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Conditions for Linearizing Fourth-Order Ordinary
Differential Equations through Point
Transformation and Applications
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Abstract—This research encompasses two distinct investiga-
tions into the linearization of differential equations. The first
study focuses on the reduction of nonlinear fourth-order ordi-
nary differential equations to general linear equations through
point transformations. Necessary and sufficient conditions for
linearization are derived, accompanied by a detailed procedure
for obtaining the linearizing transformations and the coeffi-
cients of the resulting linear equations. Illustrative examples
are provided to demonstrate the efficacy of the linearization
theorems in practical applications. In the second investigation,
attention is directed towards the completed linearization prob-
lem of fourth-order ordinary differential equations using fiber
preserving transformations, building upon the obtained results.
A computational program is developed to verify linearity based
on the obtained results. Furthermore, the research explores
various applications that meet the established linearization
criteria, including fourth-order ordinary differential equations,
third-order ordinary differential equations under Riccati trans-
formation, and third- and fourth-order partial differential
equations under traveling wave solutions.

Index Terms—Ilinearization problem, point transformation,
fiber preserving, nonlinear ODE.

I. INTRODUCTION

IFFERENTIAL equations, particularly those that are

nonlinear, play a crucial role in modeling complex
phenomena across various scientific disciplines. Unlike linear
equations, which maintain a straightforward relationship be-
tween variables, nonlinear equations introduce complexities
due to their non-proportional outputs relative to their inputs.
This nonlinearity often results in challenging equations that
are not easily solvable using conventional methods.

One powerful approach to tackling nonlinear differential
equations is to transform them into linear forms, where well-
established solution techniques can be applied. This process,
known as linearization, is a specialized aspect of the broader
equivalence problem. The equivalence problem asks whether
two differential equations, through a series of invertible trans-
formations, can be deemed equivalent belonging to the same
class of equations. Solving this problem involves determining
the appropriate transformations, identifying invariants, and
establishing criteria for equivalence.
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Linearization is a powerful technique used to convert
nonlinear ordinary differential equations into linear ones,
making them more tractable and easier to solve. The origins
of this method date back to the work of Sophus Lie [1],
who identified a class of second-order ordinary differential
equations that could be reduced to linear forms using point
transformations. He further demonstrated that any second-
order equation could be transformed into a linear equation
through contact transformations.

Following Lie’s pioneering work, Liouville [2] and Tresse
[3] expanded on the idea by employing relative invariants
of equivalence groups under point transformations to solve
equivalence problems in second-order equations. Their con-
tributions helped lay the groundwork for modern lineariza-
tion techniques. More recently, Suksern and Sawatdithep [4]
refined these approaches by reducing second-order differ-
ential equations to general linear forms and applying their
results to a range of nonlinear equations encountered in
various scientific fields. Moreover, Sinkala [5] discussed the
linearization of second-order ordinary differential equations
through point transformations, utilizing symmetries to derive
a general solution. This approach allows specific solutions to
be obtained from the general solution via suitable transfor-
mations based on the symmetries of the equation.

The study of linearization extended to higher-order equa-
tions when Bocharov, Sokolov, and Svinolupov [6] tack-
led third-order ordinary differential equations using point
transformations. Grebot [7] also investigated linearization for
specific cases of third-order equations, and Ibragimov and
Meleshko [8] advanced the field by introducing linearization
criteria for both point and contact transformations, focusing
on the Laguerre form. Afterwards, Al-Dweik [9] presents the
necessary and sufficient conditions for linearization of third-
order ordinary differential equations via point transforma-
tions, which involves the identically vanishing of specific rel-
ative invariants, ensuring equivalence to the normal simplest
form. Later, AlI-Dweik, Mustafa, Mahomed, and Alassar [10]
addressed the linearization of third-order ordinary differential
equations using the Cartan equivalence method, providing an
invariant characterization and a procedure for constructing
equivalent canonical forms through point transformations
and auxiliary functions. Recent developments have contin-
ued to push the boundaries of linearization. Suksern and
Sookcharoenpinyo [11] introduced a new procedure for lin-
earizing third-order nonlinear equations, while Ibragimov,
Meleshko, and Suksern [12] showed that all fourth-order
equations that can be linearized by point transformations
belong to the class of equations linear in the third-order
derivative, again focusing on the Laguerre form. Afterwards,
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Lyakhov, Gerdt, and Michels [13] discussed algorithms for
checking the linearizability of nonlinear ordinary differential
equations, including fourth-order equations, through point
transformations. They utilize Lie point symmetry algebra and
differential Thomas decomposition to determine linearization
conditions and transformations. Later, Dutt and Qadir [14]
provided a classification for third-order ordinary differential
equations by using a generalization of contact transforma-
tions and then extended that work to fourth-order equations
using a generalization of the Lie-Bicklund transformation.
They demonstrated that there are at least four classes of
fourth-order linearizable ordinary differential equations.

Despite these advancements, the complexity of nonlinear
equations poses significant challenges for linearization, par-
ticularly for higher-order systems. Many researchers have
focused on simpler cases, such as the Laguerre form, but
a comprehensive framework that covers more general forms
is needed for broader applications. Point transformations
provide a promising approach for tackling this challenge, al-
lowing fourth-order nonlinear ordinary differential equations
to be transformed into general linear forms. This method
has the potential to be applied to a wide range of nonlinear
equations found in nature, offering a versatile and effective
tool for solving complex differential equations.

II. FORMULATION OF THE LINEARIZATION THEOREMS

A. Obtaining Necessary Condition of Linearization

The first purpose of this research is to linearize the fourth-
order ordinary differential equations

y@ = f(2,9,9,9".y") (1)

by using the point transformation

t=p(xy), uv=1(z,y). )
The study starts with the necessary conditions for lin-
earization. We obtained the general form of equation (1) that
can be reduced to a linear equation via point transformation
(2). The general linear fourth-order ordinary differential
equation is written in the form
u® + vOu" +wt)u” + o) + B(t)u+~(t) = 0. (3)
At the end, we attain two classes of equations candidating
for linearization.

Let ¢ and u be new independent and dependent variables,

respectively. We get the following transformation of the
derivatives
DCE xr !
ul(t) _ (U _ (0 +y/'¢y _ P(x7y7y'),
Dep o +9y'0y
() = PP _ Pty B Ay'hy
Dy Yz +Y'py
A 1 3
= m[y" + Z(Sﬁy%y — Pyyby)y’
+..

= Qz,y,v.y"),

D@ _ Qs+ y/Qy + y//Qy’ + y///Qy”

u//l t —
®) Dy Yu + Yy
= m[(% + 9oy — 3oy
+...]
= R(z,y,9,y".y"),
D.R
@y = z
u'™(t) Do
_ R, + y/Ry + y”Ry/ + y/”Ryu + y(4)Ry///
Yo+ Y0y
A 12, (4)
= B —————r T +
_10(9096 + Yy @y)@yy”ym + .. } 4
where
8 0 , 0 1o} 0
Do= gty g, +V g0 +V 57+ y® N
is the total derivative. Here A = Quhy — Py # 0 is

Jacobian of the change of variables (2). From equation (4),
we can see that the transformation (2) with the conditions
¢y = 0 and ¢, # 0 give two distinctly different candidates
for linearization.

For ¢, = 0, we replace all results in equation (3) and
derive the following equation:

y(4) +(Aly'+Ao)y”’+Boy”2+(ng’2+C’1y’
+Co)yll +D4y/4 +D3y/3 +D2y/2 +D1y/

+ Dy =0, (%)

where Az = AZ(mvy)vBl = Bl(l'vy)acl = Cl(xay) and

D; = D;(x,y) are arbitrary functions of z,y, as illustrated
in Appendix, equations (A.1)-(A.11).

For ¢, # 0, we have done in similar way. Setting

r(z,y) = i—:, we derive the following equation:

y 4 — s (—10y" + Foy/* + Fry + Fy)y"”
1 "3 12 / "2
(/+T)2[15y + (Hoy'™ + H1y' + Hp)y
Yy

+ (Jay™ + T3y + Jay’”® + iy + o)y

+ K7y + Koy'® + Ksy'” + Kyy'* + Kay'®

+ Kyy” + Ky + K] =0, 6)
where F; = Fi(x,y),H; = Hi(x,y),J; = Ji(z,y) and

K; = K;(z,y) are arbitrary functions of x,y, as illustrated
in Appendix, equations (B.1)-(B.19).

Theorem 2.1: Any fourth-order ordinary differential equa-
tion linearizable by a point transformation has to be one of
the forms either equation (5) or (6).

