactly one dominating vertex due to the
property that both the partite sets of a chain graph have
at least one dominating vertex. Thus the total eccentricity
index/ the first Zagreb eccentricity index is the maximum
when k = 2 and G = B(p, q), which implies τ(G) ≤ 3n−2
and ξ1(G) ≤ 9n− 10.
We next move to the class of eccentricity-based indices of
type II .

III. SOME INDICES FROM CLASS {Θe
II}

The four specific eccentricity-based indices namely, the
second Zagreb eccentricity index, eccentric connectivity in-
dex, ABC eccentricity index and GA eccentricity index
(defined in the table given in the introduction part) are dis-
cussed in this section in detail. The first theorem here gives
the general expression for any eccentricity-based topological
index of type II .

Theorem 3.1: Let G(V1 ∪ V2, E) =
DNG(m1,m2, ...,mh;n1, n2, ..., nh) be a chain graph
of order n with |V1| = p and |V2| = q, where p, q > 1.
Suppose Θe

II =
∑

uv∈E(G)

θ
(
e(u), e(v)

)
be an eccentricity-

based topological index of type II. Then

Θe
II = m1n1θ(2, 2) +

m1

h∑
j=2

nj + n1

h∑
i=2

mi

 θ(2, 3)+

h−1∑
j=2

h−j+1∑
i=2

njmi

 θ(3, 3)

(5)
Proof: Let V1 = V11 ∪ V12 ∪ ... ∪ V1h and V2 = V21 ∪

V22 ∪ ... ∪ V2h. Since p, q > 1, it is true that G ̸= K1,n−1.
As discussed in the earlier proofs, for any vertex v in G,
e(v) = 2, if v ∈ V11 or v ∈ V21 and e(v) = 3, otherwise.

Further, any vertex u ∈ V1i is adjacent with all the vertices
of V21∪V22∪ ...∪V2(h−i+1). Since the summation runs over
only those pairs of vertices which are adjacent with each
other, the possible adjacent vertex pairs (u, v) with respective
eccentricities, contributing nonzero terms in the summation
are given below:

i. u ∈ V11 and v ∈ V21 such that e(u) = e(v) = 2.
ii. u ∈ V11 and v ∈ V2 \ V21 such that e(u) = 2, e(v) = 3.

iii. u ∈ V1 \ V11 and v ∈ V21 such that e(u) = 3, e(v) = 2.
iv. u ∈ V1\V11 and v ∈ V2\V21 such that e(u) = e(v) = 3.

Thus, Θe
II = T1θ(2, 2)+T2θ(2, 3)+T3θ(3, 3), where T1, T2

and T3 are the number of pairs of adjacent vertices both of
which have eccentricity 2, the number of pairs of adjacent
vertices in which one of them has eccentricity 2 and the
other has eccentricity 3, and the number of pairs of adjacent
vertices both of which have eccentricity 3, respectively. On
enumerating T1, T2, T3, using the definition of chain graphs,

we get T1 = m1n1, T2 = m1

h∑
j=2

nj + n1

h∑
i=2

mi and

T3 =
h−1∑
j=2

h−j+1∑
i=2

njmi.

In the proof discussed above, one can note that the number of
dominating vertices plays a significant role as they are the
only vertices of eccentricity 2. The other non-dominating
vertices play the same role irrespective of the cell V1i or
V2i for 2 ≤ i ≤ h to which it belongs. Thus, we simplify
the above expression and obtain a new one in terms of the
number of dominating vertices and the number of edges.

Corollary 3.2: Let G(V1 ∪ V2, E) =
DNG(m1,m2, ...,mh;n1, n2, ..., nh) be a chain graph
of order n with |V1| = p and |V2| = q, where p, q > 1. Let
M be the number of edges in G. Then

Θe
II = m1n1θ(2, 2) + (m1q + n1p− 2m1n1) θ(2, 3)+

(M +m1n1 −m1q − n1p) θ(3, 3)
(6)

Proof: It is true that
h∑

i=2

mi = p − m1 and
h∑

j=2

nj =

q− n1. The terms T1 and T2 enumerates all the edges of G
which is incident on at least one of V11 or V21. Specifically,
T1 enumerates the edges whose end vertices are in V11 and
V22.The term T2 enumerates all the edges whose end vertices
are in V11, V2 \ V22 and V22, V1 \ V11. Thus T1 = m1n1 and
T2 = m1(q−n1)+n1(p−m1). The term T3 is the number
of edges in G which are not included in both T1 and T2, that
is T3 = M − T1 − T2 = M +m1n1 −m1q − n1p.

