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Abstract—Synchronization is crucial for coherent dynam-
ics in coupled chaotic systems. The delayed participation
of the response system in lag synchronization provides
new insights into complex natural phenomena. This study
presents a data-driven prediction framework combining
Bayesian Optimization, Convolutional Neural Networks, and
Long Short Term Memory networks (BO-CNN-LSTM) to
predict lag synchronization, especially when system equa-
tions are unknown or mathematical models are difficult to
establish. Trained on time series data from asynchronous
states, the model predicts the lag synchronization transition
by adjusting the control parameters. The BO algorithm
optimizes hyperparameters, preventing overfitting and im-
proving model performance. Applied to the Lorenz system
with time-varying delayed coupling, our approach accurately
captures the effects of coupling coefficients and time delays
on lag synchronization, providing a reliable tool for analyzing
collective dynamics in coupled systems.

Index Terms—Coupled chaotic system, BO-CNN-LSTM
neural network, Anticipating synchronization, Lag synchro-
nization.

I. INTRODUCTION

SYNCHRONIZATION is a fundamental phenomenon
in dynamic systems, referring to the coherent be-

havior of coupled units. Chaotic oscillators can exhibit
trajectory convergence despite distinct initial states, a
phenomenon extensively analyzed in nonlinear dynamics
and complex networks[1]. Examples of synchronization
include pendulums swinging in unison or the gradual
coordination of applause. In nonlinear science and the
study of complex systems, synchronization is a key aspect
of the collective dynamics of oscillators[2][3]. Beyond
its theoretical significance, synchronization has practical
applications in real-world systems, such as communication
networks, where time delays can significantly influence
synchronization dynamics[4][5]. Time delays imply that
a system’s evolution depends on both its current and
previous states, leading to desynchronization and design
challenges. Dynamic networks with time-delayed cou-
pling terms are frequently used to model such effects,
with delays categorized as constant, time-varying, or dis-
tributed, each introducing unique complexities[6][7][8].
Moreover, the inherent unpredictability of chaotic systems
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further complicates synchronization analysis. For instance,
predicting solar storms like the 2012 Carrington-class
event that narrowly missed Earth, remains challenging
due to the chaotic nature of space weather systems. Tra-
ditional synchronization prediction methods, which rely
on precise system modeling, may struggle with complex
systems. Machine learning, however, offer a data-driven
approach by extracting patterns directly from available
data without requiring exact equations. The study by
Wang et al. introduced a model-free reservoir computing
approach for predicting synchronization transitions in cou-
pled oscillators[9]. This method effectively captures both
complete and phase synchronization dynamics, although
it necessitates substantial data for model training and
is sensitive to hyperparameter adjustments. Building on
these advancements, this study focuses on predicting lag
synchronization transitions in complex networks, where
time delays and coupling parameters introduce additional
dynamical complexity. Understanding these parameters is
critical for elucidating synchronization behaviors. Lodi
et al. recently analyzed synchronization in time-delay
neural architectures incorporating discontinuous activation
functions, leveraging robust adaptive regulation to coun-
teract parameter mismatches[10]. Similarly, Yang et al.
employed a machine learning approach to identify non-
linear system instabilities, capturing transient chaos and
critical transitions through data-driven analysis. Integrating
temporal dynamics into such models could further enhance
prediction accuracy[11].

Originally proposed by Hochreiter and Schmidhuber
in 1997, the Long Short-Term Memory (LSTM) net-
work is widely recognized for its predictive capabilities
in chaotic systems[12]. Similarly, Convolutional Neural
Network (CNN) has demonstrated excellent performance
across various machine learning problems and computer
vision[13]. A notable advantage of CNN lies in its capacity
for minimal preprocessing compared to alternative meth-
ods. This efficiency is especially important in tasks such
as time series classification, where Tang et al. showed that
selecting optimal convolutional kernel sizes in Conv1D
models is critical for achieving accurate results[14]. While
LSTM and CNN models individually yield impressive
predictive results, lag synchronization in chaotic systems
presents challenges that are difficult to address with a
single approach. Hybrid models that combine the strengths
of both CNNs for capturing dynamic features and LSTMs
for trend prediction are gaining popularity[15]. Another,
most machine learning algorithms require parameters,
highlighting the appeal of developing parameter-efficient
alternatives. More flexible take on this issue is to regard
optimizing these parameters as an automated process. We
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can particularly regard this tuning process as optimizing an
implicit black-box function, utilizing algorithms tailored
for these cases. An effective choice is Bayesian Opti-
mization (BO), demonstrated to surpass various advanced
global optimization techniques across multiple difficult
benchmark tasks[16]. In this study, BO is applied to
optimize hyperparameters by constructing a probabilistic
model that identifies the optimal parameter combination,
thereby minimizing loss and enhancing predictive perfor-
mance.