B. Obtaining Sufficient Conditions of Linearization, Lin-
earizing Transformation and Coefficients of Linear Equation

B.1 The First Class of Linearizable Equations
In this case ¢, = 0, the transformation (2) becomes a fiber
preserving transformation, that is

t=o9(x), u=1v(,y). @)
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For obtaining the sufficient conditions, one has to solve
the compatibility problem. Consider the representations of
the coefficients A;, B;,C; and D; through the unknown
functions ¢ and 1. We first rewrite the expressions (A.1l)
for Ay in the form

Yyy = (byAr)/4. (®)
One can determine v from equation (A.2) as
V= (60athy — 400tay + CatbyAo)/(020y).  (9)
Since ¢ = ¢(x) we have v, =0 yields
Ay = A1z

From equations (A.3), (A.4), (A.5), (A.7) and (A.8) one gets
the conditions

(10)

By =(3A1)/4, (11)
Ay, = — (343 — 8Cy)/12, (12)
Ay = — (3404, —4C1)/12, (13)
Cyy = — (A1Cy — 24Dy) /4, (14)
C1y = — (A10y — 12D3) /4. (15)

One can determine w from equation (A.6) as the following

w =(4<P;cm<h¢§ + 3@i¢¢§ - 12@xw@x¢xywy
+ 390mv50w'(/}12/140 + 12@21#51, - 3@?5%1,%140
— 603 Yeaathy + 0215Co)/ (Vay).

Since ¢ = ¢(x) we have w, =0 yields

Coy = —((3A0A1—401)A0—16011+12A0$A1)/32 (17)

(16)

From equations (A.9) one gets the condition

Cro =(1240, A1 +3A2A; —4A,Cy — 8A,Cy

+ 32D3)/16. (18)

One can determine « from equation (A.10) as the following

& =(PazaatVy — 4PraeVayVs + Prazthy Ao
+ 1204007, by — 3Pathay ) Ao
— 6002 WasaV? + Puath3Co — 2403,
+ 6901-1/132@1/@140 + 249 VoyVaaay
= 202Yay Ve Co — 402 Vazayths

— 300 lanatly Ao + PathiD1)/(P305).  (19)
Since ¢ = ¢(x) we have a, =0 yields
Dly :(36A01A0A1 - 481401»01 - 48001141
+ 192Dy, +9A3A; — 1242C,
—3640A,Cy + 4840 D, + 32C,C1)/288.  (20)

One can determine [ from equation (A.11) as the following

B == (Patyy — 2495, 00 + 12073 Yaathy
+ 692, Vothy Ag — 4y ana iy
+ 240y Paaa Yty — 3Pay ety Ao
— 20y Vap2Co + VaaraVy — Woawy Vot
+ Voaaty Ao — 6Usaataatly — 3Uaateths Ao

+ aathiCo + Yot0d D1 — ¥y Do)/ (0stbi).  (21)

Since ¢ = ¢(x) we have (B, = 0 yields

v =((4((3¥2 A0 + Cotp + 600a)y — 6V0aet))Vuaa
+ ((41py — A1) Do — Mpp Dy — 413 Co 1
— AWuaathy Ao + A(4s + Ao Yarayty
— Wpraaty + Wazrayy ) V) + 4(((2102Co
+ D1y + 30 Aoy — 6(4¢0s + AoY)Yiaa
+ Dgzethy — 8aaay )V — 2(((3¢2Ao + Cotp
+ 690 )0y — 18%0aat))thy — 3((440 + Aoh)thy
— AWy ) ay ) Vay)hay — ADoyWy) /[ (Apatby). (22)

Since ¢ = ¢(z) we have 7, =0 yields

Doyy =(36A0z0AgA; — 4840, Cy — 18 A0, AZA;
+ 2440, AgC + 4840, A1Cy — 19240, Dy
— 48Cp Ay — 320,01 — 288Dg, A,
+192Dgyy + 96 D2, Ag — 9AGAL + 12435C
+48A2%A,Cy — 48A2 Dy — T2A0 A, Dy
—48A0CoCy + T2A1Dy — 40A,C3
+160Co Dy + 96C, Dy — 192C5 D) /1152, (23)

All obtained results can be summarized in the following
theorems.

Theorem 2.2: Sufficient conditions for equation (5) to be
linearizable via the fiber preserving transformation (7) are
equations (10), (11), (12), (13), (14), (15), (17), (18), (20)
and (23).

Corollary 2.3: Provided that the sufficient conditions in
Theorem 2.2 are satisfied, the transformation (7) mapping
equation (5) to a linear equation (3) is obtained by solving
the compatible system of equation ¢, = 0 and equation (8)
for functions ¢(x) and (x,y). Finally, the coefficients v,
w, a, B and v of the resulting linear equation (3) are given
by equations (9), (16), (19), (21) and (22).

The following is an example of how to apply the theorem
that has been develop.

Example 2.4: Consider the nonlinear ordinary differential

equation [12]
$2y<2y(4) +y) +8x2y’y’” + 16xyy”’ Y
—|—6x2y”2 4 48:ry’y” + 24yy// + 24y/2 =0. 24

It is an equation of the form (5) in Theorem 2.1 with the
coefficients

Al:;’A0:%7B0:%702:0a
Cl:%y’coii%’D‘l:OvDS:O,
Dy =22 Dy =0, Dy = 4.

One can check that these coefficients obey the conditions in
Theorem 2.2. Hence, an equation (24) is linearizable via a
fiber preserving transformation. Applying Corollary 2.3, the
linearizing transformation is found by solving the following
equations

(4
oy =0, by, = Zy (25)
One can find the particular solution for equations in (25) as
o=z, =1y
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So that, one obtains the linearizing transformation

t=x, u=ay>. (26)

From Corollary 2.3, the coefficients v, w, «, 3 and ~y of the
resulting linear equation (3) are

v=0,w=0 a=0, =1, v=0.

Hence, the nonlinear equation (24) can be mapped by trans-
formation (26) into the linear equation

u® +u=0. 27
The solution of equation (27) is
t t _t
u(t) =(Cpcos — + (1 sin —)e V2
(1) =(Co cos =+ Cysin—)
t t PR

+ (Cyco8s — + C3sin —)e” V2, 28
(Cy 7 3 \/5) (28)

where Cy, C1, Cs and C'5 are arbitrary constants. Substituting
the transformation (26) into equation (28), we obtain the
nonlinear solution is
2 92 X . T z_
xy” =(Cycos —= + Cysin —=)e V2

V2 V2

+ (Cs cos 24 C3sin 1)67%.

V2 V2

B.2 The Second Class of Linearizable Equations

In this case, the problem is formulated as follows. Given
the coefficients F;, H;, J; and K; of equation (6), find the
necessary and sufficient conditions for integrability of the
overdetermined system of equations (B.1)-(B.19) for the
unknown functions ¢(z,y) and ¥ (z,y).

Recall that according to our notations, the following
equations hold

Yo = TPy, (29)
Yo = (pyihyr —A)/py, (30)
and
Vy = (@xVy)/‘Pyv (31)
wr = (pawy)/ ey, (32)
az = (pa0y)/ Py, (33)
Bz = (@zﬁy)/@yv (34)
Vo= (pavy)/ by (35)

One can determine v from equation (B.1) as the following
(L0¢yy + oy Fo)A — 4<PyAy)/(%2,A)- (36)
Substituting v into equation (31), one obtains the derivative
Agy = (4(AyyA = ADr + AzA) + (44,
— BA)ry A + 107y, A% — FoyrA?

1% =

+ Fo, A?)/(44). 37)
Equation (B.2) provides the derivative
Ay = (20ryA + 4Ayr + F1A — 2ForA) /4. (38)

Substituting equation (38) into equation (37), one gets the
condition

Tyy = —(Fiy — Fap — Fayr — 1y F3)/10. (39

From equations (B.3), (B.4), (B.5) and (B.6), one obtains the
following conditions

ry = (10r,r — Fo + Fir — Fyr?)/10, (40)
Hy = —3F5, “4n
Hy = —3(5F) — 2Fyr)/4, 42)
Hy = —3(6Fy — F1r)/4. 43)

One can determine w from equation (B.7) as equation (C.1).
Substituting w from equation (C.1) into equation (32), one
obtains the condition (C.2). Equations (B.8), (B.9), (B.10)
and (B.11) provide conditions (C.3), (C.4), (C.5), (C.6).
One can determine v and « from equations (B.12)-(B.13)
as equations (C.7)-(C.8). Substituting o from equation (C.8)
into equation (33), and v from equation (C.7) into equation
(35), one obtains conditions (C.9) and (C.10). Substituting
B from equation (C.10) into equation (34), one obtains
the condition (C.11). From equation (B.14), one obtains
condition (C.12). Substituting the relation J4, from equation
(C.12) into J4zy, in equation (C.11), one obtains condition
(C.13). From equations (B.15), (B.16), (B.17), (B.18) and
(B.19), one obtains the following conditions (C.14)-(C.18).