Corollary 3.3: Let G(V1∪V2, E) be a half graph of order
n ≥ 2. Then

Θe
II = θ(2, 2) + (n− 2)θ(2, 3) +

(
n2 − 6n+ 8

8

)
θ(3, 3)

(7)
Proof: By definition of ahalf graph |V1| = |V2| = n

2 .
Further, the n

2 vertices in |V1| have degree given by n
2 ,

n
2 −

1, n
2 , . . . , 2, 1. Thus, the number o edges in G is n2+2n

8 . On
substituting m1 = n1 = 1 and M = n2+2n

8 in Corollary 3.2,
we get the result.
We refer the three terms of the Corollary 3.2 as T1, T2 and
T3 further, that is T1 = m1n1, T2 = m1(q−n1)+n1(p−m1)
and T3 = M+m1n1−m1q−n1p. On substituting appropriate
θ, one can get any eccentricity-based topological index of
type II from the class Θe

II . The second Zagreb index ξ2(G),
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the eccentric connectivity index ξc(G), the ABC eccentricity
index ABCe(G), the GA eccentricity index GAe(G) can be
obtained as follows.

ξ2(G) = 4T1 + 6T2 + 9T3 = 9M − 3 (m1q + n1p) +m1n1

(8)
ξc(G) = 4T1 + 5T2 + 6T3 = 6M −m1q − n1p (9)

ABCe(G) =
1√
2
(T1 + T2) +

2

3
T3

=
3− 2

√
2

3
√
2

(m1q + n1p−m1n1) +
2M

3

(10)

GAe(G) = T1 +
2
√
6

5
T2 + T3

=
2
√
6− 5

5
(m1q + n1p− 2m1n1) +M

(11)

It is natural to consider whether or not there is a relationship
between several topological indices of the same kind when
they are defined. Upon computing these several numerical
descriptors for a given graph, it could be discovered that
they have some relationship, which is described in the next
theorem.

Theorem 3.4: Let G(V1 ∪ V2, E) =
DNG(m1,m2, ...,mh;n1, n2, ..., nh) be a chain graph
of order n with |V1| = p and |V2| = q, where p, q > 1.
Let ξ2(G), ξc(G), ABCe(G) and GAe(G) be the second
Zagreb eccentricity index, Eccentric connectivity index,
ABC eccentricity index and GA eccentricity index of G,
respectively. Then

ABCe(G) < GAe(G) < ξc(G) ≤ ξ2(G)

Proof: From Equations 10 and 11, we have

GAe(G)−ABCe(G) = T1 +
2
√
6

5
T2 + T3−

1√
2
(T1 + T2)−

2

3
T3

=

(
1− 1√

2

)
T1+(

2
√
6

5
− 1√

2

)
T2 +

1

3
T3

where T1 = m1n1, T2 = m1(q − n1) + n1(p−m1) and
T3 = M−T2−T1 = M+m1n1−m1q−n1p. Since each of Vi

for i = 1, 2 has at least one dominating vertex, m1, n1 > 0, it
is true that T1 > 0. Also, since p ≥ m1, q ≥ n1 and M > 0,
it follows that T2 ≥ 0. Similarly, T3 = M − T1 − T2 ≥ 0.
Thus (

√
2−1√
2

)T1 > 0,
(

2
√
12−5
5
√
2

)
T2 ≥ 0 and 1

3T3 ≥ 0 and
hence GAe(G)−ABCe(G) > 0. This implies ABCe(G) <
GAe(G).
Similarly, consider

ξc(G)−GAe(G) = 4T1 + 5T2 + 6T3 − T1 − 2
√
6

5 T2 − T3

= 3T1 +
(

25−2
√
6

5

)
T2 + 5T3 > 0

Thus, GAe(G) < ξc(G).
Similarly, ξ2(G)−ξc(G) = T2+3T3 ≥ 0 and ξc(G) ≤ ξ2(G)

