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Abstract—The non-convex Risk Parity (RP) portfolio opti-
mization presents challenges due to the potential presence of
multiple local minima, making it difficult to identify the optimal
solution. Meta-heuristic algorithms, known for their flexibility,
are ideal for addressing this issue, as they effectively balance
exploration of new solution spaces with refinement of promising
candidates. This study compares the performance of three
meta-heuristic algorithms— Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), and Ant Colony Optimization
for continuous domains (ACOR)—in solving the non-convex
RP portfolio optimization problem. Using both real-world and
simulated datasets, the first empirical study demonstrates the
superior performance of PSO. A second study, employing the
rolling-window method, evaluates the RP portfolio against the
Equally Weighted (EW) and Global Minimum Variance (GMV)
portfolios. The results show that, while the RP portfolio does
not consistently outperform the others across all metrics, it
excels in minimizing Maximum Drawdown (MD) and Value-
at-Risk (VaR). This research contributes to the literature by
offering a thorough comparison of meta-heuristic algorithms
for non-convex RP portfolio optimization and highlighting the
RP portfolio’s robustness in risk management.

Index Terms—non-convex, risk parity portfolio, genetic al-
gorithm, particle swarm optimization, ant colony optimization.

I. INTRODUCTION

INVESTORS use stock diversification to mitigate the risk
of financial losses in their portfolios [1]. A diversified

portfolio consists of carefully chosen equities aimed at
reducing overall risk. The first mathematical model for port-
folio diversification was the Mean-Variance (MV) Markowitz
optimization, introduced by Markowitz in 1952 [2]. The MV
portfolio seeks to maximize expected return for a given level
of risk or minimize risk for a specified return, determining
the optimal weights for each asset based on the covariance
matrix and expected returns.

The MV method achieves diversification by reducing
risk, but it often results in a concentration of low-risk
stocks, which contradicts the principle of diversification.
Additionally, it lacks proper indicators for assessing portfolio
diversity, limiting investors in constructing a fully diversified
portfolio. The 2008 global financial crisis highlighted the
need for better diversification strategies [3]. Several methods
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for measuring diversification have been explored extensively
[4]. The Risk Parity (RP) portfolio, which measures diver-
sification by evaluating the risk contribution of each asset,
offers a more balanced approach. This method decomposes
total portfolio risk into individual asset contributions, with
a well-diversified portfolio ensuring that risk is evenly dis-
tributed. The RP portfolio allocates capital so that each asset
contributes equally to the overall risk [5], [6]. Introduced
by [7], the equal risk contribution concept has proven to be
more robust than the MV portfolio under various financial
conditions [8].

Constructing an RP portfolio is challenging due to its
non-convexity. While common numerical optimization tech-
niques like Sequential Quadratic Programming (SQP) and
Interior Point Method (IPM) are typically used for non-
convex problems [9], these methods can be inefficient and
sometimes fail to achieve global convergence [5], [10]. To
address this, researchers have explored alternative approaches
for optimizing non-convex RP portfolios. The Least-Squares
(LS) method was introduced to tackle non-convexity in RP
portfolios [11], and the Successive Convex Optimization for
Risk Parity (SCRIP) method, which iteratively approximates
non-convex problems with convex sub-problems, was also
proposed. However, SCRIP does not handle non-convex con-
straints [12]. Additionally, inexact accelerated gradient de-
scent was suggested for solving the quadratic approximation
sub-problem in parallel [13]. Despite these efforts, finding
efficient solutions to non-convex RP portfolio optimization
problems remains a complex and ongoing area of research.

Meta-heuristic methods offer an effective solution to the
challenges of non-convex optimization problems, particularly
in complex domains where they excel at exploring the
solution space and identifying high-quality solutions. These
approaches have been widely applied to the RP portfolio
optimization. For example, a hybrid Genetic Algorithm (GA)
and Local Search (LoS) algorithm with elitist selection,
mutation, and crossover operators has successfully addressed
the non-convex RP portfolio optimization problem [14].
An Evolutionary Algorithm (EA) with Adaptive Operator
Selection (AOS), which dynamically selects the appropriate
operator during the search process, has demonstrated strong
performance in solving long-only non-convex RP portfolio
optimization problems [15]. Particle Swarm Optimization
(PSO), a swarm-based meta-heuristic, has been shown to ef-
fectively handle the robust RP portfolio problem, accounting
for uncertainties in the covariance matrix [16]. Additionally,
Ant Colony Optimization for continuous domains (ACOR)
has been compared with the Hall of Fame (HoF) and Differ-
ential Evolution (DE) algorithms for the MV portfolio model
with a risk parity constraint [17].

This paper contributes to the existing literature by ex-
ploring the benefits of applying meta-heuristic methods
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to the non-convex RP portfolio optimization problem and
demonstrating the robustness of RP portfolios in risk man-
agement. The construction of non-convex RP portfolios is
simulated under two scenarios—long-only and long-short
constraints—using GA, PSO, and ACOR on both real and
simulated datasets of varying scales. The performance of
these methods in solving non-convex problems is evalu-
ated and compared to traditional portfolio strategies such
as Equally Weighted (EW) and Global Minimum Variance
(GMV) portfolios, using the rolling window approach. The
next section introduces the non-convex RP portfolio problem
and provides an overview of the GA, PSO, and ACOR algo-
rithms. Section 3 outlines the study’s methodology, followed
by the presentation and discussion of results in Section 4,
which includes a detailed analysis of the algorithms and
portfolio performance. The paper concludes in Section 5.

