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Abstract—This research encompasses two distinct investiga-
tions into the linearization of differential equations. The first
study focuses on the reduction of nonlinear fourth-order ordi-
nary differential equations to general linear equations through
point transformations. Necessary and sufficient conditions for
linearization are derived, accompanied by a detailed procedure
for obtaining the linearizing transformations and the coeffi-
cients of the resulting linear equations. Illustrative examples
are provided to demonstrate the efficacy of the linearization
theorems in practical applications. In the second investigation,
attention is directed towards the completed linearization prob-
lem of fourth-order ordinary differential equations using fiber
preserving transformations, building upon the obtained results.
A computational program is developed to verify linearity based
on the obtained results. Furthermore, the research explores
various applications that meet the established linearization
criteria, including fourth-order ordinary differential equations,
third-order ordinary differential equations under Riccati trans-
formation, and third- and fourth-order partial differential
equations under traveling wave solutions.

Index Terms—linearization problem, point transformation,
fiber preserving, nonlinear ODE.

I. INTRODUCTION

D IFFERENTIAL equations, particularly those that are
nonlinear, play a crucial role in modeling complex

phenomena across various scientific disciplines. Unlike linear
equations, which maintain a straightforward relationship be-
tween variables, nonlinear equations introduce complexities
due to their non-proportional outputs relative to their inputs.
This nonlinearity often results in challenging equations that
are not easily solvable using conventional methods.

One powerful approach to tackling nonlinear differential
equations is to transform them into linear forms, where well-
established solution techniques can be applied. This process,
known as linearization, is a specialized aspect of the broader
equivalence problem. The equivalence problem asks whether
two differential equations, through a series of invertible trans-
formations, can be deemed equivalent belonging to the same
class of equations. Solving this problem involves determining
the appropriate transformations, identifying invariants, and
establishing criteria for equivalence.
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Linearization is a powerful technique used to convert
nonlinear ordinary differential equations into linear ones,
making them more tractable and easier to solve. The origins
of this method date back to the work of Sophus Lie [1],
who identified a class of second-order ordinary differential
equations that could be reduced to linear forms using point
transformations. He further demonstrated that any second-
order equation could be transformed into a linear equation
through contact transformations.

Following Lie’s pioneering work, Liouville [2] and Tresse
[3] expanded on the idea by employing relative invariants
of equivalence groups under point transformations to solve
equivalence problems in second-order equations. Their con-
tributions helped lay the groundwork for modern lineariza-
tion techniques. More recently, Suksern and Sawatdithep [4]
refined these approaches by reducing second-order differ-
ential equations to general linear forms and applying their
results to a range of nonlinear equations encountered in
various scientific fields. Moreover, Sinkala [5] discussed the
linearization of second-order ordinary differential equations
through point transformations, utilizing symmetries to derive
a general solution. This approach allows specific solutions to
be obtained from the general solution via suitable transfor-
mations based on the symmetries of the equation.

The study of linearization extended to higher-order equa-
tions when Bocharov, Sokolov, and Svinolupov [6] tack-
led third-order ordinary differential equations using point
transformations. Grebot [7] also investigated linearization for
specific cases of third-order equations, and Ibragimov and
Meleshko [8] advanced the field by introducing linearization
criteria for both point and contact transformations, focusing
on the Laguerre form. Afterwards, Al-Dweik [9] presents the
necessary and sufficient conditions for linearization of third-
order ordinary differential equations via point transforma-
tions, which involves the identically vanishing of specific rel-
ative invariants, ensuring equivalence to the normal simplest
form. Later, Al-Dweik, Mustafa, Mahomed, and Alassar [10]
addressed the linearization of third-order ordinary differential
equations using the Cartan equivalence method, providing an
invariant characterization and a procedure for constructing
equivalent canonical forms through point transformations
and auxiliary functions. Recent developments have contin-
ued to push the boundaries of linearization. Suksern and
Sookcharoenpinyo [11] introduced a new procedure for lin-
earizing third-order nonlinear equations, while Ibragimov,
Meleshko, and Suksern [12] showed that all fourth-order
equations that can be linearized by point transformations
belong to the class of equations linear in the third-order
derivative, again focusing on the Laguerre form. Afterwards,
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Lyakhov, Gerdt, and Michels [13] discussed algorithms for
checking the linearizability of nonlinear ordinary differential
equations, including fourth-order equations, through point
transformations. They utilize Lie point symmetry algebra and
differential Thomas decomposition to determine linearization
conditions and transformations. Later, Dutt and Qadir [14]
provided a classification for third-order ordinary differential
equations by using a generalization of contact transforma-
tions and then extended that work to fourth-order equations
using a generalization of the Lie-Bäcklund transformation.
They demonstrated that there are at least four classes of
fourth-order linearizable ordinary differential equations.