Theorem 2.5: Sufficient conditions for equation (6) to be
linearizable via the point transformation (2) are equations
(39), (40), (41), (42), (43), (C.2), (C.3), (C.4), (C.5), (C.6),
(C.9), (C.12), (C.13), (C.14), (C.15), (C.16), (C.17), (C.18).

Corollary 2.6: Provided that the sufficient conditions in
Theorem 2.5 are satisfied, the transformation (2) mapping
equation (6) to a linear equation (3) is obtained by solving
the compatible system of equations (29), (30) and (38) for
the functions ¢(x,y) and v (z,y). Finally, the coefficients
v,w,a, B and 7y of the resulting linear equation (3) are given
by equations (36), (C.1), (C.7), (C.8), (C.10).

Example 2.7: Consider the nonlinear ordinary differential
equation

16y y + 112ySy + 3369y — 8y'*y”
+560y/4y _ 32y/3y/l + 560yl3y _ 48y/2y//
_|_y/2y(4) + 336y’2y _ 1Oy/y//y/// _ 32y/y//
+2y/y(4) 4 1123/3/ + 152//3 _ 1Oy//y///
—8y" +y™@ + 16y = 0.

(44)

It is an equation of the form (6) in Theorem 2.1 with the
coefficients

r=1F,=0F =0, F, =0,
Hy=0,H, =0, Hy=0,.J, = 8,
Jy = —32, Jo = —48, J; = —32,
Jo = -8, K7 = 16y, K¢ = 112y,
K5 = 336y, K4 = 560y, K3 = 560y,

K, = 336y, K, = 112y, Ko = 16y. (45)

One can check that these coefficients obey the conditions in
Theorem 2.5. Hence an equation (44) is linearizable via a
point transformation. Applying Corollary 2.6, the linearizing
transformation is found by solving the following equations
_ gty —A

Px = Py Py = —,
Py

A, =0.  (46)
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One can find the particular solution for equations in (46) as

Y=y, A=1

So that, one obtains the linearizing transformation

p=x+ty,

t=z+4y, u=y. 47)

From Corollary 2.6, the coefficients v, w, «, 3 and ~ of the
resulting linear equation (3) are

vr=0, w=8 «a=0 =16, v=0.

Hence, the nonlinear equation (44) can be mapped by trans-
formation (47) into the linear equation

u™® + 8u" + 16u = 0. (48)
The solution of equation (48) is
u = Cpcos 2t + C1 sin 2t 4+ tCy cos 2t + tC3sin 2t, (49)

where Cy, C1, Co and C'5 arbitrary constants. Substituting the
transformation (47) into equation (49), we get the nonlinear
solution

y=Cpcos2(zx+y)+ Cysin2(z +y)
+ (z+y)Caco82(z +y)
+ (z+y)Cssin2(z + y).

ITII. SOME APPLICATIONS
The second purpose is to find some applications which

satisfy the obtained theorems in section II. The obtained
results are as follows.

A. Linearization for Some Interesting Third-Order Ordinary

Differential Equations Under the Riccati Transformation
Example 3.1: Equation in the article [15]

The third-order member of the Riccati hierarchy is given by

Euler et al [15] as

y/// + Syy” 4 6y/2 + 24y2y/ + 8y4 =0. (50)

Applying [16] one checks that the equation cannot be lin-
earized by a point transformation or contact transformation
or generalized Sundman transformation. Under the Riccati
transformation y = ”7“’/ equation (50) become

w@® 3 4 8w aw? — 4w W' w? + 6w"? aw?
—3w"2w? + 24w"w?a’w — 36w"waw + 12w" W"w

+8wa? — 24w'*a? 4+ 22wa — 6wt = 0. (51)

It is an equation of the form (5) in Theorem 2.1 with the
coefficients

4(2a — 1 2a — 1
&:LﬂgL%:Q&:%%ig
12(2a2 — 3 1
O = B30t ) oo ¢y =,
w
2(4a® — 1242 + 11a —
Dy — (4a a’+ 1la 3),D3:0,

w3
Dy =0,D; =0, Dy =0.

One can check that these coefficients obey the conditions in
Theorem 2.2. Hence, an equation (50) is linearizable via a
fiber preserving transformation. Applying Corollary 2.3, the

linearizing transformation is found by solving the following
equations

Y, (2a — 1).

Y =0, Yow = (52)
w
One can find the particular solution for equations in (52) as
p=x, P=0u
So that, one obtains the linearizing transformation
t=x, u=uw. (53)

From Corollary 2.3, the coefficients 7, w, d,B and 7 of the
resulting linear equation (3) are

=0, 0=0 a=0, =0, 5=0.

Hence, the nonlinear equation (51) can be mapped by trans-
formation (53) into the linear equation

u® =0.

So that,

u = Cy + Cit + Cot? 4 Cst?, (54)

where Cy, C1, Cy and Cj are arbitrary constants. Substituting
equation (53) into equation (54), we get

w2 = Cy + Chz + Coz® + C3a®.
So that,
w=(Cy+ Crz + Cyz® + Cgl‘S)i.
Hence, the original nonlinear solution is

. 1[ Ci +2Cx + 3035U2
2 Co+ Ciz + Crx2 + C323

]

Y

Example 3.2: Equation in the article [17]
e The significance of the problem
In [17], Euler and Euler considered the equation

y/// _ a1yy” _ a2y12 _ a3y2y/ _ a4y4 _ O, (55)

where a; are constants. They found that this equation can
be linearized to " = 0 under a generalized sundman
transformation.

e Applying the obtained theorems to the problem

Let us consider the nonlinear third-order ordinary differential
equation (55), under the Riccati transformation y = “Tw/,
equation (55) becomes

wWw? — W aayw? — 4w

“w/2a2a3w—|—3w”w/2aa1w

+ 20" W aasw + 120" W% w — watay

+ wa?as — 2w'taa; — wtaas — 6™ = 0.

n, r 2

ww 2

— w"aasw?

_ 3(.«)//2(4]2 —w

(56)

It is an equation of the form (5) in Theorem 2.1 with the
coefficients

4 3 3
A, = Hawt3) g p a0+
3w w
2(a%ax? + 9 18
Cy = (a*as® + 9aas + ),01:0,00:(),
3w?
D alas® + 18a2%as? + 99aas + 162
g = —

27w3 ’
Ds=0, Dy =0, D; =0, Dy = 0.
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One can check that the equations (10), (13), (15), (17),
(18), (20) and (23) in Theorem 2.2 are satisfied. Now,
the equations (11), (12) and (14) are satisfied when the
followings conditions hold, that is

a4 = —, a3 = ————, (4 = aj

1= , U3 — , 4 — 27
Applying Corollary 2.3, the linearizing transformation is
found by solving the following equations

(aaz + 3)1.,

?/wa = - 30

Y =0, (57)

One can find the particular solution for equations in (57) as

aag

PY=w 3.

Y=,

So that, one obtains the linearizing transformation

aag

)

t=x, u=w" (58)

From Corollary 2.3, the coefficients 7, w, d,B and 7 of the
resulting linear equation (3) are

7=0 =0 a=0,8=0,7=0.

Hence, the nonlinear equation (56) can be mapped by trans-
formation (58) into the linear equation

u® = 0.

So that,

u = Cy + C1t 4 Cot? + Cst3, (59)

where Cy, C1, Cs and C'5 are arbitrary constants. Substituting
equation (58) into equation (59), we get

w_% =Co+Cix + 02562 + 03.’173.
So that,
w = (CO —+ Cll‘ + ngz —+ CgIS)_%.