II. LITERATURE REVIEW

A. Risk Parity Portfolio

The objective of the RP portfolio optimisation problem
is to construct a portfolio of assets where the weights are
determined primarily on the equal risk contribution of each
asset [5], [6]. The quantification of portfolio risk can be
expressed in the following manner,

σ(w) =
√
wTΣw =

√√√√ n∑
i=1

w2
iσ

2
i +

n∑
i=1

n∑
j=1,i̸=j

2wiwjσij

(1)
The risk contribution of the i-th asset to the portfolio risk
can be stated in the following manner,

RCi = σi(w) = wi
(Σw)i√
wTΣw

=
w2

iσ
2
i +

∑n
j=1,j ̸=i wiwjσij√
wTΣw

(2)
The Relative Risk Contribution (RRC) of the i-th asset is
defined as the ratio between the risk contribution of the i-
th asset and the risk of the entire portfolio. This can be
expressed as,

RRCi =
RCi

σ(w)
=

wi(Σw)i
wTΣw

=
w2

iσ
2
i +

∑n
j=1,j ̸=i wiwjσij

σ2(w)
(3)

and
∑n

i=1 RRCi = 1. To give an example, a RP portfolio
consist of 6 stocks will have an equal risk contribution for
each assets and an RRC of 1/6 for each asset.

The RP portfolio allocates each asset in a manner that
ensures each asset contributes an equal amount of risk to the
overall portfolio risk. The RP portfolio optimization problem
can be formulated as Least Square optimization problem,
which can be represented as follows,

minimize
n∑

i=1

n∑
j=1

(wi(Σw)i − wj(Σw)j)
2 (4)

subject to
eTw = 1 (5)

Equation (4) minimize the total quadratic difference between
the risk contribution of asset i and asset j whilst Equation
(5) ensures that the sum of asset weights is equal to one. The

equivalent form of the RP portfolio problem in Equation (4)
− (5) is as follows,

minimize
n∑

i=1

(
wi(Σw)i −

∑n
j=1 wj(Σw)j

n

)2

(6)

subject to
eTw = 1 (7)

B. Meta-Heuristic for The Non-Convex Risk Parity Portfolio

Non-convex optimization problems often feature complex
objective functions with multiple local minima or non-
smooth landscapes, making them difficult to solve using
traditional gradient-based methods, which typically only find
local optima. Meta-heuristic algorithms are designed to effi-
ciently explore large, complex solution spaces while avoiding
local minima. These methods do not require convexity and
use stochastic or heuristic approaches to provide approximate
solutions by balancing exploration and exploitation of the
search space. As a result, meta-heuristics are widely used
to tackle non-convex problems in fields such as machine
learning, operations research, and engineering [18], [19],
[20], [21], [22], [23], [24], [25].

Meta-heuristic algorithms are classified into two groups:
those based on metaphors and those not. Non-metaphor
algorithms do not rely on simulations for the solution
search strategy, while metaphor-based algorithms simulate
natural events, human behavior, or mathematical processes.
Algorithms inspired by biological evolution, in particular,
use various biological metaphors, with different approaches
to representing solutions. These algorithms are typically
grouped into three main paradigms: evolutionary systems,
swarm intelligence, and immune systems [26]. This article
focuses specifically on the evolutionary systems and swarm
intelligence paradigms.

1) Genetic Algorithm: A Genetic Algorithm (GA) is a
meta-heuristic optimization method inspired by biological
evolution. Introduced by John Holland in the 1960s [27],
GA operates on a population of candidate solutions, known
as chromosomes, represented as Cg

i = {cg1, c
g
2, ..., c

g
n} where

cgi ∈ R or cgi ∈ Z and g is the generation number, with each
chromosome corresponding to a potential solution. The algo-
rithm iteratively improves these solutions through selection,
crossover, and mutation. At each generation, solutions are
evaluated using a fitness function, and the fittest individuals
are selected to produce offspring, enhancing the survival of
the most promising solutions. This process continues across
generations, with the population evolving toward an optimal
or near-optimal solution.

The GA can be outlined in the following steps: (i) deter-
mine the variable types, encoding scheme, fitness function,
and genetic operators with their respective probabilities; (ii)
initialize a random population of chromosomes; (iii) perform
selection, where individuals with higher fitness values are
more likely to be chosen as parents for the next generation;
(iv) perform crossover, which combines genetic material
from two parent chromosomes selected in the previous step to
create offspring with potentially improved characteristics; (v)
perform mutation, which introduces small random alterations
to the offspring’s genes, maintaining genetic diversity and
preventing premature convergence; and (vi) iteratively repeat
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the selection, crossover, and mutation processes until a stop-
ping condition, such as a predefined number of generations
or achieving a satisfactory fitness level, is met.