Despite these advancements, the complexity of nonlinear
equations poses significant challenges for linearization, par-
ticularly for higher-order systems. Many researchers have
focused on simpler cases, such as the Laguerre form, but
a comprehensive framework that covers more general forms
is needed for broader applications. Point transformations
provide a promising approach for tackling this challenge, al-
lowing fourth-order nonlinear ordinary differential equations
to be transformed into general linear forms. This method
has the potential to be applied to a wide range of nonlinear
equations found in nature, offering a versatile and effective
tool for solving complex differential equations.

II. FORMULATION OF THE LINEARIZATION THEOREMS

A. Obtaining Necessary Condition of Linearization

The first purpose of this research is to linearize the fourth-
order ordinary differential equations

y(4) = f (x, y, y′, y′′, y′′′) (1)

by using the point transformation

t = φ (x, y) , u = ψ (x, y) . (2)

The study starts with the necessary conditions for lin-
earization. We obtained the general form of equation (1) that
can be reduced to a linear equation via point transformation
(2). The general linear fourth-order ordinary differential
equation is written in the form

u(4) + ν(t)u′′′ + ω(t)u′′ + α(t)u′ + β(t)u+ γ(t) = 0. (3)

At the end, we attain two classes of equations candidating
for linearization.

Let t and u be new independent and dependent variables,
respectively. We get the following transformation of the
derivatives

u′(t) =
Dxψ

Dxφ
=
ψx + y′ψy

φx + y′φy
= P (x, y, y′),

u′′ (t) =
DxP

Dxφ
=
Px + y′Py + y′′Py′

φx + y′φy

=
∆

(φx + y′φy)3
[y′′ +

1

∆
(φyψyy − φyyψy)y

′3

+...]

= Q(x, y, y′, y′′),

u′′′ (t) =
DxQ

Dxφ
=
Qx + y′Qy + y′′Qy′ + y′′′Qy′′

φx + y′φy

=
∆

(φx + y′φy)5
[(φx + y′φy)y

′′′ − 3φyy
′′2

+...]

= R(x, y, y′, y′′, y′′′),

u(4)(t) =
DxR

Dxφ

=
Rx + y′Ry + y′′Ry′ + y′′′Ry′′ + y(4)Ry′′′

φx + y′φy

=
∆

(φx + y′φy)7
[(φx + y′φy)

2y(4)

−10(φx + y′φy)φyy
′′y′′′ + ...], (4)

where

Dx =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ y′′′

∂

∂y′′
+ y(4)

∂

∂y′′′

is the total derivative. Here ∆ = φxψy − φyψx ̸= 0 is
Jacobian of the change of variables (2). From equation (4),
we can see that the transformation (2) with the conditions
φy = 0 and φy ̸= 0 give two distinctly different candidates
for linearization.