IV. BOUNDS FOR INDICES FROM THE CLASS {Θe
II}

The bounds for some eccentricity-based topological in-
dices from the class {Θe

II} are obtained in this section. In an
attempt to do the same, we began with the study of variation
of respective indices on addition of edges, for graphs of
prescribed order. Before moving to the bounds, the results
concerned with change in indices on addition of edges is
given. Since the expression for the indices is prominently
depending only on m1, n1, the variation of m1, n1 on adding
the edges play crucial role, rather than the other values mi, nj

for i, j > 1. These variations are given in detail in the
following theorems separately for the cases h > 2 and h = 2.

Theorem 4.1: Let G(m1,m2;n1, n2) be a chain graph of
order n on M edges with |V1| = p and |V2| = q, where
p, q > 1. Let u ∈ V12 and v ∈ V22 where u ≁ v. Let
Θe

II ∈ {Θe
II}. Then Θe

II(G+ e) is

Θe
II(G) + (m1 + n1 + 1)

θ(2, 2) + (n− 2m1 − 2n1

−2)θ(2, 3) if |V12| = |V22| = 1

Θe
II(G) + n1θ(2, 2)+

(q − 2n1)θ(2, 3)+

(n1 − q + 1)θ(3, 3) if |V22| = 1, |V12| > 1

Θe
II(G) +m1θ(2, 2)+

(p− 2m1)θ(2, 3)+

(m1 − p+ 1)θ(3, 3) if |V22| > 1, |V12| = 1

Θe
II(G) + θ(3, 3) else

(12)

Proof: Let G + e = DNG(m′
1,m

′
2;n

′
1, n

′
2), where

m′
1 = |V ′

11|,m′
2 = |V ′

12| and n′
1 = |V ′

21|, n′
2 = |V ′

22|. Then
m′

1 ≥ m1 and n′
1 ≥ n1. Clearly, u ∈ V12 and v ∈ V22

as V11, V21 contain dominating vertices and no more edges
can be added to the vertices of V11, V21. Then the following
cases are considered.

Case i: |V12| = |V22| = 1: Then on adding an edge e in
G, we get V ′

11 = V11 ∪ {u} and V ′
21 = V21 ∪ {v}

and G = DNG(m1 + 1;n1 + 1). Thus m′
1 =

m1 + 1, n′
1 = n1 + 1. On substituting m′

1, n
′
1 in

Equation 7, we get Θe
II(G+ e). One can note that

the coefficient of θ(3, 3), T
′

3 in Θe
II(G+e) is same

as that of T3, the coefficient of θ(3, 3) in Θe
II(G).

Case ii: |V12| > 1 and |V22| = 1: Then on adding the
edge e = uv in G, we get V ′

11 = V11 ∪ {u} and
V ′
22 = V22 = {v}. Thus m′

1 = m1 + 1, n′
1 = n1.

Case iii: |V12| = 1 and |V22| > 1: Results in m′
1 = m1 and

n′
1 = n1 + 1

Case iv: |V12| > 1 and |V22| > 1: Results in m′
1 = m1,

n′
1 = n1.

Theorem 4.2: Let G(V1 ∪ V2, E) =
DNG(m1,m2, ...,mh;n1, n2, ..., nh) be a chain graph
with |V1| = p and |V2| = q, where p, q > 1 and h > 2. Let

IAENG International Journal of Applied Mathematics

Volume 55, Issue 5, May 2025, Pages 1235-1241

 
______________________________________________________________________________________ 



u ∈ V1 and v ∈ V2 such that u ≁ v and e = uv. Then

Θe
II(G+e) =



Θe
II(G) + n1θ(2, 2) + (q − 2n1)

θ(2, 3) + (n1 − q + 1)θ(3, 3) if u ∈ V12,

v ∈ V2h,

|V2h| = 1

Θe
II(G) + θ(3, 3) else

(13)