A GA offers a flexible approach to portfolio optimization,
including unconstrained problems that use downside risk
measures and those involving various risk metrics such as
mean-variance, semi-variance, mean absolute deviation, and
skewness with cardinality restrictions [28], [29]. It can also
address complex scenarios, such as incorporating market
capitalization and cardinality constraints [30]. When fuzzy
numbers are used to manage uncertainties in stock returns,
the GA is efficient for portfolio optimization [31], [32].
Additionally, the GA handles anomalous data and deviations
from normal distribution assumptions, excelling with cardi-
nality constraints [33], [34]. Over time, the GA evolves to
solve multi-objective optimization problems, with the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) proving
effective for such tasks [35], [36]. Its performance is further
enhanced through hybrid approaches, such as combining
the GA with the ϵ-constraint method for optimizing the
Mean Absolute Semi-Deviation (MASD)-Skewness portfolio
under uncertainty [37], or with the Firefly Algorithm (FA)
for Mean-Variance-Skewness optimization [38]. Addition-
ally, hybrid GA with Local Search (LS) is successfully
applied to long-only and short-term portfolio problems [14].

GA utilize various selection techniques, such as linear-rank
selection, non-linear rank selection, proportional (roulette
wheel) selection, tournament selection, fitness proportional
selection with linear scaling, and fitness proportional se-
lection with Goldberg’s sigma truncation scaling [39].
Crossover, a key GA operator, combines two parent chro-
mosomes to create a new offspring chromosome with
a crossover probability, denoted as PX . The GA em-
ploys several crossover methods, including single-point
crossover, multi-point crossover, linear crossover, uniform
crossover, global uniform crossover, queen-bee crossover,
arithmetic and average crossover, simplex crossover, geomet-
rical crossover, direction-based crossover, heuristic crossover,
flat crossover, blend crossover, simulated binary crossover,
Laplace crossover, parent-centric normal crossover, and uni-
modal normal distribution crossover [40], [15]. Mutation,
another GA operator, helps prevent the population from
becoming homogeneous and stagnating by randomly alter-
ing the genes of a selected chromosome with a mutation
probability, denoted as PY .

There is a wide array of operator choices for producing
offspring. Nevertheless, GA operators used here are as fol-
lows,

• Fitness Linear Scaling Selection Fitness proportional
selection with linear scaling follows the same basic prin-
ciples as the roulette wheel selection method, but with
an added fitness linear scaling step [39]. This method is
used in GA to refine the selection process by adjusting
the fitness values of individuals in the population. The
primary aim is to prevent the most fit individuals from
dominating the selection too early and to facilitate a
more gradual progression toward the optimal solution.
In this approach, fitness proportional selection with
linear scaling can be thought of as a weighted random
sampling, where individuals are selected based on their
scaled fitness relative to the total scaled fitness of the

entire population. The process begins by calculating the
fitness value fi for each individual i, followed by the
computation of the mean fitness of the population, as
shown in the equation:

f̄ =
N∑
i=1

fi (8)

where N is the number of individuals in the population.
Next, the maximum and minimum fitness is computed
i.e.

fmax = max {f1, f2, ..., fN} (9)

fmin = min {f1, f2, ..., fN} (10)

Then, scaling parameters are defined to adjust the fitness
values using the following formulas respectively,

a =
fmax − fmin

fmax − f̄
(11)

b = fmin − af̄ (12)

Here, the constants a and b are selected in such a way
that the scaled fitness values preserve the relative order
of the original fitness values while ensuring that no
scaled fitness values become negative. The scaled fitness
values are then computed using the formula:

fs
i = afi + b (13)

Next, the total fitness of the population is calculated
based on the scaled fitness values, as shown in the
following equation:

F s
total =

N∑
i=1

fs
i (14)

The selection probability pi and the cumulative prob-
ability distribution Ci for each individual are then
determined using the respective formulas:

pi =
fs
i

F s
total

(15)

Ci =

i∑
j=1

fs
j (16)

Next, select a number of k individuals which satisfy
Ck−1 ≤ r ≤ Ck based on random numbers uniformly
distributed between 0 and 1 that is generated, where is
C0 defined as 0 for convenience.

• Arithmetic Crossover Arithmetic Crossover operator
that defines a linear combination of two chromo-
somes [40]. Two chromosomes, selected randomly for
crossover, Cg

y and Cg
x may produce two off-springs,

Cg+1
i and Cg+1

j , which is a linear combination of their
parents i.e,

Cg+1
i = αCg

i + (1− α)Cg
j (17)

Cg+1
j = (1− α)Cg

i + αCg
j (18)

For each gene i, a random number r uniformly
distributed in the interval [0, 1] is generated. The
crossover process for gene ci will be carried out if
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r ≤ PX .

• Uniform Random Mutation Uniform mutation is a GA
operator used to introduce variability into the popula-
tion by randomly altering the genes of an individual.
This operator randomly selects one or more genes and
assigns them new values within a predefined range. For
each gene i, a random number r uniformly distributed
in the interval [0, 1] is generated. The mutation process
for gene ci will be carried out if r ≤ PY . For gene ci
in individual c = (c1, c2, ..., cn) selected for mutation,
a new value ci ∼ UNIF(cmin, cmax) is constructed.