For φy = 0, we replace all results in equation (3) and
derive the following equation:

y(4) + (A1y
′ +A0)y

′′′ +B0y
′′2 + (C2y

′2 + C1y
′

+ C0)y
′′ +D4y

′4 +D3y
′3 +D2y

′2 +D1y
′

+D0 = 0, (5)

where Ai = Ai(x, y), Bi = Bi(x, y), Ci = Ci(x, y) and
Di = Di(x, y) are arbitrary functions of x, y, as illustrated
in Appendix, equations (A.1)-(A.11).

For φy ̸= 0, we have done in similar way. Setting
r(x, y) = φx

φy
, we derive the following equation:

y(4) +
1

y′ + r
(−10y′′ + F2y

′2 + F1y
′ + F0)y

′′′

+
1

(y′ + r)
2 [15y

′′3 + (H2y
′2 +H1y

′ +H0)y
′′2

+ (J4y
′4 + J3y

′3 + J2y
′2 + J1y

′ + J0)y
′′

+K7y
′7 +K6y

′6 +K5y
′5 +K4y

′4 +K3y
′3

+K2y
′2 +K1y

′ +K0] = 0, (6)

where Fi = Fi(x, y),Hi = Hi(x, y), Ji = Ji(x, y) and
Ki = Ki(x, y) are arbitrary functions of x, y, as illustrated
in Appendix, equations (B.1)-(B.19).

Theorem 2.1: Any fourth-order ordinary differential equa-
tion linearizable by a point transformation has to be one of
the forms either equation (5) or (6).

B. Obtaining Sufficient Conditions of Linearization, Lin-
earizing Transformation and Coefficients of Linear Equation

B.1 The First Class of Linearizable Equations
In this case φy = 0, the transformation (2) becomes a fiber

preserving transformation, that is

t = φ(x), u = ψ(x, y). (7)
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For obtaining the sufficient conditions, one has to solve
the compatibility problem. Consider the representations of
the coefficients Ai, Bi, Ci and Di through the unknown
functions φ and ψ. We first rewrite the expressions (A.1)
for A1 in the form

ψyy = (ψyA1)/4. (8)

One can determine ν from equation (A.2) as

ν = (6φxxψy − 4φxψxy + φxψyA0)/(φ
2
xψy). (9)

Since φ = φ(x) we have νy = 0 yields

A0y = A1x. (10)

From equations (A.3), (A.4), (A.5), (A.7) and (A.8) one gets
the conditions

B0 =(3A1)/4, (11)

A1y =− (3A2
1 − 8C2)/12, (12)

A1x =− (3A0A1 − 4C1)/12, (13)
C2y =− (A1C2 − 24D4)/4, (14)
C1y =− (A1C1 − 12D3)/4. (15)

One can determine ω from equation (A.6) as the following

ω =(4φxxxφxψ
2
y + 3φ2

xxψ
2
y − 12φxxφxψxyψy

+ 3φxxφxψ
2
yA0 + 12φ2

xψ
2
xy − 3φ2

xψxyψyA0

− 6φ2
xψxxxψy + φ2

xψ
2
yC0)/(φ

4
xψ

2
y). (16)

Since φ = φ(x) we have ωy = 0 yields

C0y = −((3A0A1−4C1)A0−16C1x+12A0xA1)/32. (17)

From equations (A.9) one gets the condition

C1x =(12A0xA1 + 3A2
0A1 − 4A0C1 − 8A1C0

+ 32D2)/16. (18)

One can determine α from equation (A.10) as the following

α =(φxxxxψ
3
y − 4φxxxψxyψ

2
y + φxxxψ

3
yA0

+ 12φxxψ
2
xyψy − 3φxxψxyψ

2
yA0

− 6φxxψxxxψ
2
y + φxxψ

3
yC0 − 24φxψ

3
xy

+ 6φxψ
2
xyψyA0 + 24φxψxyψxxxψy

− 2φxψxyψ
2
yC0 − 4φxψxxxyψ

2
y

− 3φxψxxxψ
2
yA0 + φxψ

3
yD1)/(φ

4
xψ

3
y). (19)