Anticipating lag synchronization using machine learn-
ing is crucial for understanding complex coupled chaotic
systems. This paper introduces a novel data-driven frame-
work that integrates Bayesian Optimization, Convolutional
Neural Networks, and Long Short-Term Memory networks
(BO-CNN-LSTM) to predict lag synchronization and over-
come challenges posed by unknown or intricate governing
equations. The model-free nature of the framework allows
only time series data from asynchronous states and no
prior knowledge of governing equations. It systematically
evaluates the impact of coupling strength and time delays
on synchronization dynamics, providing quantitative evi-
dence of its predictive accuracy. By successfully capturing
transitions from desynchronization to synchronization, the
BO-CNN-LSTM model demonstrates its ability to predict
critical thresholds and adapt to varying chaotic system
conditions. Its applicability to real-world systems, where
governing equations may be unknown, underscores its
potential for diverse applications. The paper is struc-
tured as follows: Section II introduces the fundamentals
of Bayesian Optimization combined with Convolutional
Neural Networks and lag synchronization in the Lorenz
oscillator. Section III presents a numerical analysis of the
key factors influencing lag synchronization. Section IV
concludes with a summary of the findings.

II. RELATED WORK

A. LSTM model and structure

Keras is a Python-based deep learning library, with
LSTM as a recurrent neural network designed for sequence
data processing[17]. Compared to traditional RNNs, it
excels in handling prolonged dependencies in sequential
data. Its architecture incorporates three gates and cell
states, which are learnable parameters that utilize the prior
hidden state ht−1 and the present input xt. These equations
are given by:

it = σ
(
W iht−1 + Iixt + bi

)
(1)

ft = σ
(
W fht−1 + Ifxt + bf

)
(2)

ot = σ (W oht−1 + Ioxt + bo) (3)
ĉt = tanh(W cht−1 + Icxt + bc) , (4)

where W i, Ii, bi correspond to the cyclic weight matrix,
projection matrix and bias vector of the input gate it,
respectively. Likewise, W f , If , bf pertain to the forget
gate ft. W o, Io, bo to the output gate ot. W c, Ic, bc to
the memory cell ĉt.

LSTM, as a variant of RNN, exhibits strong per-
formance in learning time series data by preserving
contextual information and capturing temporal dynamics

Fig. 1. LSTM network structure.

of events. The improvement of it is mainly reflected
in the introduction of new internal state and gating
mechanisms[18]. The input gate it determines the amount
of information retained the candidate state at the current
time step. The forget gate ft regulates the extent to which
the prior internal state ct−1 is discarded. The output gate
ot, using the updated cell state ct, controls the amount
of information transferred to the external state ht. As
illustrated in Fig. 1, applying the sigmoid function σ to
the current input xt and the prior output ht−1 generates
the three gates. Within the forget gate, ft adjusts the prior
memory ct−1, removing certain information to refresh the
cell state ct. Then network transforms the current input xt

alongside the prior output ht−1 through the tanh function,
obtaining the processed input ĉt. This transformed input
is then multiplied by the input gate it, which filters the
input information. The filtered information is added to the
updated cell state ct, which is subsequently transferred to
the next iteration. The equation is given as follows:

ct = ft ⊙ ct−1 + it ⊙ ĉt, (5)
ht = ot ⊙ tanh(ct), (6)

where ⊙ is the element-by-element product. Multiply the
output gate ot with tanh (ct), which is the transformed
cell state, used to compute the hidden state ht. At the
next time step, this hidden state is carried over, where it
interacts with the next input xt+1.