In GA for non-convex portfolio optimization, the goal
is to identify the best chromosome as the optimal solu-
tion. Each chromosome in the gth generation, represented

as Cg
i = {cg1, c

g
2, ..., c

g
n}, corresponds to the weight of

asset i for i = 1, 2, ..., n, with cgi ∈ R. The objective
function evaluates candidate solutions, and in non-convex
optimization, the best chromosome minimizes the objective
function (6). The fitness function ranks chromosomes by their
optimality, favoring better solutions for reproduction through
selection, crossover, and mutation. The solution must also
meet the equality constraint (7), which can be handled using
methods like penalty functions, decoders, or task-specific
operators [41]. In this case, a penalty term is introduced
to penalize deviations from the equality constraint, guiding
the algorithm to find solutions that closely satisfy it. The
fitness function (19), which minimizes the sum of deviations
in risk contributions and the absolute difference between total
weights and 1, is used.

f =
n∑

i=1

(
wi(Σw)i −

∑n
j=1 wj(Σw)j

n

)2

+

∣∣∣∣∣
n∑

i=1

wi − 1

∣∣∣∣∣ (19)

2) Particle Swarm Optimization: PSO algorithm, intro-
duced by Eberhart and Kennedy in 1995, is a metaphor-
based metaheuristic inspired by the swarm behavior observed
in nature, such as in birds, ants, and bees [42]. It uses
a population of particles to explore potential solutions in
a random, yet guided search. Each particle, representing a
possible solution, has a position and velocity in a multidi-
mensional space, with its position updated over iterations
based on its own best solution called personal best (Pbest)
and the best solution among all the particles called global
best (GBest). The algorithm’s process of evolution relies
on a fitness function to evaluate solution quality. Known
for its simplicity, fast convergence, and minimal parameter
requirements, PSO has become widely used and has evolved
over time, both in applications and algorithmic refinement.
The position and velocity of particle i at iteration t are
represented as:

xt
i =

{
xt
i1, xti2, ..., xtij , ..., xtiD

}
(20)

vt
i =

{
vt
i1, vti2, ..., vtij , ..., vtiD

}
(21)

PSO algorithm can be outlined in the following steps:
(i) initialize algorithm parameters, including cognitive and
social acceleration constants (c1, c2), swarm size (N ), and
initial position and velocity (x01, v0i ); (ii) define the objective
function to be optimized; (iii) evaluate the fitness of each
particle and identify Pbest and Gbest based on fitness values;
(iv) update the velocity and position of each particle using
the following equations [43]:

vt+1
ij = K

(
vtij + c1r1

(
ptij − xtij

)
+ c2r2

(
gtij − xtij

))
(22)

xt+1
ij = xt

ij + vt+1
ij (23)

where constriction factor K = 0.25 cos
(

πt
tmax

)
+ 5

8 ,
vtij , xtij ∈ R, t is the number of iterations, r1 and r2 are
two uniformly distributed random numbers in [0, 1], and
ptij , g

t
ij represent Pbest and Gbest for the j-th dimension;

(v) recalculate the fitness at each particle’s new position,

update Pbest if the current fitness is superior, and update
Gbest if a better Pbest is found. These steps are repeated until
convergence or when the particle positions become uniform.

There have been several significant contributions to the ap-
plication of Swarm Intelligence (SI) algorithms, specifically
PSO in solving portfolio optimization problems [44]. For
instance, [45] developed PSO algorithm to tackle MV opti-
mization problem with cardinality constraints and compared
its performance with other algorithms such as GA, Tabu
Search (TS), and Simulated Annealing (SA). The results
showed that no single algorithm was superior across all
investment strategies; however, PSO delivered the most opti-
mal solutions for low-risk investments. In the context of the
Sharpe Ratio (SR) portfolio model, PSO outperformed GA in
both long-only and long-short scenarios [46]. An extension
of PSO, the Non-dominated Sorting Multi-objective Particle
Swarm Optimization (NS-MOPSO) algorithm, demonstrated
excellent performance in the MV portfolio model, effectively
managing multiple objectives and constraints, including car-
dinality, minimum lot size, and asset weights limits [47],
[48]. [49] extended this work by introducing risk parity
constraints, while [50] used the Differential Evolution (DE)
algorithm to address the same problem. Additionally, [16]
successfully applied PSO to the Robust RP convex portfolio
optimization problem, which focuses on managing uncer-
tainty in the covariance matrix parameters.

PSO for the non-convex RP portfolio search for the
particle position in multidimensional as the optimal solu-
tion of the problem. Every particle position represents a
potential solution for a problem. Each particle starts off
in multidimensional space at a random point. The posi-
tion of ith particle from tth iteration is as follows, xt

i ={
xti1, xti2, ..., xtij , ..., xtin

}
where xt

ij represent the weight of
asset j for j = 1, 2, ..., n and xtij ∈ R. The optimal solution
has the minimal fitness value of equation (19).