Since φ = φ(x) we have αy = 0 yields

D1y =(36A0xA0A1 − 48A0xC1 − 48C0xA1

+ 192D2x + 9A3
0A1 − 12A2

0C1

− 36A0A1C0 + 48A0D2 + 32C0C1)/288. (20)

One can determine β from equation (A.11) as the following

β =− (φ4
xψ

3
yγ − 24ψ3

xyψx + 12ψ2
xyψxxψy

+ 6ψ2
xyψxψyA0 − 4ψxyψxxxψ

2
y

+ 24ψxyψxxxψxψy − 3ψxyψxxψ
2
yA0

− 2ψxyψxψ
2
yC0 + ψxxxxψ

3
y − 4ψxxxyψxψ

2
y

+ ψxxxψ
3
yA0 − 6ψxxxψxxψ

2
y − 3ψxxxψxψ

2
yA0

+ ψxxψ
3
yC0 + ψxψ

3
yD1 − ψ4

yD0)/(φ
4
xψ

3
yψ). (21)

Since φ = φ(x) we have βy = 0 yields

γ =((4((3ψxA0 + C0ψ + 6ψxx)ψy − 6ψxxxψ)ψxxx

+ ((4ψy −A1ψ)D0 − 4ψxD1 − 4ψxxC0)ψ
2
y

− 4ψxxxψ
2
yA0 + 4(4ψx +A0ψ)ψxxxyψy

− 4ψxxxxψ
2
y + 4ψxxxxyψyψ)ψ

2
y + 4(((2ψxC0

+D1ψ + 3ψxxA0)ψy − 6(4ψx +A0ψ)ψxxx

+ 4ψxxxψy − 8ψxxxyψ)ψ
2
y − 2(((3ψxA0 + C0ψ

+ 6ψxx)ψy − 18ψxxxψ)ψy − 3((4ψx +A0ψ)ψy

− 4ψxyψ)ψxy)ψxy)ψxy − 4D0yψ
4
yψ)/(4φ

4
xψ

4
y). (22)

Since φ = φ(x) we have γy = 0 yields

D0yy =(36A0xxA0A1 − 48A0xxC1 − 18A0xA
2
0A1

+ 24A0xA0C1 + 48A0xA1C0 − 192A0xD2

− 48C0xxA1 − 32C0xC1 − 288D0yA1

+ 192D2xx + 96D2xA0 − 9A4
0A1 + 12A3

0C1

+ 48A2
0A1C0 − 48A2

0D2 − 72A0A1D1

− 48A0C0C1 + 72A2
1D0 − 40A1C

2
0

+ 160C0D2 + 96C1D1 − 192C2D0)/1152. (23)

All obtained results can be summarized in the following
theorems.

Theorem 2.2: Sufficient conditions for equation (5) to be
linearizable via the fiber preserving transformation (7) are
equations (10), (11), (12), (13), (14), (15), (17), (18), (20)
and (23).

Corollary 2.3: Provided that the sufficient conditions in
Theorem 2.2 are satisfied, the transformation (7) mapping
equation (5) to a linear equation (3) is obtained by solving
the compatible system of equation φy = 0 and equation (8)
for functions φ(x) and ψ(x, y). Finally, the coefficients ν,
ω, α, β and γ of the resulting linear equation (3) are given
by equations (9), (16), (19), (21) and (22).

The following is an example of how to apply the theorem
that has been develop.

Example 2.4: Consider the nonlinear ordinary differential
equation [12]

x2y(2y(4) + y) + 8x2y′y′′′ + 16xyy′′′

+6x2y′′2 + 48xy′y′′ + 24yy′′ + 24y′2 = 0.
(24)

It is an equation of the form (5) in Theorem 2.1 with the
coefficients

A1 = 4
y , A0 = 8

x , B0 = 3
y , C2 = 0,

C1 = 24
xy , C0 = 12

x2 , D4 = 0, D3 = 0,

D2 = 12
x2y , D1 = 0, D0 = y

2 .