B. BO-CNN-LSTM model[19]

The CNN-LSTM architecture synergistically combines
CNN’s superior spatial feature extraction with LSTM’s ex-
ceptional temporal modeling capabilities, enhancing robust
learning of spatiotemporal patterns. And the combination
allows for a more comprehensive analysis and prediction
of time series changes. Moreover, the model’s architecture
facilitates the processing of sequential data, making it
particularly well-suited for applications involving dynamic
systems. However, with growing hyperparameter counts,
network sophistication increases, making it more suscep-
tible to overfitting. Typically, hyperparameter combina-
tions are adjusted based on empirical experience, which
can lead to suboptimal generalization performance since
manual tuning often overlooks relevant factors and fails
to effectively utilize past performance data. Additionally,
each new hyperparameter combination necessitates retrain-
ing the model, entailing prolonged training cycles and
intensive manual intervention.
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Fig. 2. Architectural diagram of the BO-CNN-LSTM hybrid model.

To enhance the model’s generalization ability and ensure
accurate predictions across various datasets, we propose
employing the Bayesian Optimization algorithm for hy-
perparameter selection. The BO algorithm merges the
strengths of manual tuning with the automated selection
capabilities of grid and random search by tracking past
evaluations to construct a probabilistic model that iden-
tifies the hyperparameter combination minimizing loss.
This framework is illustrated in Algorithm 1. By integrat-
ing this optimization approach, the proposed BO-CNN-
LSTM model comprises an input layer, convolutional
layers extracting spatial features, recurrent layers capturing
temporal dependencies, an output layer, and a Bayesian
Optimization layer, as depicted in Fig. 2. This structure not
only facilitates efficient hyperparameter tuning but sup-
ports robust predictions of lag synchronization in complex
coupled chaotic systems.

Algorithm 1: BO Algorithm

1 for t = 1, 2, . . . do
2 Select the next experiment point via acquisition

function maximization;
3 xt = argmaxx∈X α(x|D1:t−1);
4 Evaluate the objective function value:

yt = f(xt) + εt;
5 Integrate the data: Dt = Dt−1 ∪ {(xt, yt)};
6 Update the probabilistic surrogate model;
7 end

C. Lag synchronization of coupled Lorenz oscillators
Formally, a dynamical system exhibits chaos when in-

finitesimally close initial states generate exponentially di-
vergent trajectories under deterministic dynamics. Notably,
the synchronization process differs significantly based
on coupling configurations, primarily classified into two
distinct types: unidirectional and bidirectional coupling. In
former scenarios, a drive-response configuration emerges
where a master subsystem governs the evolution of a
slave subsystem, resulting in external synchronization,
as exemplified by chaos-based communication systems.
Conversely, bidirectional coupling involves mutual interac-
tion between subsystems, inducing synchronized behavior
through rhythm adjustment onto a shared synchronization
manifold, as observed in physiological systems (e.g., car-
diorespiratory interactions) and nonlinear optics[20].

Additionally, neural networks are often influenced by
impulses and time delays, making lag synchronization a
valuable approach for achieving rapid system synchro-
nization. Extensive research has been devoted to studying
synchronization phenomena in linear dynamical systems
with fixed time delays. Nevertheless, many challenges
remain in proving whether time-varying delay systems
can achieve neural network synchronization. Therefore
determining sufficient synchronization conditions for neu-
ral networks constitutes a crucial research objective. This
study examines a coupled system comprising two identical
dynamic Lorenz equations discussed on the basis of time-
delay coupled chaotic maps:
ẋ1(t) = µ(y1(t)− x1(t)) + ε(x2(t)− x1(t− τ)) ,

ẏ1(t) = x1(t)(β − z1(t))− y1(t) + ε(y2(t)− y1(t− τ)) ,

ż1(t) = x1(t)y1(t)− γz1(t) + ε(z2(t)− z1(t− τ)) ,
(7)

ẋ2(t) = µ(y2(t)− x2(t)) + ε(x1(t)− x2(t− τ)) ,

ẏ2(t) = x2(t)(β − z2(t))− y2(t) + ε(y1(t)− y2(t− τ)) ,

ż2(t) = x2(t)y2(t)− γz2(t) + ε(z1(t)− z2(t− τ)) ,
(8)

where (x1(t), y1(t), z1(t))and
(x2(t), y2(t), z2(t))represent the state vectors of the
first and second coupled systems at discrete time t,
respectively. The systems exhibit chaotic dynamics when
isolated under parameters (µ, β, γ) = (10.0, 28.0, 2.0),
with τ denoting the time delay and ε denoting the
coupling parameter.