3) Ant Colony Optimization: In 1991, M. Dorigo intro-
duced ACO algorithm, inspired by the behavior of ants
searching for food, to solve combinatorial optimization prob-
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TABLE I: ACOR Solution Archives

S1 S1
1 S2

1 ... Sn
1 f(S1) h1

S2 S1
2 S2

2 ... Sn
2 f(S2) h2

... ... ... ... ... ... ...
Sl S1

l S2
l ... Sn

l f(Sl) hl

... ... ... ... ... ... ...
Sk S1

k S2
k ... Sn

k f(Sk) hk

G1 G2 ... Gn

lems [51]. ACO is a metaphor-based meta-heuristic that
simulates a colony of ants as they seek the optimal path
between their nest and a food source. As ants move, they
deposit pheromones along their path, with more pheromones
accumulating on frequently traveled routes. This pheromone
trail influences other ants to follow these paths, reinforcing
the optimal solution over time. The algorithm leverages this
collective behavior to find the best solution by favoring paths
with higher pheromone concentrations.

The ACOR algorithm is an enhanced version of ACO
designed for continuous optimization problems, in contrast to
the original ACO, which is used for combinatorial problems
[52]. The algorithm proceeds as follows: (i) set the algorithm
parameters, including the number of ants per iteration (m),
the solution archive dimensions (k), and the search locality,
represented by q. As q decreases, the solution becomes
more favorable and is more likely to be selected due to its
increased weight. Each ant represents a solution, denoted
as Sl =

{
S1
l , S

2
l , ..., S

i
l , ..., S

n
l

}
, with each Si

l constrained
by Si

l ∈ [Smin
l , Smax

l ]. (ii) Generate k ants randomly using
a uniform distribution. These solutions are then sorted in
ascending order based on their fitness values, and stored in
an archive with a defined structure, as shown in Table I.
Better solutions are ranked lower. A weight and probability
are assigned to each solution as follows:

hl =
1

qk
√
2π

e
− (l−1)2

2q2k2 (24)

pl =
hl∑k

r=1 hr

(25)

(iii) In this step, m new ants are randomly constructed
based on a Gaussian kernel PDF sampled as defined below:

Gi(x) =
k∑

l=1

hlg
i
l(x) =

k∑
l=1

hl
1

σi
l

√
2π

e
− (x−µi

l)
2

2σi
l
2

(26)

for i = 1, 2, ..., n where σi
l = ξ

∑k
e=1

|Si
e−Si

l |
k−1 and µi ={

µi
1, µ

i
2, ..., µ

i
k

}
=
{
Si
1, S

i
2, ..., S

i
k

}
. Based on the value of

pl, one of the functions gil(x) is chosen for each new ant,
and a solution for every variable is constructed using that
function. (iv) Finally, the fitness values of the m newly
created solutions are evaluated, and they are added to the
archive in chronological order. To maintain the archive size,
the m solutions with the lowest fitness values are removed.

This method has made significant contributions to the
portfolio optimization problem. ACOR method outperforms
PSO in terms of performance on the MV portfolio model
with cardinality constraints, particularly for low-risk invest-
ments [53]. [17] furthered the analysis by incorporating
risk parity limitations. The ACOR algorithm demonstrates

TABLE II: Parameters for GA

Parameter Value
Number of population (N ) 100
Crossover probability (PX ) 0.9
Mutation probability (PY ) 0.01

Elitism 10
Maximum iterations 500

excellent performance on the MV portfolio model with multi-
objective functions [54], [55], [56].

The ACOR for the non-convex RP portfolio search for an
ant as the optimal solution of the problem. Every ant repre-
sents a potential solution for a problem. The representation
of lth ant is as follows, Sl =

{
S1
l , S

2
l , ..., S

i
l , ..., S

n
l

}
, where

Si
l represent the weight of asset i for i = 1, 2, ..., n and

Si
l ∈ R. The optimal solution has the minimal fitness value

of equation (19).

III. METHODOLOGY

This study evaluates the performance of GA, PSO, and
ACOR in optimizing the non-convex RP portfolio problem.
It focuses on constructing long-only and long-short non-
convex RP portfolios using both simulated and real-world
datasets, across small and large-scale scenarios. The study
also compares the RP portfolio’s performance with that of the
EW and GMV portfolios. A detailed methodology is outlined
in Figure 1. All computations were coded in R and run on an
HP Pavilion 14-bf0xx Laptop (Intel(R) Core(TM) i5-7200U,
2701 MHz, with 8GB RAM).

The optimal asset weights for the long-only non-convex
RP portfolio are determined using GA with parameters
outlined in Table II. In GA, balancing exploitation and
exploration is crucial, with many implementations favoring
a high crossover probability and a low mutation probability.
The optimal mutation probability typically ranges from 0.005
to 0.01, while the crossover probability is ideally between
0.75 and 0.95 [57], [58]. In this study, the parameters were
selected through experimentation: the crossover probability
is set to 0.9 to promote exploration, while a lower mutation
probability of 0.01 is used to refine existing solutions and
prevent excessive exploitation.

Using the same parameters as before, GA is also employed
to determine the optimal weights for the non-convex RP
long-short portfolio. The maximum limit on the asset weight
allocated to short positions varies among investors, making it
challenging to set a standard percentage. Short positions are
generally riskier than long positions due to the potential for
unlimited losses if the shorted asset’s price rises significantly
[59]. As a result, financial advisors often recommend limiting
the proportion of a portfolio allocated to short positions,
typically capping it at 0% to 5%, or up to 10% for more risk-
tolerant investors. In this study, the lower and upper bounds
for each stock weights are set at -0.3 and 1, respectively.