One can check that these coefficients obey the conditions in
Theorem 2.2. Hence, an equation (24) is linearizable via a
fiber preserving transformation. Applying Corollary 2.3, the
linearizing transformation is found by solving the following
equations

φy = 0, ψyy =
ψy

y
. (25)

One can find the particular solution for equations in (25) as

φ = x, ψ = x2y2.
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So that, one obtains the linearizing transformation

t = x, u = x2y2. (26)

From Corollary 2.3, the coefficients ν, ω, α, β and γ of the
resulting linear equation (3) are

ν = 0, ω = 0, α = 0, β = 1, γ = 0.

Hence, the nonlinear equation (24) can be mapped by trans-
formation (26) into the linear equation

u(4) + u = 0. (27)

The solution of equation (27) is

u(t) =(C0 cos
t√
2
+ C1 sin

t√
2
)e

t√
2

+ (C2 cos
t√
2
+ C3 sin

t√
2
)e

− t√
2 , (28)

where C0, C1, C2 and C3 are arbitrary constants. Substituting
the transformation (26) into equation (28), we obtain the
nonlinear solution is

x2y2 =(C0 cos
x√
2
+ C1 sin

x√
2
)e

x√
2

+ (C2 cos
x√
2
+ C3 sin

x√
2
)e

− x√
2 .

B.2 The Second Class of Linearizable Equations
In this case, the problem is formulated as follows. Given

the coefficients Fi,Hi, Ji and Ki of equation (6), find the
necessary and sufficient conditions for integrability of the
overdetermined system of equations (B.1)-(B.19) for the
unknown functions φ(x, y) and ψ(x, y).

Recall that according to our notations, the following
equations hold

φx = rφy, (29)
ψx = (φyψyr −∆)/φy, (30)

and

νx = (φxνy)/φy, (31)
ωx = (φxωy)/φy, (32)
αx = (φxαy)/φy, (33)
βx = (φxβy)/φy, (34)
γx = (φxγy)/φy. (35)

One can determine ν from equation (B.1) as the following

ν = ((10φyy + φyF2)∆− 4φy∆y)/(φ
2
y∆). (36)

Substituting ν into equation (31), one obtains the derivative

∆xy = (4((∆yy∆−∆2
y)r +∆x∆y) + (4∆y

− F2∆)ry∆+ 10ryy∆
2 − F2yr∆

2

+ F2x∆
2)/(4∆). (37)

Equation (B.2) provides the derivative

∆x = (20ry∆+ 4∆yr + F1∆− 2F2r∆)/4. (38)

Substituting equation (38) into equation (37), one gets the
condition

ryy = −(F1y − F2x − F2yr − ryF2)/10. (39)

From equations (B.3), (B.4), (B.5) and (B.6), one obtains the
following conditions

rx = (10ryr − F0 + F1r − F2r
2)/10, (40)

H2 = −3F2, (41)
H1 = −3(5F1 − 2F2r)/4, (42)
H0 = −3(6F0 − F1r)/4. (43)

One can determine ω from equation (B.7) as equation (C.1).
Substituting ω from equation (C.1) into equation (32), one
obtains the condition (C.2). Equations (B.8), (B.9), (B.10)
and (B.11) provide conditions (C.3), (C.4), (C.5), (C.6).
One can determine γ and α from equations (B.12)-(B.13)
as equations (C.7)-(C.8). Substituting α from equation (C.8)
into equation (33), and γ from equation (C.7) into equation
(35), one obtains conditions (C.9) and (C.10). Substituting
β from equation (C.10) into equation (34), one obtains
the condition (C.11). From equation (B.14), one obtains
condition (C.12). Substituting the relation J4x from equation
(C.12) into J4xyy in equation (C.11), one obtains condition
(C.13). From equations (B.15), (B.16), (B.17), (B.18) and
(B.19), one obtains the following conditions (C.14)-(C.18).