Hence, the original nonlinear solution is

3 Cl + 202.1‘ + 3031‘2

y= _a Co+ Ciz+ Cox? + 632123

Example 3.3: Equation in the article [18]
e  The significance of the problem
In [18], Guha, Choudhury, and Khanra proved that Painlevé-
type differential equations of the third-order in the polyno-
mial class must take the form

"+ Ky + Ks(2)y” + Kay'? + (Ksy®
+ Kg(z)y + K7(2))y + Kyy* + Kg(x)y®
+ Ko(2)y? + Kio(2)y + Kui(z) = 0, (60)
where K;,7 = 1,..,4 are certain rational or algebraic
numbers and K;,j = 5, ..., 11 are locally analytic functions
of the complex variable x.

e Applying the obtained theorems to the problem

Let us consider the nonlinear third-order ordinary differential

’
aw

equation (60), under the Riccati transformation y = ¥,

equation (60) become

"'W'aszKl o 4w///wlaw2

w(4)aw3 +w
+ " aw Ky + w'"?a?w? Ky — 3w aw?

n, 12 3 ",o12 2 "o12 2
+ w'wa’wKs — 3w wa‘wK, — 2w w a*wksy
+ 120" W% aw + W' w' ®w? K¢ — 3w" W' aw? K
+ w"aw‘3K7 +wtatKy, — w'4a3K3 + 20w a’ K,
+ W’ Ky — 6w'ta + wPaPwKy — wla?wKg
+ 208 awKs + w?a?W? Ky — w?aw? K,

+wawd Ko+ wiKq; = 0. (61)

It is an equation of the form (5) in Theorem 2.1 with the
coefficients

4(aKy — Ky —
A1:M,A0:K5,BO:M,
3w w
2(a*K5? — 9a K, + 18) Ks(aK; — 3)
Cy = : O = 2R
3w w
3K,% — 1842 K52 Koy — 162
CO:K7,D4:a 2 8a“ K" + 99a Ko 6’
27w3
Dy — K5(a2K22 —9aK, — 3)7 Dy = K7(CLK2 — 3)7
3w 3w
Kllw

Dy = Kyg, Dy = .
a

One can check that the equations (10), (16), (18), (20) and
(23) in Theorem 2.2 are satisfied. Now, the equations (11)
- (15) and (17) are satisfied when the followings conditions
hold, that is

oo M o 2K K
1= 3 B 3 — 3 ) 4 — 277
K52K Ky K.
K¢ = KoKs, Kg = 29 5,K9:%-

Applying Corollary 2.3, the linearizing transformation is
found by solving the following equations

(62)

One can find the particular solution for equations in (62) as

aKgy )

—E

So that, one obtains the linearizing transformation

aKQ)

t=x, u=w"s (63)

From Corollary 2.3, the coefficients 7, w, d,B and 7 of the
resulting linear equation (3) are

D:K57(D:K77 &:Kl()y ﬂ:

Hence, the nonlinear equation (61) can be mapped by trans-
formation (63) into the linear equation

Ky K
u® + Ksu' + Ko + Kiou' + %u =0.

(64)
Example 3.4: Equation in the article [19]

e The significance of the problem

In [19], Ablowitz, Chakravarty, and Halburd studied a general

class of Chazy equation, defined as

46y —y?)?

Y 3/2_ =0. 65
Yy Yy + 3y 36 - 12 (65)
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This equation was first written down and solved by Chazy
[20]-[22] and is known today as the generalized Chazy
equation. Clarkson and Olver [23] showed that a necessary
condition for equation (65) to possess the Painlevé property
is that the coefficient of the right hand side must be some
a = ﬁ, provided that n # 6. It has been further shown
that the cases n = 2, 3, 4 and 5, correspond to the dihedral
triangle, tetrahedral, octahedral and icosahedral symmetry
classes.

In [18], Guha, Choudhury, and Khanra considered equa-
tion (65) the case n = 2. The third-order Riccati equation is
equivalent to

y" — 2y + 3y — (6y ; y*)? —0.
e Applying the obtained theorems to the problem
Let us consider the nonlinear third-order ordinary differential
equation (66), under the Riccati transformation y = “7“’/,
equation (66) becomes

(66)

8w wd — 16w W aw? — 320" W' w?
— 120" aw? — 24wW"?wW? 4+ 120" W% a*w
+ 720" W aw + 96w W?w — Wa?

—12w*a? — 44w a — 48w = 0. (67)

It is an equation of the form (5) in Theorem 2.1 with the
coefficients

2 2 2
Al:_wﬂ%zo7 BO:—M,
w 2w
3(a2+6 8
02:(a+—a+),01:070020,
2w?
34+120% +44a + 4
p, = izt Mt ds 0
8w3

Dy =0,D; =0, Dy =0.

One can check that these coefficients obey the conditions in
Theorem 2.2. Hence an equation (66) is linearizable via a
fiber preserving transformation. Applying Corollary 2.3, the
linearizing transformation is found by solving the following
equations

’(/}ww = _wW(a+ 2)-

2w

¢w =0, (68)

One can find the particular solution for equations in (68) as
1/) = wf% .

So that, one obtains the linearizing transformation

p=7,

wle

t=2z, u=—w (69)

From Corollary 2.3, the coefficients v, w, &, B and v of the
resulting linear equation (3) are

=0 &=0 a=0, =0, 7=0.

Hence, the nonlinear equation (67) can be mapped by trans-
formation (69) into the linear equation

u® = 0.

So that,

u = Cy + C1t 4 Cot? + Cst3, (70)

where Cy, C1, Cy and Cj are arbitrary constants. Substituting
equation (69) into equation (70), we get

w2 =Cy+ Crz + Cox? + Csa®.
So that,

w = (Co+ Cra + Caz® + C32%) 7.
Hence, the original nonlinear solution is

2(Cy + 2057 + 3C322)
Co + Cyz + Coz? + C323)

T

B. Linearization for Some Interesting Fourth-Order Partial
Differential Equations Under the Travelling Wave Solutions

Travelling waves are observed in many areas of science
such as a result of a chemical reaction in combustion [24] and
the impulses that are apparent in nerve fibres [25]. Travelling
wave solutions are derived from solving the corresponding
partial differential equations. These solutions are in the form

u(z,t) = H(z) ,where z =2 — Dt.

Here, the spatial and time domains are represented as x and
t, with the velocity of the wave given as D.

Example 3.5: Equation in the article [26]
e The significance of the problem
The symmetry reductions of a class of nonlinear fourth-order
partial differential equation given by

2
Ut :("Qu + yu )rx + VUlUgpgr + WUzt

+ QU Uy + BU 1, (71)

where «, 8,7, u, v and k are arbitrary constants. This equa-
tion maybe thought of as fourth-order analogue of a gen-
eralization of the Camassa-Holm equation, in which there
has been considerable interest recently. Furthermore, this
equation is a Boussinesq-type equation which arises as a
model of vibrations of harmonic mass-spring chain.

e Applying the obtained theorems to the problem

Let us consider the nonlinear fourth-order partial differential
equation (71), Of particular interest amoung solutions of
equation (71) are travelling wave solutions:

u(z,t) = H(x — Dt),

where D is a constant phase velocity and the argument x— Dt
is a phase of the wave.

Substituting the representation of a solution into equation
(71), one finds

(VH+MD2)H(4) +C¥H,H”/+ﬂH”2

+(2vH + k — D*)H" +2vyH"? = 0. (72)

It is an equation of the form (5) in Theorem 2.1 with the
coefficients

a B
YU vH D2 0 0, Bo vH + puD?’
WVH + k — D?
= = = D =
Cy=0,C1 =0, Co VH + D2 4 0,
Ds=0 Dy= —20 D=0, Dy=0
3 = ) 2_VH+/lD27 1 — ) 0 — .
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From Theorem 2.2 equation (72) is linearizable if and only
if

a=0, =0 =0, v=0 (73)

a=0, f=0, v=0, k=D? (74)
2 D?

a=4v, B=3v, v#0, n:%. (75)

In the cases of equations (73) and (74), these relations make
equation (72) becomes linear equation. Consider the case of
equation (75).
Casea:4u,6:3y,y¢0,mzw.

Applying Corollary 2.3, the linearizing transformation is
found by solving the following equation

Yy
D2+ Hv'

One can find the particular solution for equations in (76) as

e =0, Ygg= (76)

p=ax—Dt, =2D?uH+vH?

So that, one obtains the linearizing transformation
t =z — Dt,

@ =2D*uH + vH?. (77)

From Corollary 2.3, the coefficients v, @, @, B and 7 of the
resulting linear equation (3) are

2 _
7 =0, @:77, a=0, =0, 5=0.

Hence, the nonlinear equation (72) can be mapped by trans-
formation (77) into the linear equation

Iy
i@+ Ly =o. (78)
v
where v , v are arbitrary constants.
e Case 277 = 0, the solution of equation (78) is
a(t) = Cy + C1t + Cot® + Cst?, (79)

where Cy, C1, Cy and Cj are arbitrary constants. Substituting
equation (77) into equation (79), we get the solution of
ordinary differential equation

Co+ C (.T — Dt) + CQ($ - Dt)2
+03($ — ])t)3

2D?uH +vH? =

So that, the solution of partial differential equation (71) is

Co + Cl(l' — Dt) + 02(33 — Dt)2
+Cs(x — Dt)?’.