The optimal weights of the long-only non-convex RP port-
folio are calculated using PSO with R, using the parameters
specified in Table III. In this study, the cognitive component
(c1) and social component (c2) are both set to 2.05, with a
higher cognitive component promoting individual exploration
based on personal experiences, and a larger social component
encouraging particles to follow the group’s optimal solution,
thus enhancing resource exploitation [60]. These parameter
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TABLE III: Parameters for PSO

Parameter Value
Number of particle (N ) 100

c1 2.05
c2 2.05

Maximum iterations 500

TABLE IV: Parameters for ACOR

Parameter Value
Number of ant (N ) 100

q 0.01
k 10
ξ 0.0001

Maximum iterations 500

values are determined through experimentation to effectively
balance exploration and exploitation. To determine the opti-
mal weights for the long-short non-convex RP portfolio, the
PSO algorithm is applied using the same parameters as those
in Table III. The lower and upper weight limits for each stock
are the same as those used in GA, specifically -0.3 and 1.

Using R and the parameters of ACOR in Table IV , the
optimal weights of the long-only non-convex RP portfolio
are determined. The parameter values are chosen through
trial and error to balance exploration and exploitation. The q
value is set to 0.01 to promote more exploration, as higher
q values broaden the Gaussian kernel. Meanwhile, the ξ
parameter is set to a very low value of 0.0001, focusing
on local search and exploitation by reducing the standard
deviation for perturbation. The same parameters are applied
to calculate the optimal asset weights for the non-convex RP
long-short portfolio. The lower and upper weight limits for
each stock are set at -0.3 and 1, respectively, consistent with
the GA and PSO settings.

For the real-world datasets, the first dataset consists of
daily returns of the adjusted closing prices for 30 companies
listed on the Jakarta Islamic Index (JII) over the period from
January 5, 2022, to January 5, 2024, obtained from Yahoo!
Finance using quantmod library [61]. Several stocks were
excluded due to data issues.

To assess the scalability of the algorithms, a second
dataset is created using daily adjusted closing prices of 80
companies listed on the Indonesia Stock Exchange (IDX).
The covariance matrix is calculated using historical stock
price data from the same time-frame. Here, several stocks
were also excluded due to data issues.

The JII and IDX stock data, which focus on large-cap
stocks, are used because the data is readily available, there
is high stock liquidity in the market (facilitating portfolio
adjustments for investors), and the proportion of JII and IDX
stocks relative to total market capitalization is relatively high,
increasing the likelihood that the research findings will be
applicable to a broad market segment.

As in the real-world datasets, two different dimensionality
configurations are considered in the simulation setup. Asset
returns are generated using a multivariate normal distribution
with a mean of 0, and the covariance matrix is the sample
covariance matrix of daily returns from the constituents of the
JII and IDX indices for the period from January 5, 2022, to
January 5, 2024. For small and large scalability scenarios, a
noise factor is added to each asset, distributed as a univariate
normal with a variance of 0.1 times the variance of each

asset.
To evaluate how well the meta-heuristic methods opti-

mize the non-convex RP portfolio, two performance metrics
are used: Mean Squared Error (MSE) and the Herfindahl-
Hirschman Index (HHI). MSE calculates the mean of squared
differences between the actual and the target value of the
RRC of each asset. For a portfolio containing n assets,
the target RRC for each asset is 1/n. In contrast, the HHI
measures the concentration of risk within the portfolio and
is defined as follows [6], [49],

h(w) =
n∑

i=1

(
wi(Σw)i
wTΣw

)2

(27)

If the index value of a portfolio consisting of n assets is 1, it
indicates that the portfolio is highly concentrated in a single
asset. In contrast, when each asset contributes equally to the
portfolio’s risk, the index value equals 1/n.

RP portfolio performance is analyzed using a rolling-
window method, which updates the covariance matrix. The
walk-forward analysis involves calculating portfolio weights
from a training data subset and then evaluating performance
using a distinct evaluation data subset. This process consists
of sequential walk-forwards applied to various data subsets,
ensuring non-overlapping evaluation periods.

In order to evaluate portfolio performance and flexibility in
response to market fluctuations, two 240-day (12*20) look-
back window analyses are performed. These analyses include
re-balancing periods of 60 days (3*20) and 120 days (6*20),
allowing for more frequent adjustments.

For each day t, portfolio weights are computed using price
data from t − 239 to t, with trades executed on day t + 1.
Returns are accumulated over the subsequent 121 days for
the 120-day re-balancing period and 61 days for the 60-day
period.

The portfolio performance is analyzed using the
portfolioBacktest library and several performance
metrics, including the Sharpe Ratio (SR), Maximum Draw-
down (MD), Sortino Ratio, Sterling Ratio, Value at Risk
(VaR), and Turnover (TO) Ratio [62].

IV. RESULT AND DISCUSSION

A. Algorithmic Performance Analysis

Figure 2 illustrates the fitness value convergence for the
long-only and long-short non-convex RP portfolios using GA
on both real and simulated datasets. GA-LO-Real and GA-
LO-Sim refer to GA for long-only non-convex RP portfolios
on real and simulated datasets, respectively.