Theorem 2.5: Sufficient conditions for equation (6) to be
linearizable via the point transformation (2) are equations
(39), (40), (41), (42), (43), (C.2), (C.3), (C.4), (C.5), (C.6),
(C.9), (C.12), (C.13), (C.14), (C.15), (C.16), (C.17), (C.18).

Corollary 2.6: Provided that the sufficient conditions in
Theorem 2.5 are satisfied, the transformation (2) mapping
equation (6) to a linear equation (3) is obtained by solving
the compatible system of equations (29), (30) and (38) for
the functions φ(x, y) and ψ(x, y). Finally, the coefficients
ν, ω, α, β and γ of the resulting linear equation (3) are given
by equations (36), (C.1), (C.7), (C.8), (C.10).

Example 2.7: Consider the nonlinear ordinary differential
equation

16y′7y + 112y′6y + 336y′5y − 8y′4y′′

+560y′4y − 32y′3y′′ + 560y′3y − 48y′2y′′

+y′2y(4) + 336y′2y − 10y′y′′y′′′ − 32y′y′′

+2y′y(4) + 112y′y + 15y′′3 − 10y′′y′′′

−8y′′ + y(4) + 16y = 0.

(44)

It is an equation of the form (6) in Theorem 2.1 with the
coefficients

r = 1, F2 = 0, F1 = 0, F0 = 0,

H2 = 0, H1 = 0, H0 = 0, J4 = −8,

J3 = −32, J2 = −48, J1 = −32,

J0 = −8, K7 = 16y, K6 = 112y,

K5 = 336y, K4 = 560y, K3 = 560y,

K2 = 336y, K1 = 112y, K0 = 16y. (45)

One can check that these coefficients obey the conditions in
Theorem 2.5. Hence an equation (44) is linearizable via a
point transformation. Applying Corollary 2.6, the linearizing
transformation is found by solving the following equations

φx = φy, ψx =
φyψy −∆

φy
, ∆x = 0. (46)
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One can find the particular solution for equations in (46) as

φ = x+ y, ψ = y, ∆ = 1.

So that, one obtains the linearizing transformation

t = x+ y, u = y. (47)

From Corollary 2.6, the coefficients ν, ω, α, β and γ of the
resulting linear equation (3) are

ν = 0, ω = 8, α = 0, β = 16, γ = 0.

Hence, the nonlinear equation (44) can be mapped by trans-
formation (47) into the linear equation

u(4) + 8u′′ + 16u = 0. (48)

The solution of equation (48) is

u = C0 cos 2t+ C1 sin 2t+ tC2 cos 2t+ tC3 sin 2t, (49)

where C0, C1, C2 and C3 arbitrary constants. Substituting the
transformation (47) into equation (49), we get the nonlinear
solution

y =C0 cos 2(x+ y) + C1 sin 2(x+ y)

+ (x+ y)C2 cos 2(x+ y)

+ (x+ y)C3 sin 2(x+ y).

III. SOME APPLICATIONS

The second purpose is to find some applications which
satisfy the obtained theorems in section II. The obtained
results are as follows.

A. Linearization for Some Interesting Third-Order Ordinary
Differential Equations Under the Riccati Transformation

Example 3.1: Equation in the article [15]
The third-order member of the Riccati hierarchy is given by
Euler et al [15] as

y′′′ + 8yy′′ + 6y′2 + 24y2y′ + 8y4 = 0. (50)

Applying [16] one checks that the equation cannot be lin-
earized by a point transformation or contact transformation
or generalized Sundman transformation. Under the Riccati
transformation y = aω′