Proof: Let G + e =
DNG(m′

1,m
′
2, ...,m

′
h;n

′
1, n

′
2, ..., n

′
h), where m′

i = |V ′
1i|

and n′
j = |V ′

2j | for 1 ≤ i ≤ h and 1 ≤ j ≤ h. Since h > 2,
if u ∈ V1i and v ∈ V2j for i, j > 2, then on adding the
edge e = uv, either a new cell is created or the vertices
u, v are added to the previous cells V1(i−1) or V2(j−1).
In all these cases, neither m1 and n1 are affected. Thus
m′

1 = m1 and n′
1 = n1. On substituting in 7, we get

Θe
II(G+ e) = Θe

II(G) + θ(3, 3).
Now, we consider the instance of u ∈ V1i and v ∈ V2j

for i = j = 2 and look into all the possible cases. When
|V12| = |V2h| = 1, since h > 2, on adding the edge
e = uv, only V11, V12, V2h, V2(h−1) are affected. That
is, V ′

11 = V11 ∪ {u}, V ′
12 = ∅,V ′

2(h−1) = V2(h−1) ∪ {v}
and V ′

2h = ∅. This results in m′
1 = m1 + 1 and n′

1 = n1.
Similarly, all the other cases are listed in below.

Case i: When |V12| = 1, |V2h| = 1: The cells affected are
V ′
11 = V11 ∪ {u}, V ′

12 = ∅, V ′
2(h−1) = V2(h−1) ∪

{v}, V ′
2h = ∅ and hence m′

1 = m1 + 1, n′
1 = n1.

Case ii: When |V12| > 1
|V2h| = 1: V ′

11 = V11 ∪ {u}, V ′
12 = V12 \ {u},

V ′
2(h−1) = V2(h−1) ∪ {v}, V ′

2h = ∅. Hence m′
1 =

m1 + 1 and n′
1 = n1.

Case iii: When |V12| = 1
|V2h| > 1: V ′

11 = V11, V ′
12 = V12,

V ′
2(h−1) = V2(h−1), V ′

2h = V2h. Hence m′
1 = m1

and n′
1 = n1

Case iv: When |V12| > 1
|V2h| > 1: V ′

11 = V11, V ′
12 = {u}, V ′

2(h−1) = {v},
V ′
2h = V2h. Hence m′

1 = m1 and n′
1 = n1

On substituting these variations of m1, n1 in Equation 7 one
can get Θe

II(G+ e) in terms of Θe
II(G).

Now, on substituting the suitable function θ(x, y), we obtain
variations for the second Zagreb eccentricity index, eccentric
connectivity index, ABC eccentricity index, GA eccentricity
index. The cases when the end vertices of the edge e = uv
join the vertices of the cells V12, V2h have different subcases.
The remaining possibilities of connecting vertices of other
cells do not make any difference(as mentioned in the proof
of Theorem 4.2). For the sake of simplicity, for the edge
e = uv satisfying the condition C : u ∈ V12, v ∈ V2h, we
write e ∼ C.

The second Zagreb eccentricity index ξ2(G+ e) =:



ξ2(G)− 2n+ 8 if e ∼ C, |V12| = |V2h| = 1,

h = 2

ξ2(G) + n1 − 3q + 9 if e ∼ C, |V12| = |V2h| = 1,

h > 2 or e ∼ C, |V12| > 1,

|V2h| = 1, h ≥ 2

ξ2(G) +m1 − 3p+ 9 if e ∼ C, |V12| = 1, |V2h| > 1,

h = 2

ξ2(G) + 9 else
(14)

The eccentric connectivity index: ξc(G+ e) =

ξc(G) + 6− n if e ∼ C, |V12| = |V2h| = 1,

h = 2

ξc(G)− q + 6 if e ∼ C, |V12| = |V2h| = 1,

h > 2 or e ∼ C, |V12| > 1,

|V2h| = 1, h ≥ 2

ξc(G)− p+ 6 if e ∼ C, |V12| = 1, |V2h| > 1,

h = 2

ξc(G) + 6 else

(15)

ABC eccentricity index : ABCe(G+ e) =

=


ABCe(G) + 1√

2
if e ∼ C, |V12| = |V2h| = 1 or

e ∼ C, |V12| > 1, |V2h| = 1 or
e ∼ C, |V12| = 1, |V2h| > 1, h = 2

ABCe(G) + 2
3 else

(16)
GA eccentricity index: GAe(G+ e) =

GAe(G) + c1n+ c2 if e ∼ C, |V12| = |V2h| = 1, h = 2

GAe(G) + c1q + c2 if e ∼ C, |V12| = |V2h| = 1, h > 2

or e ∼ C, |V12| > 1, |V2h| = 1,

h ≥ 2

GAe(G) + c1p+ c2 if e ∼ C, |V12| = 1, |V2h| > 1,

h = 2

GAe(G) + 1 else
(17)

where c1, c2 are constants given by c1 =
(

5−2
√
6

5

)
and

c2 =
(

4
√
6−5
5

)
.