The performance of the GA on both real and simulated
datasets for long-only and long-short non-convex RP port-
folios is illustrated by the convergence of the fitness values
in Figure 2. GA-LO-Real-JII and GA-LO-Sim-JII refer to
GA for long-only non-convex RP portfolios on real and sim-
ulated JII datasets, respectively. Similarly, GA-LS-Real-JII
and GA-LS-Sim-JII refer to GA for long-short non-convex
RP portfolios on real and simulated JII datasets, respectively.
The fitness values fluctuate and improve over time, indicating
that the algorithm is effectively exploring the search space
and making progress toward better solutions. The conver-
gence curves show that the long-short RP portfolios stabilize
more quickly than the long-only portfolios, which require
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Fig. 1: Flow chart of research steps

more iterations to reach convergence. This difference can be
attributed to the more restrictive search space of the long-
only portfolios, which permit only positive weights, thereby
limiting the ability to adjust risk contributions. In contrast,
the long-short portfolios, which allow both positive and
negative weights, offer greater flexibility, enabling the GA to
explore potential solutions more efficiently and achieve risk
parity in fewer generations. The expanded search space of the
long-short portfolios accelerates convergence by providing
more opportunities to balance risk across assets.

Figure 3 shows the RRC and asset weights for the long-
only and long-short non-convex RP portfolios using GA,
PSO, and ACOR on real JII datasets. For real IDX datasets,
these results are presented in Figure 4. For simulated JII
datasets, see Figure 5, and for simulated IDX datasets, refer
to Figure 6. Several conclusions can be drawn from the
figures depicting RRC and asset weights. The PSO algorithm
produces asset weights that result in nearly equal RRC
across all assets, regardless of whether the dataset is small
or large. Although the long-short RP portfolio allows for
negative weights, the PSO algorithm identifies all optimal
asset weights as positive. In contrast, the asset weights gener-
ated by the ACOR and GA algorithms provide varying RRC
across different assets. Additionally, the asset weights for
the long-only and long-short RP portfolios exhibit significant
differences. Unlike the PSO algorithm, both the GA and
ACOR algorithms produce optimal asset weights for the long-
short RP portfolio that include negative weights.

Table V shows the MSE and HHI for the non-convex
long-only and long-short RP portfolio using GA, PSO and
ACOR. The algorithm is deemed effective if it assigns
asset weights such that each asset contributes equally to
the overall risk. For the non-convex RP portfolio, the target
RRC is 1/27 = 0.0370370 for the small-scale datasets and
1/75 = 0.0133333 for the large-scale datasets. As shown
in Table V, PSO consistently outperforms GA and ACOR
across all datasets. PSO closely matches the target risk
parity with minimal deviation, demonstrating a good balance
between exploration and exploitation. It achieves the lowest
MSE and HHI, with slight deviations from the ideal risk
contribution target in both small and large-scale datasets.
PSO outperforms other algorithms, especially in long-only
portfolios, for both large-scale and small-scale datasets.

In contrast to PSO, the performance of the ACOR al-
gorithm remains stable across all datasets. It performs
marginally better for the long-only RP portfolio than for
the long-short RP portfolio in all cases. On the other hand,
GA shows inconsistency in its performance for both non-
convex long-only and long-short RP portfolios. GA performs
slightly better for long-only portfolios in large-scale datasets

but underperforms in small-scale datasets when compared to
long-short portfolios.

B. Portfolio Performance Analysis

In comparison to the EW and GMV portfolios, the met-
ric values in Tables VI and VII provide a comprehensive
assessment of the RP portfolio’s resilience in risk man-
agement. Although not all criteria support its superiority,
the RP portfolio performs better than other portfolio types.
The RP portfolio continuously displays the lowest VaR and
MD ratios across four datasets, suggesting a lower risk of
suffering significant losses. This suggests the RP portfolio is
a more conservative investment strategy, particularly resilient
to market shocks and volatility. By balancing risk across
assets, the RP portfolio limits potential losses, ensuring stable
returns, especially in volatile markets, making it ideal for
risk-averse investors.

The RP portfolio seeks to evenly allocate risk across all
assets, preventing any single asset from being overly exposed
to large losses. Its lower MD ratio demonstrates an ability to
minimize downturn severity, effectively reducing losses dur-
ing prolonged market declines. This balanced risk approach
ensures more stable returns, particularly in volatile markets,
making it an attractive choice for risk-averse investors.

The SR and Sterling Ratio of the RP portfolio are compa-
rable to, and in some cases surpass, the best values observed
across other portfolios, particularly in the rolling-window
analysis with re-balancing period of 6*20-day period on real
IDX datasets. This suggests that the RP portfolio demon-
strates superior risk-adjusted performance. Specifically, the
SR indicates that the RP portfolio achieves higher returns
per unit of risk, while the Sterling ratio underscores its
effectiveness in minimizing drawdowns and managing down-
side risk, which contributes to its overall stability. The RP
portfolio consistently outperforms both the Equal-Weighted
(EW) and Global Minimum Volatility (GMV) portfolios,
which adopt a more balanced approach to profitability and
risk management.