ω equation (50) become

ω(4)ω3 + 8ω′′′ω′aω2 − 4ω′′′ω′ω2 + 6ω′′2aω2

−3ω′′2ω2 + 24ω′′ω′2a2ω − 36ω′′ω′2aω + 12ω′′ω′2ω

+8ω′4a3 − 24ω′4a2 + 22ω′4a− 6ω′4 = 0. (51)

It is an equation of the form (5) in Theorem 2.1 with the
coefficients

A1 =
4(2a− 1)

ω
, A0 = 0, B0 =

3(2a− 1)

ω
,

C2 =
12(2a2 − 3a+ 1)

ω2
, C1 = 0, C0 = 0,

D4 =
2(4a3 − 12a2 + 11a− 3)

ω3
, D3 = 0,

D2 = 0, D1 = 0, D0 = 0.

One can check that these coefficients obey the conditions in
Theorem 2.2. Hence, an equation (50) is linearizable via a
fiber preserving transformation. Applying Corollary 2.3, the

linearizing transformation is found by solving the following
equations

φω = 0, ψωω =
ψω(2a− 1)

ω
. (52)

One can find the particular solution for equations in (52) as

φ = x, ψ = ω2a.

So that, one obtains the linearizing transformation

t = x, u = ω2a. (53)

From Corollary 2.3, the coefficients ν̃, ω̃, α̃, β̃ and γ̃ of the
resulting linear equation (3) are

ν̃ = 0, ω̃ = 0, α̃ = 0, β̃ = 0, γ̃ = 0.

Hence, the nonlinear equation (51) can be mapped by trans-
formation (53) into the linear equation

u(4) = 0.

So that,
u = C0 + C1t+ C2t

2 + C3t
3, (54)

where C0, C1, C2 and C3 are arbitrary constants. Substituting
equation (53) into equation (54), we get

ω2a = C0 + C1x+ C2x
2 + C3x

3.

So that,

ω = (C0 + C1x+ C2x
2 + C3x

3)
1
2a .

Hence, the original nonlinear solution is

y =
1

2
[

C1 + 2C2x+ 3C3x
2

C0 + C1x+ C2x2 + C3x3
].

Example 3.2: Equation in the article [17]
• The significance of the problem
In [17], Euler and Euler considered the equation

y′′′ − a1yy
′′ − a2y

′2 − a3y
2y′ − a4y

4 = 0, (55)

where ai are constants. They found that this equation can
be linearized to u′′′ = 0 under a generalized sundman
transformation.
• Applying the obtained theorems to the problem
Let us consider the nonlinear third-order ordinary differential
equation (55), under the Riccati transformation y = aω′

ω ,
equation (55) becomes

ω(4)ω3 − ω′′′ω′aa1ω
2 − 4ω′′′ω′ω2 − ω′′2aa2ω

2

− 3ω′′2ω2 − ω′′ω′2a2a3ω + 3ω′′ω′2aa1ω

+ 2ω′′ω′2aa2ω + 12ω′′ω′2ω − ω′4a3a4

+ ω′4a2a3 − 2ω′4aa1 − ω′4aa2 − 6ω′4 = 0. (56)

It is an equation of the form (5) in Theorem 2.1 with the
coefficients

A1 = −4(aa2 + 3)

3ω
, A0 = 0, B0 = −aa2 + 3

ω
,

C2 =
2(a2a2

2 + 9aa2 + 18)

3ω2
, C1 = 0, C0 = 0,

D4 = −a
3a2

3 + 18a2a2
2 + 99aa2 + 162

27ω3
,

D3 = 0, D2 = 0, D1 = 0, D0 = 0.
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One can check that the equations (10), (13), (15), (17),
(18), (20) and (23) in Theorem 2.2 are satisfied. Now,
the equations (11), (12) and (14) are satisfied when the
followings conditions hold, that is

a1 =
4a2
3
, a3 = −2a2

2

3
, a4 =

a32
27
.