2D + vu? =

e Case 277 > 0, the solution of equation (78) is

a(t) = Co + C1t + Cocos(y/ 277{5) + Cysin(y/ 277{5), (80)

where Cy, C1, Co and C'5 are arbitrary constants. Substituting
equation (77) into equation (80), we get the solution of
ordinary differential equation

Co+C4 (.23 — Dt)

+Cy cos(\/?(x — Dt))
+Cs sin(\/?(x — Dt)).

2D?uH +vH? =

So that, the solution of partial differential equation (71) is

Co+ Ci(z — Dt)

+Cs cos(ﬁ(w — Dt))
+Cs sin(ﬁ(m — Dt)).

e Case 277 < 0, the solution of equation (78) is

2D%pu +vu? =

i(f) = Co+ Cii + CoeV o T+ Coe VI, (81)

where Cyy, C1, Cs and C'5 are arbitrary constants. Substituting
equation (77) into equation (81), we get the solution of
ordinary differential equation

2D2/,LH + vH? = Co + Cl(l‘ — Dt) + CheV F@=Dy)
+C3€7‘/ %(wat).
So that, the solution of partial differential equation (71) is

Co + C1(z — Dt) + CyeV 7 @=D)
4 Cye V3 @=D1),

2D%pu +vu? =

C. Linearization for Some Interesting Third-Order Partial
Differential Equations Under the Travelling Wave Solutions

Example 3.6: Equation in the article [27] and [28]
e  The significance of the problem
Members of the class of evolutionary PDEs

my + Augm + Bumy,, + Cuty + Dugyy = Kuyg,

where m = u — au,, is the Helmholtz operator acting on
the dependent variable u, function of the spatial variable z
and time ¢, and A, B, C, D, K are constants, have recently
attracted intense interest from both a mathematical and
physical perspective, following the derivation of a member
of this class (also known as the Camassa-Holm equation), in
the context of shallow-water wave dynamics.

For A=0,B=1,C=0,D =0, and K = 0, this is a
regularized Burgers equation

(82)

_ 2
Up + Uty = @ (Uggt + Ulgpy)-

In [27] Bhat and Fetecau showed that solutions of this
equation converge strongly to physically relevant weak solu-
tions of the Hopf equation u; +uwu, = 0 as o — 0, provided
the initial data u(x, 0) are in a suitable function space. Thus,
equation (82) has been proposed as an alternative to Burgers
equation u; + uu, = 0 in this respect.

In [28] Camassa, Chiu, Lee, and Sheu employed a two-
step iterative scheme for solving a class of PDEs involving
the Helmholtz operator. They investigated solution properties
of members of this class of PDEs.

e Applying the obtained theorems to the problem
Let us consider the nonlinear third-order partial differential

equation (82), Let u = wy, then equation (82) become
Wt + WiWgt = Oé2 (w.L.Lty + wtw.LLLt) (83)

Of particular interest amoung solutions of equation (83) are
travelling wave solutions:

w(x,t) = H(x — Dt),
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where D is a constant phase velocity and the argument x— Dt
is a phase of the wave.

Substituting the representation of a solution into equation
(83), one finds

D?H" + D*°H'H" — o*(D*H" + D*H'H®) = 0. (84)

It is an equation of the form (5) in Theorem 2.1 with the
coefficients

A=A =By=Cy=C1 =0, Co =—5,
Dy=D3=Dy=D; =Dy=0.

One can check that these coefficients obey the conditions in

Theorem 2.2. Hence, an equation (83) is linearizable via a

fiber preserving transformations. Applying Corollary 2.3, the
linearizing transformation is found by solving the equation

on =0, tum=0. (85)
One can find the particular solution for equations in (85) as
p=x—Dt, Y=H.
So that, one obtains the linearizing transformation
t=x—Dt, @=H. (86)

From Corollary 2.3, the coefficients v, @, &, B and 7 of the
resulting linear equation (3) are
1

p=0,0=-—, a=0, B=0,5=0.

Hence, the nonlinear equation (83) can be mapped by trans-
formation (86) into the linear equation

1 -
i — —u” =0. (87)
«
The solution of equation (87) is
’fL(E) = Ol + Ogt + 036755 + 046%5, (88)

where C', Cs, C'5 and Cy are arbitrary constants. Substituting
equation (86) into equation (88), we get the solution of
ordinary differential equation

H = Cy + Cy(z — Dt) + Cye~ a1 4 0yen(@=D1),
So that, the solution of partial differential equation (83) is
w = Cl + CQ((E — Dt) + Cge_é(w_Dt) + C4eé(z—Dt).

Hence, the solution of nonlinear equation (82) is u = wy ,
ie.

D D
u=—DCy+ = Che~ @D _ Z oy ea(@=Dt),
«@ «

IV. CONCLUSION

In summary, if a fourth-order ordinary differential equation
is not in one of the forms specified in Theorem 2.1, it
definitely cannot be linearized by the point transformation.
The form that satisfies corresponding conditions in either
Theorem 2.2 or Theorem 2.5 is linearizable via the point
transformation. The original solution can be attained by
applying the transformations derived from Corollary 2.3 and
Corollary 2.6. This method has been proven to be effective
for various fourth-order ordinary differential equations in
literature, as well as some third-order ordinary differential
equations and fourth-order partial differential equations un-
der specific conditions.

APPENDIX

A. The coefficients of equation (5)

Ay :(41/}211/)/1/’1/’ (A.T)
Ao = — (620 — ‘Piy)wy — 42 ay) [ (Pathy), (A2)
By :(3¢yy)/7/)yv (A.3)
Cy :(61/)1/7/7;)/%/7 (A4)
C1 =3((patyyV + Wuyy) oz — 6022tyy) [ (02ty), (A.5)
Co =((15¢%, + 03w — 4Puaar)y + 3((Pathuyy
+ 2¢0ay)Pe — (PathyV + 6Yuy)Pus)Pr)
/(@3y), (A.6)
Dy =thyyyy [y, (A7)
Ds =((patyyyV + Wayyy) Pz — 6022tyyy)
[ (@zthy), (A.8)
Dy =— (3((%%;/” + 6wzyy)90z - 5@:7090"/’1/,7/)503090
- (@i¢yyw + 30z ayyv + 6¢a:xyy)90i
+ 40002 Pathyy)/ (P2, (A9)
Dy =((3((¢xtpyv + 1082y )P — 5Pratpy) Pz
— (P30 + 602 ayV + 1802y )02 Prn
+ (P3hya + 203 Yayw + 3putayr
+ 477[}303?962!)902: - ((‘Pﬂ/}yy + 87/’-%11)90%
— 10020V )PaoatPs — PazacPatly)
/(@arty), (A.10)
Do =(((P2%2ew + ©x¥uzal + Vuea
+ (BY +7)92)e7 + 3(patper
+ 500) g — (Putaw + 3¢uat)p0
+ 600z) Pz + (10020 — P30) s
— 400 )Paaa) Pa (1505, — Poa
+ Paasay)Vs) [ (P30y)- (A1)
B. The coefficients of equation (6)
Fy =((pyvA +4Ay)py — 100y, A) /(0 A), (B.1)
By =(2((2(A0 + Ay = 5r,A) + p,0rA)g,
— 10¢yyrA))/(pyA), (B2)
Fo =(—(2((5ryA —2A,)r + 51, A)
— pyrr?A)py + 100,72 A)) /(9 D), (B.3)
Hy =3(10¢y, A — ‘PiVA — 4oy Ay)/(0yA), (B.4)
Hy =—3((5A; +3A,r — 25r, A
+ 20, vrA)py — 200y, A) [/ (0yA), (B.5)
Hy = — 3(((pyvr? — 157, — 107,7)A + (54,
— Ayr)r)ipy — 10‘Pny2A)/(<PyA)7 (B.6)
Ji = — (10@pyyy 0y A — 459032,yA + G@yygoflz/A
+ 300y py Ay — <p?;wA — 3(,02Ay1/
- 6¢§Ayy)/(%2/A)7 (B.7)
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J3 =((6(2(Asy + Ayyr — 5ryAy)
—5ryyA) + (3(Ag + 3Ayr —4ry, Ay
+ 4cpyer)<py)g0§ —6((5(Az +3Ayr
—dryA) + dpyvrA)py — 300y, TA) Py,
- 4O@yyy@y7"A)/(<P12,A)a
Jo =3((2(Asz + Ayyr® + 40,1 — 5(2A,
+ 3Ayr — 51y A)ry — 107y, T A — 5rg A,
— 5rpyA) + (((3(Ag + Ayr) — 10r, A)r
—2r, A + 2<pywr2A)goy)<p§
—2((5((3(Az + Ayr) — 10r,A)r
— 21, A) + 60, vr? A)py — 450,12 A) @,
- Qo@yyy@yrzA)/(WzA)a
J1=—((2((5(3(3A, + Ayr) — 1dryA)ry,
— 6(Agyr + Agz) + 207y, rA)r
+5(3(Ag + Ayr) — 16ryA)ry
+ 575 A 4+ 2075, A) — (3((3A,
+ Ayr — 8ryA)r — drg Ay
+dpywr?A)pyr)ey + 6((5((30:
+ Ayr — 8ryA)r — 4drgA)
+ 4oy vr? A)py — 300y, T2 A)py,T
+ 4O@yyy5"yr3A)/<‘P§A)a
Jo = — (((2((5ryyrA — 3Azz)1 + Bry A
+ 5rgytA) — 5(Try A — 6A,)ryT)r
—5(2(TryA —3A,)r + 9ry A)ry,
+ (3((2ryA — Ay)r + 2r; A
— goywrzA)apyrQ)goZ —(32(5((2ryA
—Ay)r+2r,A) — goyW'QA)cpy
+ 1590yy7"2A)<Pyy - 10<Pyyy<PyTQA)T2)
/(aA),
K7 =— (@yyyy@zwy — 100yyy PyyPythy
+ ¢yyy@3¢yy + 4‘Pyyy‘P32;¢yy
+ 1505, 0y — 3¢5, @ubyr — 1507 0y iy,
+ Wyy¢§¢yw + 3‘Pyy90§/¢yyy
+ GQPyy(PgQ/wyyy - 9025111 - 8073'7 - ‘Pgwya