From Equations 16 and 17, one can note that these
indices increase all the time whenever an edge is added
irrespective of where it is added. Unlike these, the second
Zagreb eccentricity index and the eccentric connectivity
index may increase or decrease. This is an important
observation, very helpful in giving the extremities for these
indices.

Theorem 4.3: Let G(V1 ∪ V2, E) =
DNG(m1,m2, ...,mh;n1, n2, ..., nh) be a chain graph
of order n. Let ABCe(G) be the atom bond connectivity
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eccentricity index of G. Then

ABCe(G) ≤


n2

4
√
2

if n is even

n2 − 1

4
√
2

else

ABCe(G) ≥ n− 1√
2

Proof: From Equation 10, ABCe(G) = 3−2
√
2

3
√
2

(m1q +

n1p−m1n1)+
2M
3 . Further as ABCe(G+e) > ABCe(G),

it reaches the maximum (minimum) when the number of
edges M in G is the maximum (minimum). A chain graph
G(V1∪V2, E) has the maximum number of edges when it is
a complete bipartite graph with |V1| = |V2|, if |V1|+ |V2| is
even and |V1|−|V2| = 1 when |V1|+|V2| is odd. That is, M =
n2

4 , if n is even and M = n2−1
4 , if n is odd. If n is even,

then for the extremal graph G = DNG(n2 ;
n
2 ) (the complete

bipartite graph), on substituting p = q = n
2 ,m1 = n1 = n

2

and M = n2

4 , we get ABCe(G) ≤ n2

4
√
2

. If n is odd, the
extremal graph G = DNG(n+1

2 ; n−1
2 ) has p = m1 = n+1

2
and q = n1 = n−1

2 . On substituting in Equation 10, we get
ABCe(G) ≤ n2−1

4
√
2

. Similarly, for a chain graph, ABCe(G)

is the minimum when G is a bi-star graph DNG(1, p −
1; 1, q−1) as it is a tree with the minimum number of edges
M = n− 1. Thus, from Equation 10, ABCe(G) = n−1√

2
.

Since GAe(G+ e) > GAe(G), similarly, one can obtain the
bounds for the GA eccentricity index of a chain graph G,
which is stated in the theorem below.

Theorem 4.4: Let G(V1 ∪ V2, E) =
DNG(m1,m2, ...,mh;n1, n2, ..., nh) be a chain graph
of order n. Let GAe(G) be the geometric arithmetic
eccentricity index of G. Then

GAe(G) ≤


n2

4
if n is even

n2 − 1

4
else

GAe(G) ≥ 2
√
6

5
(n− 2) + 1

Unlike ABC eccentricity index and GA eccentricity index,
the second Zagreb eccentricity index and the eccentric con-
nectivity index does not always increase with edge addition.
Now, we have the theorems giving the upper and the lower
bound for these two indices.

Theorem 4.5: Let G(V1 ∪ V2, E) =
DNG(m1,m2, ...,mh;n1, n2..., nh) be a chain graph
of order n with |V1| = p and |V2| = q, where p + q = n.
Let ξc(G) be the eccentric connectivity index of G. Then

ξc(G) ≤

{
4pq if n ≤ 6

4pq + n− 6 else

ξc(G) ≥ 5n− 6

Proof: By Equation 9, one can note that ξc(G) attains
the maximum when the number of edges in graph is as
maximum as possible, that is, when G has the maximum
number of dominating vertices. One of the best possibilities
is that when all the vertices in G are dominating, that is
G = DNG(p; q) with M = pq. The next better option

is when M = pq − 1 and G = DNG(p − 1, 1; q − 1, 1).
Also one can note that the graph DNG(p; q) is obtained
from DNG(p − 1, 1; q − 1, 1) by adding an edge. That
is, DNG(p; q) = DNG(p − 1, 1; q − 1, 1) + e, where
e is an edge joining the two non-dominating vertices of
DNG(p−1, 1; q−1, 1). But from Equation 15, on adding the
edge e, the index increases only when n = p+q > 6 (refer to
the case 1 of Equation 15). Thus DNG(p− 1, 1; q− 1, 1) <
DNG(p; q), whenever n > 6. Thus