Definition 1. [21] Let ξ = (x1, y1, z1)
T and η =

(x2, y2, z2)
T , and the dynamical system Eq. (7) is said

to lag synchronize with the dynamical system Eq. (8) at
time τ if

lim
t→+∞

∥η(t)− ξ(t− τ)∥ = 0 , (9)

where τ is a given positive time delay.

Remark 1. When the delay τ approaches zero, the
discussion of lag synchronization transitions to complete
synchronization. In the absence of time delay, the system’s
dynamics exhibit instantaneous and synchronized updates
and responses across all states. In the coupled Lorenz
system discussed, complete synchronization emerges when
the coupling coefficient exceeds the critical threshold
obtained from the master stability framework. Specifically,
the system achieves complete synchronization when ε >
ε0 ≈ 0.41[9][22].

III. SIMULATION RESULTS

Due to modeling errors and external disturbances, the
parameters of the neural network may be subject to fluctu-
ations, resulting in parameter uncertainty. Given the sensi-
tivity of chaotic systems to initial values, small parameter
variations may substantially alter system dynamics[23].
This paper will discuss two factors that influence this
phenomenon.

A. Effect of coupling parameter on lag synchronization

Different from traditional approaches that utilize fixed
coupling parameters[24], we consider a scenario where
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• x1(t)
• x2(t)

Fig. 3. Predicted the synchronization transition in coupled Lorenz system with different coupling parameters (Purple and chartreuse represent the
trained trajectory of x1 and x2, respectively).

• Actual datas
• Predict datas

Fig. 4. Dynamic state of coupled Lorenz system variables x1 and x2 with different coupling parameters (Blue dots are the variable actual values,
pink dots are the variable predicted values).

coupling parameters change over time. In this context, ε
is treated as a step function of time, while a delay τ = 1
is set to examine the impact of coupling parameters on
system synchronization.

Training datasets were constructed by sampling three
characteristic coupling strengths ε = [0.10, 0.40, 0.50]
spanning network spectral radius, all within the asyn-
chronous states, which provides the basis for the model
to learn the complex behavior of the system. For each
value of ε, we collect time series data of length T =
4 × 103 at time steps ∆t = 0.02, after disregarding a
transient phase of length T0 = 1 × 103. The input vector
u(t) ≡ [x1(t), x2(t), y1(t), y2(t), z1(t), z2(t)]

T and the

control parameter signal ε(t) are then input into the BO-
CNN-LSTM model for output training.

This study employs machine learning to predict the
synchronization behavior of two variables in a coupled
Lorenz system under varying coupling parameters. The
state variables of the system are coupled to each other
in Eqs. (7)-(9). If x1 and x2 achieve synchronization, the
remaining vector sets exhibit synchronous characteristics,
and vice versa. In this paper, we focus on the relationship
between x1 and x2 in two identically coupled Lorenz
systems, though similar behaviors are observed for other
variables.

The RMSE results for various models under different
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values of ε (0.10, 0.40, 0.50, and 0.56) are shown in Table
I. The table highlights the performance of LSTM, KAN,
and BO-CNN-LSTM in capturing lag synchronization.
BO-CNN-LSTM consistently achieves the lowest RMSE
across all tested values of ε, demonstrating its superior
ability to handle lag synchronization and outperform other
approaches in capturing synchronization transitions.

TABLE I
RMSE-BASED COMPARISON OF LAG SYNCHRONIZATION MODELS.