(B.8)

(B.9)

(B.10)

(B.11)

- ¢z¢yyw - @31/1%91/ - ‘Pz%yyy)/(@zA)a (B.12)

Ke :((7%031/’110”’ —4Ayyy +7(BY + ’Y)‘PZT
+ (Thyywr — ozA)gag + (Tyyyvr
- 2Ay‘*’)9‘7§ + (Tyyyyr — 3Ayy”)¢y)@2
— ((74,031/@@07" + 2lgozwyyl/r — 3g0§wA
+ 420y yyyr — 120, Ayv — 30A,, )2
+ 105(pythyr — A)goiy — 3(7%31%”“
=304y + 5(Tthyyr — vA)y)Pyyy) Pyy
— ((74,051/1er — 20y + 4(Thyyr
- VA)‘Py)SOy - 10(730y¢y7”
— 6A)0yy)yyypy — (Toythyr
- 5A)@yyyy@§)/(¢2A)v

(B.13)

K5 =

K3 =

— (((3((Agy + 5Ayyr — 41y Ay — 21y, A)v
— Tyyyyr?) + ((Az + 11A,r — 3r,A)w
— 21y vr? = 3(T((BY + 1)y

+ 7/)y0‘)<ﬂyr + Thyywr — 2O‘A)90yr)¢y)90y
+ 2(3(Asyy + 3Ayyyr — 5ryAy,

— 5ryyAy) — 5TyyyA))<P2 =3(((2((Az

+ 1A, — 3ry Ay — 21¢,,,77)

— (Tpyhywr + 21y vr — 6WA) 7))y

+ 10(Agy + 5Ayyr — 4r, A, — 2ryyA))<p§
—3((5(As + 11Ayr — 3ryA) — (Tpythyvr
+ 359y — 10UA )y 1)y + 35(0y1yr

= 2A)@yy)yy)pyy — (10(Az + 11Ayr
— 3ryA) — 3(Toythyvr + 289y, r

— 8VA)y 1)y + 30(Ty 1y

- 12A)90yyr)90yyy50y + 3(790?;7/’?47'

- 10A)@yyyy‘ﬁ§r)/(@gA)v (B.14)

= — ((((Agz + 31Ayr* + 13047 — 8(A,

+ 6Ayr — 2ry A)ry — 267, 1A — 41 A,
— Ay AV — 3507y + 2(457,, 7, A
— 107y, Ay — 557y Ayr + 50r§Ay

— 20ryAgy — 50Ty Ayyr + 11A 7

+ 2040y + 17Ayyyr2 — 207y rA

— BrpAyy — 10r,y Ay — 5rgyy A)

+ (((5(Ag + 5Ayr) — 14r,A)r — rpy A)w
- 35wyyyy7"3 = 5(7((BvY + '7)()01/

+ Yya)pyr + Ty wr — 3O‘A)90y7”2)3033)902
— ((10(Aps + 31A,,7% + 13A,,r

—8(Ay +6A,r — 2r,A)ry,

— 261y rA — drg Ay — 41y A)

+ (6(((5(Az +5Ayr) — 14ryA)r —ry Ay
— 35ty 1) — 5(Tpythywr + 214y, vr

— 9wA)pyr?)i0y )¢l — 15((3((5(As
+5A,1) — 14ry A)r — rp A) — (Toyhyvr
+ 35ty — 151/A)cpyr2)goy + 35(pytyr
- 3A)‘Pyy7"2)‘;0yy)§0yy = 5((2((5(A

+ 5A,r) — 1dr,A)yr —r,A)

— (Toythyvr + 28y, r — 120A)pyr?) g,
+ 10(7ey 0y — 18A) 00y T%) Pyyy Py
+5(Toythyr — 15A)‘Pyyyy§0§7"2)/(%02A)7
— (((13A42y + 350, 7°)7 + Arza

+ 31A44,7% — 5(3A4 + 264,77

+ 23405, — (154, +49A,r

— 25r, A)ry)ry — 5(13A, + 32A,r

— 507y A)ryy T — 657y, T2 A — 5(3A,,

+ 50y — 161y Ay — Tryy D)y — 5rypg Ay
— BrpayA — 5(3A, + 11Ayr — 157, A)ryy,
— 3075y, T A + (((2(2A 40 + 17TA, 72

+ 11A,,7) — (294, + T5A,r — 51y A)ry,

(B.15)
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— 457, rA)r — (3A, + 13A,7

— 13ryA)ry — rpg A — 1drg,rA)v

- 35wyyyyr4 + (2((5(As + 3Ay7)

— 13ry A)r — 2r,A)w — 351/1yyym"3

= 5(7((BY +7)py + Yya)p,r

+ Thyywr — 4aA)<pyr2)cpyr)<py)go§

— ((10((2(2A 4z + 17Ayr? + 11A,,7)

— (29A, + T5A,r — 51r, A)ry,

— 457, rA)r — (3A, + 13A,r

— 13ryA)ry — oA — 1dryyrA)

+ (6(2((5(Az + 3Ayr) — 13r,A)r

— 2, A — 359, 7°) — 5(Tpyabywr

+ 219y v — 12wA)<pyr2)<pyr)<p§

—15((6((5(Ag + 3Ayr) — 13r,A)r

—2r, A) — (Tpyhyvr + 35y,

— 200A) )0y + 35(pythyT

- 4A)‘Pyy7“2)50yyr)50yy —5((4((5(As

+3Ayr) — 13ryA)r — 2r;A)

— (Toyhyvr + 281y, r — 161/A)g0y1"2)g0y

+ 10(Tpy by T — 240) 0y T2)Pyyy PyT

+5(Toyyr — QOA)‘pyyyy@ZT3)/(SﬁgA)7
Ky == ((3((5A4ay + TAyyyr®)r + Agay

+ TAyyr?) — (3(13A4, + 287,17

+39A,,7) + (204r,A — 161A,

— 217Ayr)ry)ry — (192, + 116A,r

— 264r, A)ry,r — 54ryyyr2A)r

— (3(2A4z + TA,,r? + 11A,,7)

+ (171ry A — 64A, — 140A,r)r,,

— T2ryyrA — 181, Ay )1y — (44,

+ 1A — 217y A)rpy — 12745, 7A

— Teaa D — ((37TA4 + 53A,r — 1507, A)r

— 337, A)ray — 3370y, T2 A + (3(((2A 42

+ TAyy 1% + 62,1 — (13A, + 19A,r

—20ryA)ry, — 13ryyrA)r2 — ((3A,

+5Ayr — 11r, A)r — rp A)ry — 1aprA

- 6Tmyr2A)V - 71/’yyyyr5) + (2((5(As

+2A,r) — 12ryA)r — 3ry A)w

— 21y vr® = 3(T((BY + 1)y

+ Yya) o, + Ty wr

- 504A)<Py7’2)90y7°2)90y)90§

= 3((10((2A4z + TAyr? + 64,7

— (13A, + 19A,r — 207, A)ry,

— 137y, rA)r? — ((3A, + 5A,r

— 11y A)r — raA)ry — raprA

— 6172 A) + (2(2((5(As + 2A,7)