ξc(G) ≤ ξc(DNG(p−1, 1; q−1, 1)) ≤ 4pq+n−6 when n > 6

When n ≤ 6,

ξc(G) ≤ ξc(DNG(p; q)) ≤ 4pq

Similarly, ξc(G) is the minimum when m1 = n1 = 1 and
G = DNG(1, p− 1; 1, q − 1). Thus ξc(G) ≥ 5n− 6.
Lastly, we have the second Zagreb eccentricity index.

Theorem 4.6: Let G(V1 ∪ V2, E) =
DNG(m1,m2, ...,mh;n1, n2, ..., nh) be a chain graph
of order n with |V1| = p and |V2| = q, where p+ q = n. Let
ξ2(G) be the second Zagreb eccentricity index of G. Then

ξ2(G) ≤

{
4pq if n ≤ 4

4pq + 2n− 8 else

ξ2(G) ≥ 6n− 8

V. CONCLUDING REMARKS

The eccentricity-based topological indices are that domain
of molecular chemistry which is currently being explored
extensively by various chemists and mathematicians. This
article categorizes the eccentricity-based indices into two
classes {Θe

I} and {Θe
II}. A detailed study of the same is

done for a special class of graphs called chain graphs. There
are numerous eccentricity-based topological indices that are
unexplored, especially belonging to the second class {Θe

II},
a study of which can be a good direction for future work.
Further, one can study extended matrices of chain graphs
corresponding to these topological indices.

REFERENCES

[1] Abdullah Alazemi, Milica Andelic, Tamara Koledin, Zoran Stanic,
”Eigenvalue-free intervals of distance matrices of threshold and chain
graphs.” Linear and Multilinear Algebra, vol. 69, no. 16, pp. 2959–
2975, 2019.

[2] Ebrahim Ghorbani, ”Some spectral properties of chain graphs,”
arXiv:1703.03581v1[math.CO], 2017.

[3] Amitava Bhattacharya, Shumel Friedland, Uri N. Peled, On the First
Eigenvalues of Bipartite Graphs, The electronic journal of combina-
torics, vol. 15, 2008.

[4] Shahistha Hanif, K. Arathi Bhat and Sudhakara G, ”Some Properties
of Chain and Threshold Graphs,” Journal of the Indian Mathematical
Society, vol. 90, no. 1-2, pp.75–84, 2023.

[5] M.Anelica, E.Andradea, D.M.Cardosoa, C.M.da Fonsecab, S.K.Simic,
D.V.Tosice, Some new considerations about double nested graphs,
Linear Algebra and Applications, vol. 483, pp. 323–341, 2015.

[6] Francis K. Bell, Drago Cvetkovic, Peter Rowlinson, Slobodan K.
Simic, ”Graphs for which the least Eigen value is minimal,” Linear
Algebra and its Applications, vol. 429, pp. 2168—2179, 2008.

[7] Milica Andelic, Carlos M. da Fonseca, Slobodan K. Simic, Dejan V.
Tosic, ”Connected graphs of fixed order and size with maximal Q-
index: Some spectral bounds,” Discrete Applied Mathermatics, vol.
60, no. 4-5, pp. 448–459, 2011.

[8] Fernando Tura, ”Counting Spanning trees in Double nested graphs,”
arXiv:1605.04760v1 [math.CO], 2016.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 5, May 2025, Pages 1235-1241

 
______________________________________________________________________________________ 



[9] L. Li, X. Li, W. Liu, ”Note on the product of Wiener and Harary
indices,” MATCH Commun. Math. Comput. Chem, vol. 91, pp. 299—
305, 2024.