Datasets ε = 0.10 ε = 0.40 ε = 0.50 ε = 0.56

LSTM 0.328 0.331 0.337 0.200

KAN 0.305 0.314 0.327 0.194

BO-CNN-LSTM 0.084 0.058 0.076 0.087

Table II shows the loss values for various models
evaluated on the test dataset under different values of
ε. The loss metric evaluates the synchronization error
between the predicted and observed dynamical states,
characterizing the attractor reconstruction accuracy in the
network’s phase space. The proposed BO-CNN-LSTM
model consistently achieves the lowest loss values across
all tested conditions, demonstrating its superior capability
to accurately predict lag synchronization transitions and
further affirming its robustness compared to other models.

TABLE II
COMPARISON OF LAG SYNCHRONIZATION MODELS BASED ON LOSS

METRICS

Datasets ε = 0.10 ε = 0.40 ε = 0.50 ε = 0.56

LSTM 0.110 0.123 0.116 0.040

KAN 0.097 0.102 0.109 0.038

BO-CNN-LSTM 0.010 0.006 0.002 0.001

While RMSE and loss effectively quantify prediction
accuracy, they do not account for the statistical signifi-
cance of performance differences across models. To es-
tablish whether the improvements achieved by BO-CNN-
LSTM are consistent and reliable, we further conduct
paired t-tests and calculate 95% confidence intervals (CIs).
These statistical analyzes quantify whether the reduction
in prediction errors is consistent across different samples
and determine the reliability of the model’s performance.
The dependent samples t-test assesses whether the mean
difference in prediction errors between paired model out-
puts achieves statistical significance. The t-statistic is
calculated as follows:

t =
d̄

sd/
√
n
, (10)

where d̄ is the mean of the differences in prediction errors,
sd is the standard deviation of the differences and n is the
number of data points. A p-value below 0.05 indicates
statistical significance.

In addition, the 95% confidence interval estimates the
uncertainty of the model’s prediction errors. It is calculated

as follows:

CI = x̄± tα/2,n−1 ·
(

s√
n

)
(11)

here x̄ is the mean prediction error, tα/2,n−1 is the critical
value from the t-distribution (ᾱ = 0.05), s is the standard
deviation of the prediction errors and n is the number of
data points. The 95% confidence interval provides a range
in which the true mean is likely to fall in 95% of repeated
experiments.

The statistical analysis shows that BO-CNN-LSTM
achieves significantly lower prediction errors compared to
LSTM and KAN. The mean RMSE of BO-CNN-LSTM
is 0.07625, which reflects a lower average prediction
error. The paired-sample analysis reveals a statistically sig-
nificant difference, with BO-CNN-LSTM outperforming
LSTM (t = −6.01, p = 0.0092) and KAN (t = −6.00,
p = 0.0093). Since both p-values are below the com-
monly used significance threshold of 0.05, the evidence
sufficiently contradicts the null hypothesis, indicating that
the observed performance improvements are unlikely to
have occurred by chance. Furthermore, the 95% confi-
dence interval for BO-CNN-LSTM is (0.05553, 0.09697),
suggesting that if the experiment were repeated multiple
times, the true mean prediction error would fall within this
range in 95% of cases. The relatively narrow confidence
interval suggests that the prediction errors remain stable
and do not exhibit large fluctuations, demonstrating greater
reliability. These findings confirm that BO-CNN-LSTM
not only achieves higher accuracy but also maintains more
consistent predictions, ensuring its reliability in forecasting
lag synchronization transitions.

As showed in Fig. 3, the trained model predicts how
synchronization transitions occur for different coupling pa-
rameters. Figs. 3(a1)-(c1) show the predicted state changes
of the variables x1 and x2 in a coupled Lorenz system for
three different values when ε is 0.10, 0.40 and 0.50 respec-
tively, where purple denotes the trained motion trajectory
of x1, while chartreuse denotes the trained motion trajec-
tory of x2. The system exhibits asynchronous dynamics
across all three parameter configurations. With coupling
strength tuned to 0.56, the trained machine predicts the
synchronization behavior of variables x1 and x2, as shown
in Fig. 3(d1). This figure clearly illustrates the impact of
coupling strength on synchronization by comparing the
behavior of the system under different parameters, high-
lighting how adjusting the coupling strength can control
synchronization transitions.