— 127, A)r — 3r, Ay — 214h,,, 1)

— (Toyhywr + 219, vr

— 15wA)py 1)y r?) ey — 3((10((5(A,

+2A,r) — 12ryA)r — 3r, A) — (Toyhyvr

(B.16)

+ 35ty — 250A)p,1r?) 0,

+ 35(90y1/}yr - 5A)@yyr2)¢yyr2)@yy

— ((20((5(Ag +2Ay7r) — 121, A)r

—3rzA) — 3(To by vr + 28y,

—200A) )@y + 30(Tpy 1,

— 30A) @y ) Pyyy Pyt + 3(Toythyr

= 258)@yyyy ") /(25 ), (B.17)

K1 = — (T(Agay + Ayyym®)r + 30400

+ TAuyyr? — (3304, + 28A,,7°

+ 4947 + 2(59r, A — 56A,,

— 20, 1)ry)ry — (434, + 4241

— 1287y A)ryy 1 — 237y, 7> A)r?

— (12845 + TAyy 1% + 214,

+ 2(86r, A — 49A, — 35A,r)ry,

— 497y, rA)r + (851, A — 15A,

—21A T)ry)re — ((8AL + TA,r

— 321y A)r — 107, A)ryy — 9rmyr2A

— 2rpaar A — (294, + 21A,r — 951y A)r
— 467, A) ey — 1675y A + (444
+ TAy %+ TALr — (234, +21A,r

— 311y A)ry, — 1Ty, rA)r? — (94,

+ TAyr — 2TryA)r — 6rzA)ry

— 3rpaTA — IOTxyT’QA)V - 71/1yyyyr5

+ ((BA, + TAyr — 117, A)r — dry A)w
- 7’(/Jyyym“3 = (T((BY +7)py + Pya)pyr
+ Tyywr — GQA)SDyTz)SDyTQ)@yT)SDi

— (10((4A4s + TA yr* + TAL,r

— (237, + 21A,r — 31r, A)ry,

— 177y rA)r? — (94, + TA,r

— 2Try A)r — 6rg A)ry — 3rg,rA

— 107,72 A) + (6(((5A, + TA,r

— 1y A)r — 41, A)v — Ty 1)

— (Toyhywr + 214y vr

— 18wA )y %)y 12 )¢y — 3((15((54,

+ 7TAyr — 11ryA)r — dry A) — (T, hyvr
+ 35ty — 30UA) 0,720y + 35(0y T
— 68)0yy )y )yt — (10((5A,

+ 7TAyr — 11ryA)r — dry A) — (T hyvr
+ 281y, — 24V A)py1r?) 0,
+10(Tpy 7 — 368)0yy 1) Pyyypyr”

+ (Toyhyr — 30A)¢yyyy¢§r5)/(9@zA)a (B.18)

Ky :(((((2(7"”1/ + 2ryny2)T + Tzaa

+ 3ruyy ) A + 3(3A, + 24,7

— 8y A)ryyr?)r — (107, + 11r,7r)A

— (4A; + Ayr)r)res — (1315 + 207, 1)A
— (TAz 4+ 3Ay7)r)reyr + (9D,

+ 4Dy + TAGyr — 2(13A, 4+ 6A,r

= 127y A)ry )ryr? — (Dgay + Dyyyr®)r
+ Az + Ay m)r?)r — (2((17A,
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+ 5A,r — 23ry A)ry + 61y, TA) — (674,

+ Ayyr? 4+ 38,y7))r? — (5(3ry + 8ryr)A
—3(5Ag + Ayr)r)ry)re + ((rae + 3ryyr2
+ 2rgyT)A + (5A; + 3A,r — 61y A)ryr

— (A + Ayyr? + Apyr)r)r — (37,

+ Tryr)A — (3A; + Ayr)r)ry)v + (12
+2ryr)A — (Ay + Ayr)riw + 1/)yyy1/7’3

+ ((BY + 1)y + Yya)pyr + yywr

- O‘A)‘PyTQ)‘Py + wyyyyrg)TQ)@yTQ)‘Pg

— (((10(((rge + 3ryyr2 + 2ryy 1) A+ (5A,
+3Ayr — 6ryA)ryr — (Agg + Ayyr2

+ Agyr)r)r — ((3ry + Tryr)A — (3A,

+ Ayr)r)ry) + (6(((r + 2ryr)A — (A,

+ Ayr)r)v + wyyyr?’) + (3(hyyvr — wA)

+ ¢y¢ywr)@yT2)Wyr2)%2, = 3(((5(¢hyyr
—VA) + oy vr) o, + 15((ry + 2r,7)A
— (Az + Ayr)r)) oy — 5(pythyr

- 7A)90yy7”2)90yyr2)90yy + ((((4(yyr —vA)
+ gpywyur)wyr2 +10((rg + 2ryr)A — (A,
+ Ayr)r)) ey — 10(pyhyr — 6A)‘Pyy7ﬁ2)%0yyy

+ (pythyr — 5A)‘Pyyyy@y7’2)SDyTQ)TQ)/(@gA)- (B.19)

C. Equations for Theorem 2.5 in Section II.

w :(10g0yyyg0yA2 + 15<p§yA2 — 240y Py Ay A
+ 6y y FaA® — 602 Ayy A + 1202 A2

—3er Ay Fo A + 02 J4A%) [ (9 A?), (C.1)
Fuyy = — (FiyFy — 40Fy,,, — 16Fy, Fy + 20Fy,,r

+ 40Fy, 1y + 14Fy, For + 20J4, — 20J 4,7

+ 147, F3 — 40r,J,)/10, (C2)
Fop =(12Fy,r — 3F1 Fy + 657 + 473

—16.J47) /12, (C.3)

Fiy =(60F1yr — 36 FoFy — 15F7 + 661 Fyr

— 36F2r? +40.Jy — 80J3r + 80.J,7%) /60, (C.4)
Fow =(60Fy,r — 51FyFy + 66Fo For + 36F7r

— T2F, For® 4+ 36 F3r3 + 60.J; — 80.Jor

+ 80J31% — 80.J41%) /60, (C.5)
Jo =(9F} — 18FyFyr + 18Fy For® + 9F2r?

— 18Fy For® + 9FFr* + 20,7 — 20Jo72

+ 20373 — 20.J4r1) /20, (C.6)

gl :(<Pyyyy90y¢yA2 + 1030yyy90yy1/’yA2
- 6<Pyyy‘»0y¢yyA2 — 4pyyypythy Ay A
+ @yyyﬁpywyFbAQ - 12<P32;ywyAyA
+ 39012/y1/}yF2A2 - 490yy90y¢yyyA2
+ 120y 0y thyy Ay A — 390yy90y¢ny2A2
— 6pyypythy Ayy A+ 12@yy@y¢yA32/
— 3pyypyty Ay oA + @yy@ywyhAQ
- ¢25¢A2 - @Z%OAQ - SozwyyyyAQ