V. CONCLUSION

This study addresses the optimization of the non-convex
RP portfolio, which may have multiple local minima. While
non-convex problems are often transformed into convex ones,
this can introduce challenges such as infeasibility, loss of
original structure, or increased computational complexity.
The study presents computational results from three meta-
heuristic algorithms—GA, PSO, and ACOR—applied to the
non-convex RP portfolio. Although PSO shows some incon-
sistency in performance for both long-only and long-short
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(a) GA-LO-Real-JII (b) GA-LS-Real-JII

(c) GA-LO-Real-IDX (d) GA-LS-Real-IDX

(e) GA-LO-Sim-JII (f) GA-LS-Sim-JII

(g) GA-LO-Sim-IDX (h) GA-LS-Sim-IDX

Fig. 2: Convergence plot of fitness value of the RP portfolio with GA
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Fig. 3: Relative risk contribution (RRC) and asset weight of the RP portfolio with GA, PSO, and ACOR on real JII dataset

TABLE V: Mean squared error (MSE) and herfindahl-hirschman index (HHI) of the relative risk contribution (RRC)

Real-JII Real-IDX Sim-JII Sim-IDX

MSE HHI MSE HHI MSE HHI MSE HHI
GA-LO 0.0230228 0.6586534 0.0010770 0.0941099 0.0239136 0.6827047 0.0006084 0.0589633
GA-LS 0.0086636 0.2709551 0.0013805 0.1168685 0.0081813 0.2579323 0.0004003 0.0433555

PSO-LO 0.0000353 0.0379901 0.0000162 0.0145483 0.0000607 0.0386755 0.0000121 0.0142423
PSO-LS 0.0000620 0.0387121 0.0000200 0.0148303 0.0000685 0.0388861 0.0000175 0.0146484

ACOR-LO 0.0011311 0.0675754 0.0001399 0.0238283 0.0012084 0.0696649 0.0001383 0.0237083
ACOR-LS 0.0019742 0.0903416 0.0003404 0.0388655 0.0019310 0.0891751 0.0003405 0.0388720

TABLE VI: Portfolio performance with re-balancing period of 3*20 days

Real-JII Real-IDX Sim-JII Sim-IDX

EW RP GMV EW RP GMV EW RP GMV EW RP GMV
SR 0.4960 0.3973 -0.0577 0.4537 0.4520 -0.1039 0.8768 0.8723 -0.3340 1.3088 1.2858 1.0936
MD 0.1419 0.1253 0.3198 0.1180 0.1175 0.2355 0.1239 0.1047 0.5983 0.0823 0.0858 0.1355

Sortino Ratio 0.6768 0.5452 -0.0837 0.6305 0.6237 -0.1466 1.3132 1.2953 -0.4585 1.9146 1.8759 1.5812
Sterling Ratio 0.4988 0.4036 -0.0659 0.4981 0.4890 -0.0977 1.1376 1.1742 -0.3600 2.0451 1.8236 1.5770

VaR (0.95) 0.0156 0.0122 0.0344 0.0133 0.0132 0.0222 0.0152 0.0141 0.0663 0.0132 0.0125 0.0190
TO 0.0016 0.0026 0.0105 0.0017 0.0050 0.0123 0.0019 0.0025 0.0082 0.0019 0.0040 0.0112
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Fig. 4: Relative risk contribution (RRC) and asset weight of the RP portfolio with GA, PSO, and ACOR on real IDX dataset

TABLE VII: Portfolio performance with re-balancing period of 6*20 days

Real-JII Real-IDX Sim-JII Sim-IDX

EW RP GMV EW RP GMV EW RP GMV EW RP GMV
SR 0.4563 0.3138 0.4639 0.3589 0.5268 -0.0671 0.8538 0.8047 -0.5021 1.2157 1.1940 0.8035
MD 0.1350 0.1371 0.2988 0.1153 0.1139 0.2284 0.1227 0.1010 0.5735 0.0863 0.0893 0.1447

Sortino Ratio 0.6241 0.4297 0.6718 0.4953 0.7291 -0.0950 1.2806 1.1960 -0.6865 1.7730 1.7444 1.1400
Sterling Ratio 0.6718 0.2953 0.5632 0.4050 0.5906 -0.0636 1.1115 1.1287 -0.5219 1.8156 1.6575 1.0492

VaR (0.95) 0.0149 0.0119 0.0340 0.0138 0.0134 0.0217 0.0153 0.0140 0.0625 0.0132 0.0126 0.0189
TO 0.0007 0.0012 0.0046 0.0007 0.0018 0.0072 0.0009 0.0012 0.0060 0.0009 0.0020 0.0054

portfolios, it consistently outperforms GA and ACOR across
all datasets. A rolling-window analysis demonstrates that the
RP portfolio outperforms both the EW and GMV portfolios,
achieving the lowest VaR and MD ratios, though not all
metrics support this. These findings indicate that the pro-
posed method is effective and offers a promising alternative
for solving non-convex RP portfolio optimization. However,
reliance on historical data may not fully reflect dynamic
market conditions, and performance could vary in different
scenarios. Future research should address these limitations
by testing the algorithm on more complex problems with
diverse objectives and real-world constraints, and comparing

it with other hybrid or meta-heuristic methods.
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Fig. 6: Relative risk contribution (RRC) and asset weight of the RP portfolio with GA, PSO, and ACOR on simulated IDX
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