To visually illustrate the synchronization process of the
variables x1 and x2, Figs. 4(a2)-(d2) shows the relation-
ship between the two variables under different coupling
parameters (where blue dots denote the actual values of
the variables x1 and x2, pink dots denote the predicted
values of the variables x1 and x2), which show the process
of mutual coupling changes of the two variables. During
the study, it was found that predicting synchronization
transition is possible as long as data with at least two
different parameter values are used for training. Prediction
accuracy exhibits critical enhancement as training param-
eters approach the bifurcation threshold. As the value of ε
increases from 0.10 to 0.56, with a fixed time lag, the
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Fig. 5. Effect of coupling parameters on synchronization of coupled
Lorenz system.

points (x1, x2) gradually converge to the diagonal and
begin to exhibit the characteristics of synchronization.

As validate the prediction of the critical transition point
ε1 for lag synchronization, we systematically increased the
coupling parameter ε from 0.4 to 0.7. The synchronization
error ∆x (discarding transients period) is calculated over
the time span T = 4 × 103, which is as follows:

∆x =

∑T
i=T0

|x1i (t− τ)− x2i (t) |
T − T0

(12)

where x1i and x2i denote the dynamical variables of x1

and x2 of the two systems at the ith time node and T0 =
1 × 103 is the transient period.

Fig. 5 illustrates that as the coupling parameter in-
creases, the synchronization error ∆x progressively de-
creases, approaching zero around ε1 = 0.56. It turns
out that a well-trained model can accurately identify the
critical transition point to synchronization.

In this study, we developed a BO-CNN-LSTM neural
network prediction model. The model was trained using
comprehensive dynamic system data generated through
numerical integration, encompassing a range of parameters
from weak to strong coupling. To enhance prediction accu-
racy, we meticulously optimized the network architecture
and fine-tuned the hyperparameters, aiming to minimize
the discrepancies between the model’s predictions and
actual observations.

B. Effect of time delay on lag synchronization

The system achieves complete synchronization when
ε1 ≥ 0.41. In this example, the control variable of is set
as ε = 0.5 to further consider the influence of time delay
on synchronization, indicating that the system achieves
complete synchronization without delay. In particular, the
time delay τ is treated as a step function of time.

As shown in Table III, the RMSE results for different
values of τ (0.50, 1.00, 1.55, and 2.00) offer a comparative
assessment of the LSTM, KAN, and BO-CNN-LSTM
models. The proposed BO-CNN-LSTM model consis-
tently achieves the lowest RMSE across all tested time-
delay conditions. At the critical delay value τ = 1.55,

the model demonstrates substantial improvements over
other approaches, underscoring its robustness in predicting
synchronization transitions under time-delayed dynamics.

TABLE III
RMSE FOR LAG SYNCHRONIZATION MODELS UNDER DIFFERENT

TIME DELAYS

Datasets τ = 0.50 τ = 1.00 τ = 1.55 τ = 2.00

LSTM 0.328 0.343 0.175 0.343

KAN 0.337 0.345 0.190 0.322

BO-CNN-LSTM 0.031 0.084 0.024 0.072

Table IV presents the loss values for the models under
various time delays. The BO-CNN-LSTM model consis-
tently outperforms both LSTM and KAN, achieving the
lowest loss values in all scenarios. These findings confirm
the model’s effectiveness and reliability in anticipating
lag synchronization transitions, even under complex and
diverse time-delay conditions.

TABLE IV
LOSS METRICS COMPARISON OF LAG SYNCHRONIZATION MODELS

UNDER VARYING TIME DELAYS

Datasets τ = 0.50 τ = 1.00 τ = 1.55 τ = 2.00

LSTM 0.111 0.122 0.031 0.120

KAN 0.116 0.123 0.036 0.107

BO-CNN-LSTM 0.001 0.011 0.001 0.008

Besides, statistical analyzes show that the BO-CNN-
LSTM model consistently achieves significantly lower
prediction errors under different conditions time delay τ .
The average RMSE is 0.05275, indicating a lower mean
prediction error. Further validation by paired t-tests shows
that the t-value for prediction error is -7.60 with a p-value
of 0.0047 compared to LSTM and -8.41 with a p-value
of 0.0035 compared to KAN, both values being statisti-
cally significant. Additionally, the 95% confidence interval
is (0.00549, 0.10001), suggesting that prediction errors
fall within a stable range. Consequently, the BO-CNN-
LSTM model exhibits superior prediction accuracy and
minimal error deviation in various time-delay scenarios,
underscoring its stability and reliability in predicting delay
synchronization.