+ 4@;2;¢yyyAyA - ¢§¢yny2A2
+ 605 Uy Ayy A — 1202 1)y, A2
+ 30ty Ay Fa A — @2y, JAA?
+ 0y K7A%) (95 A?),
a =(50yyyy Py A% + 100y, 0y A
— 160y 0y Ay A? + Ay 0y Fo A®
—12¢0, A A? 4307 FoA®
— 180,y Ay A% + 3650yy30yA32}A
- 990yy90yAyF2A2 + 3‘Pyy‘PyJ4A3
— 4ap§AyyyA2 + 24302AyyAyA
— 302 Ay, FoA” — 2402 AD
+ 60 A2 LA — 207 A, T4 A
— oy KeA® + Tpl K7rA®) /(95 A%),
Jayy =(216F1, Fyy + 54F1, Fy — 48Fy,Jy
+ 360 F2,, 7y + 90F,, Fy — 180Fy,, For
— 432F3,r + 324Fy,r, Fy + 189F,, F\ F)
— 486 Fp, F5 1 — 1925, J5 + 864F, Jyr
— 60.J3 Fy + 720 J40y) + 180J4, F>
— 240J4yy7r — 1200.J4y7, + 60.J4, For
+ 720K, — 720K, 7 — 5040K 7,7
+ 5040 K7, 7% + 361, Fy — 4327, FyJ4
— 21607, K¢ + 151207, K71 + 504 Fy K7
+ 36, F3 — 102F, FoJy — 504F, Ky
— T2F}r — 48F2J3 + 396 F2 Jyr
+ 504 F, K7r? + 136.J3.J4 — 544.J37)/120,
B :(4‘PyyyyyA4 - 16‘PyyyyAyA3
+ 490yyny2A4 - 24‘PyyyAyyA3
+ 480y AZA® — 1200, A R A
+ 430yny4A4 - 1690yyAyyyA3
+ 960y, Ay Ay A% — 1200, Ay, Fo AP
— 960y, AJA + 2400, A2 F A?
— 8y Ay uA® — 4o, KgA*
+ 2830ny7rA4 — 4<pyK7xA4
+ 4apyK7yrA4 — 4<pyAyyyyA3
+ 320y Ayyy Ay A% — 4o, Ay, Fo A?
+ 24, A7 A? — 144, A AZA
+ 24, Ay Ay Fa A% — 4o, A, JA AP
+ 960y Ay — 240, AJFL A
+ 80y A2 J4A? + 4o, Ay K A®
— 280, A, K71 A3 — o, Fy K7 A*
+ 2npyF2K7rA4)/(4<p2A4),
Jizyy = — (36 F1y Fayy + 162Fy, o Fy
— T2FyJuy + 36F, F3
— 168Fy, FoJy — 72F;, Kg
— 168 F, Krr — T2Fy, Foyr
+ 144 Fpy 1y Fo + 54F5,, F1 Fy
— 108Fyy, Fir — T2Fy,, Js
+ 288Fyy, Jyr + 432F3, 1,
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(C7

(C.8)

(C9

(C.10)
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+ 108F3, Fy — 540F5, For

— 144Fy, J3, + 528 Fo,, Jys

+ 192 F, Juyr + 324 F5, 1, F3

— 1008 Fpy 1y Jy + 162F, Fy F3

— 132F,, Fy Jy — 396 Fy, Fyr

— 180F3y FaJ3 + 1320F,, Fy Jyr

+ 144 Fy, Kor — 336 Fy, K71

— 36J3, 5 + 176J3,.J4

+ 12040y Fy + 132J4, F3

— 4324, Ty — 2404y,

— 9604,y — 1204, For

— 76847y Fy — 138.J4, F1 Iy

+ 288.J4y F31 + 184.J4y, J3

— 1008J4y Jar + 960K 6,

+ 240K, Fy — 960Ky, 7

— 3840 K¢, 7, — 240K, For

—1920K 7,7 — 2400 K7,

+ 2880K 7,1, — 600K, I

— 480K, For + 4320 K7,,r?

+ 24000K7, 7,1 + 432 K7, Fy

+ 168 K7, P17 + 912K, For?

+ 201607, K7 + 1728r, F1 K7

+ 367, Fy — 2647, F3.J4

— 1248r, Fy K + 52801, Fy K7
+160ry J; + 408 Fy Fo K7

+ 150F2 K + 27TF, Fy — 120F, F3J,
— 168Fy Fy K + 1681, Fy K7

— 54FYr — 36F3 J3 + 384F3 Jyr

+ 336 F5 Kor — 1344F3 K7r?

+ 160FyJ3.Jy — 640FyJ 31 — 400.J, K7
+ 224 J3 K — 368J3 K71 — 896.J, Kgr
+ 3872J4 K712 + 672Fp, K7)/240,  (C.11)
(4Jyyr — F1Jy + 2Fy Jyr — 4K

+ 24Kgr — 84K712) /4, (C.12)

Ksyy =(672Fy, K7 + 36Fy, Fy,,

+162Fy Foy Fy — 216F1,, Jyy
+ 3651, Fy — 144F1, FyJy

— 216F1, Kg + 840F 1, K77

— T2F5y, Foyr + 144Fy,,r, Fy
+ 54Fyy, [y Fy — 108 Fy,, Fyr
— T2F3yyJ3 + 288Fyy, Jur

+ 432F3,r, + 108F5, F

— BA0F3, For — 144F,, Js,

+ 1008 Fyyy Juyr + 324 Fy, 1, Fy
— T68FyyryJs + 162F,, F1 Fy
— 204Fp, Iy Jy — 396 F5, Fir

— 180Fy, FyJ3 + 1416 Fy, Fo Jyr
— 528F4y K5 + 3600F5, Ker

— 13440 F5, K71% — 36.J3, Fy

+ 963, Jy — 480J4,,7
— 60T 4y F1 + 1204, For

— 38441y Fy — 174J4, F1 Fy
+492J4, F3r + 192J4,, J3

— 1152Jy, Jur — 120K5, Fy

+ 960K65y + 240K, Fo

+ 480K,y — 960K, 7y,

+ 480 K, For — 1920 K7,

— 2400K 7, + 2880K 7,7,

— 600K 7, Fy — 480K+, For

— T20K7y,r° + 3840K 71,7

+ 432K7, Fy + 168 K7, Fyr

— 1608 K7y For® + 100807, K7

+ 17287, Fy K7 + 367, Fy

— 2287, F5 Jy — 3847, F Kg

— 7687, 2 Ko7 + 2407, J}

+ 408 Fy Fo K7 + 150F2 K4

+ 27TF Fy — 132F, F3J,

— 204F F5 K¢ + 420 Fy Fy Ko7

+ T8F\J; — 54Fyr — 36F5 Js

+ 408F3 Jyr — 132F3 K5

+ 1200FF K¢r — 4620 F% K712

+ 132F, J3.Jy — 684F, J2r

— 40015 K7 + 272J3 K5

— T04J3 K77 + 312J, K5

— 2960J, Kgr + 11768, K71%) /240,
— (30Fy, Fy + 36 F1, Fy — 36Fy, For
— 60 Loy, r? + 24F5, Fy — 36y, Fir
— 54Fy, For? — 40.J3,, + 40.J3,7

+ 80J4y1% — 361, Fy Fy + 367, Far
+ 407, J3 — 801, Jyr + 6 Fy F§

— 6FyJy + 9F2F, — 18F Fir

— 12 J5 4 24F Jyr — 6F3r?

— 10FyJy + 22F5J3r + 26 Fp Jyr?

— 60Ky + 180K5r — 180K 41>

— 420K+713) /60,

= (20Jay7 + 20J3,7 — 20J3,72

— 14FyJ3 + 28Fy Jyr — 5F1Jo

+ 19F, Jyr — 28F) Jyr? 4 10Fy Jor
— 24Fy J3r? + 28 Fy Jyr® — 120K
+ 360K 41 — 640K512 + 840K gr>
— 840K 1) /20,

= (60J1y7 — 40J3,72 + 40J3,7°

— 42FyJy + 42Fy J3r — T0Fy Jyr?

— 15F,Jy + 42F, Jor — 52F, J3r?
+ T0F Jyr® + 30Fy Jr — 42F, Jor?
+ 62F, J3r — T0FyJyr* — 600K,
+ 1080 K37 — 1380 K47 + 1700K 57>
— 2100K6r* + 2100K775) /60,
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[1]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

Ky = (3FjF, — 6Fj For — 6y Fir

+ 18Fy Fy For® — 12F Fir3 — 8Fy.Jy

+ 16FyJor — 24FyJ5r? + 32F, Jur®

+ 3F}r? — 12F For® + 15F F3r*

+ 8F Jir — 16F) Jor? + 24F, Jyr3

— 321, Jyrt — 6F3r° — 8y Jyr?

+ 16 Fy Jor3 — 24F, Jar* + 32F, J4r°

+ 160K, — 240K372 4 320K 472

— 400K 57* + 480K¢r° — 560K ,1r°%) /80,
= —(6F3 — 33F2Fyr + 48F3 Fyr?

+ 48F Fir? — 126 FyFy For® + 78 Fy Fir?
+40FyJr — 80FyJor? + 120Fy Jar®

— 160Fy Jyr* — 21 F3r® + T8 FE For?

— 93F F3r° — 40F, Jyr? + 80F, Jor

— 120F J3r* + 160Fy Jyr5 + 36 F31°
+40Fy J 13 — 80F, Jor 4+ 120F, J3r
— 160F5J47% — 400K57?% + 800K 573

— 1200K 47 + 1600K57° — 2000 K47°
+ 2400 K777 /400.

(C.17)
Ky

(C.18)
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