[10] Babujee, J. Baskar, and S. Ramakrishnan, ”Topological indices and
new graph structures,” Applied Mathematical Sciences, vol. 6, no. 108,
pp. 5383–5401, 2012.

[11] Alaeiyan, M., Sardar, M.S., Zafar, S., Zahid, Z. and Farahani, M.R.,
”Computation of topological indices of line graph of Jahangir Graph,”
International Journal of Applied Mathematics, vol. 18, pp. 91–107,
2018.

[12] Ali, A., Bhatti, A. A., and Raza, Z. ”Further inequalities between
vertex-degree-based topological indices,” International Journal of Ap-
plied and Computational Mathematics, vol. 3, pp. 1921–1930, 2017.

[13] Mondal, S., De, N. and Pal, A., ”Topological properties of Graphene
using some novel neighborhood degree-based topological indices,”
International Journal of Mathematics for Industry, vol. 11, no. 01,
pp. 1950006, 2019.

[14] Cruz, R., Perez, T. and Rada, J., ”Extremal values of vertex-degree-
based topological indices over graphs,” Journal of Applied Mathemat-
ics and Computing, vol. 48, pp. 395-406, 2015.

[15] Jose Luis Palacios, More on topological indices and their reciprocals,
MATCH Commun. Math. Comput. Chem, vol. 92, no. 1, pp. 53-63,
2024.

[16] V Kumar, S Das, ”On structure sensitivity and chemical applicability
of some novel degree based topologoical indices,” MATCH Commun.
Math. Comput. Chem, vol. 92, no. 1, pp. 165-203, 2024, .

[17] Ivan Gutman, ”Geometric Approach to Degree–Based Topological
Indices: Sombor Indices,” MATCH Commun. Math. Comput. Chem,
vol. 86, pp. 11–16, 2021.

[18] K. Arathi Bhat, Shahistha Hanif and Sudhakara G, ”Metric dimension
and its variations of Chain Graphs,” Proceedings of Jangjeon Mathe-
matical Society, vol. 24, no. 3, pp. 309–321, 2021.

[19] Shahistha, K. Arathi Bhat and Sudhakara G, ”Wiener Index of Chain
Graphs,” IAENG International Journal of Applied Mathematics, vol.
50, no. 4, pp. 783–790, 2020.

[20] K. Arathi Bhat and Shahistha Hanif, ”Forbidden Values for Wiener
Indices of Chain /Threshold Graphs,” Engineering Letters, vol. 31,
no. 1, pp. 180–185, 2023.

[21] Shahistha Hanif, ”Inverse Harary Index Problem for Chain Graphs,”
Engineering Letters, vol. 32, no. 4, pp. 812–817, 2024.

Balkishbanu Khaji received her B. Sc. Degree from Karnataka University,
Dharwad, Karnataka India, in 2021. and M. Sc. degree from from the
same university in 2011. At present she is persuing PhD in the Department
of Mathematics at Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal. Her research interests include Algebraic graph
theory, Network theory and Combinatorics.

Shahistha received her B. Sc. Degree from Mangalore University,
Mangalore, in 2012 and M. Sc. degree from Manipal Academy of Higher
Education, Manipal, in 2014. She then received her Ph.D. from Manipal
Academy of Higher Education, Manipal, in 2022. At present she is working
as an Assistant Professor in the Department of Mathematics at Manipal
Institute of Technology, Manipal Academy of Higher Education, Manipal.
Her research interests include Graph theory and Network theory.

K Arathi Bhat received her B. Sc. Degree from Mangalore University,
Mangalore, India, in 2000. and M. Sc. degree from Manipal Academy of
Higher Education, Manipal, in 2011. She then received her Ph.D. from
Manipal Academy of Higher Education, Manipal, in 2018. At present she
is working as an Associate Professor in the Department of Mathematics at
Manipal Institute of Technology, Manipal Academy of Higher Education,
Manipal. Her research interests include Algebraic graph theory, Network
theory and Combinatorics.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 5, May 2025, Pages 1235-1241

 
______________________________________________________________________________________ 


	Introduction
	Eccentricity-based topological indices

	Some indices from class {eI}
	Some indices from class {eII}
	Bounds for indices from the class {eII} 
	Concluding remarks
	References
	Biographies
	Balkishbanu Khaji