Given that the network has been trained to recognize
parameter variations in the coupled chaotic system’s global
dynamics, it should be adept at predicting synchronization
transitions. Figs. 6(a1), (b1) and (d1) illustrate that the
time-delay coupled chaotic system fails to achieve syn-
chronization when τ is set to 0.50, 1.0, and 2.0, where
coral dots denote the trained trajectory of x1 and olive
dots denote the trained trajectory of x2. In contrast, in Fig.
6(c1) with τ = 1.55, the model predicts synchronization
behavior, suggesting the existence of a specific τ value
within the interval [1,2] that facilitates synchronization
between variables x1 and x2 in the system.

Fig. 7 visually demonstrates the synchronization pro-
cess, illustrating the delay-dependent regime transitions in
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• x1(t)
• x2(t)

Fig. 6. Coupled Lorenz systems predict synchronization transition with different time delay (Coral and olive denote the trained trajectory of x1

and x2, respectively).

• Actual datas
• Predict datas

Fig. 7. Dynamic state of coupled Lorenz system variables x1 and x2 with different time delay (Green dots are the variable actual values, orange
dots are the variable predicted values).

collective dynamics. The experimental results show that
lag synchronization occurs within the interval 1.24 ≤
τ ≤ 1.57. Figs. 7(a2)-(d2) further depict the gradual
convergence towards the diagonal followed by divergence
as the coupling parameter varies from 0.5 to 2.0 for the
points (x1, x2). The green dots represent the actual values
of the variables x1 and x2, while the orange dots indicate
the predicted values.

To further illustrate the successful prediction of the lag
synchronization bifurcation threshold τ0, we adiabatically
vary the control parameters from 1.16 to 1.66, calculating
the corresponding synchronization error ∆x using Eq.
(10). As shown in Fig. 8, the synchronization error ∆x

gradually decreases with increasing time delay, approach-
ing zero around τ1 = 1.24. However, the state is not
consistently maintained, the synchronization error begins
to rise again at τ2 = 1.57, moving away from zero. These
results suggest that a linear approximation of the system
may compromise synchronization quality as the time delay
changes significantly, even if the response system remains
stable. Variations in parameters can lead to desynchroniza-
tion between the drive and response systems, ultimately
affecting synchronization accuracy. Nevertheless, as long
as complete synchronization remains stable, the system
can sustain stability within a finite range of delays.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 5, May 2025, Pages 1325-1332

 
______________________________________________________________________________________ 



Fig. 8. Effect of time delay on synchronization of systems.

IV. CONCLUSION

In coupled chaotic systems, synchronization emerges
through interactions and mutual adjustments among inter-
connected nodes. Given the nonlinear complexity of cou-
pled systems, many governing equations remain unknown
or too intricate for direct computation. This paper intro-
duces a fully data-driven BO-CNN-LSTM model, which
is trained on time series data from asynchronous states,
to predict lag synchronization transitions in time-delay
coupled chaotic systems. By adjusting coupling parameters
and time delays, the model successfully replicates collec-
tive dynamics and predicts changes in control parameters,
demonstrating its ability to capture lag synchronization
phenomena without relying on explicit mathematical mod-
els. The reliability of this machine learning approach is
confirmed through numerical accuracy, despite the lack
of a comprehensive theoretical understanding of neural
network layers. Our study focuses on the critical factors
of coupling parameters and time delays, examining how
their variations influence the synchronization process. This
highlights the model’s robustness in capturing dynamic
behavior under changing conditions. By integrating ma-
chine learning with Bayesian Optimization, the BO-CNN-
LSTM model provides a innovative method for predicting
synchronization transitions using only time series data.
This approach represents a significant advancement in
analyzing nonlinear and complex systems. Its ability to
predict synchronization without prior knowledge of system
equations makes it a valuable tool for understanding syn-
chronization dynamics in diverse fields, including biology
and engineering.
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