Applying Corollary 2.3, the linearizing transformation is
found by solving the following equations

φω = 0, ψωω = − (aa2 + 3)ψω

3ω
. (57)

One can find the particular solution for equations in (57) as

φ = x, ψ = ω− aa2
3 .

So that, one obtains the linearizing transformation

t = x, u = ω− aa2
3 . (58)

From Corollary 2.3, the coefficients ν̃, ω̃, α̃, β̃ and γ̃ of the
resulting linear equation (3) are

ν̃ = 0, ω̃ = 0, α̃ = 0, β̃ = 0, γ̃ = 0.

Hence, the nonlinear equation (56) can be mapped by trans-
formation (58) into the linear equation

u(4) = 0.

So that,

u = C0 + C1t+ C2t
2 + C3t

3, (59)

where C0, C1, C2 and C3 are arbitrary constants. Substituting
equation (58) into equation (59), we get

ω− aa2
3 = C0 + C1x+ C2x

2 + C3x
3.

So that,

ω = (C0 + C1x+ C2x
2 + C3x

3)−
3

aa2 .

Hence, the original nonlinear solution is

y = − 3

a2

[
C1 + 2C2x+ 3C3x

2

C0 + C1x+ C2x2 + C3x3

]
.

Example 3.3: Equation in the article [18]
• The significance of the problem
In [18], Guha, Choudhury, and Khanra proved that Painlevé-
type differential equations of the third-order in the polyno-
mial class must take the form

y′′′ + (K1y +K5(x))y
′′ +K2y

′2 + (K3y
2

+K6(x)y +K7(x))y
′ +K4y

4 +K8(x)y
3

+K9(x)y
2 +K10(x)y +K11(x) = 0, (60)

where Ki, i = 1, ..., 4 are certain rational or algebraic
numbers and Kj , j = 5, ..., 11 are locally analytic functions
of the complex variable x.
• Applying the obtained theorems to the problem
Let us consider the nonlinear third-order ordinary differential

equation (60), under the Riccati transformation y = aω′

ω ,
equation (60) become

ω(4)aω3 + ω′′′ω′a2ω2K1 − 4ω′′′ω′aω2

+ ω′′′aω3K5 + ω′′2a2ω2K2 − 3ω′′2aω2

+ ω′′ω′2a3ωK3 − 3ω′′ω′2a2ωK1 − 2ω′′ω′2a2ωK2

+ 12ω′′ω′2aω + ω′′ω′a2ω2K6 − 3ω′′ω′aω2K5

+ ω′′aω3K7 + ω′4a4K4 − ω′4a3K3 + 2ω′4a2K1

+ ω′4a2K2 − 6ω′4a+ ω′3a3ωK8 − ω′3a2ωK6

+ 2ω′3aωK5 + ω′2a2ω2K9 − ω′2aω2K7

+ ω′aω3K10 + ω4K11 = 0. (61)

It is an equation of the form (5) in Theorem 2.1 with the
coefficients

A1 =
4(aK2 − 3)

3ω
, A0 = K5, B0 =

aK2 − 3

ω
,

C2 =
2(a2K2

2 − 9aK2 + 18)

3ω2
, C1 =

K5(aK2 − 3)

ω
,

C0 = K7, D4 =
a3K2

3 − 18a2K2
2 + 99aK2 − 162

27ω3
,

D3 =
K5(a

2K2
2 − 9aK2 − 3)

3ω
, D2 =

K7(aK2 − 3)

3ω
,

D1 = K10, D0 =
K11ω

a
.

One can check that the equations (10), (16), (18), (20) and
(23) in Theorem 2.2 are satisfied. Now, the equations (11)
- (15) and (17) are satisfied when the followings conditions
hold, that is

K1 =
4K2

3
, K3 =

2K2
2

3
, K4 =

K2
3

27
,

K6 = K2K5, K8 =
K2

2K5

9
, K9 =

K2K7

3
.

Applying Corollary 2.3, the linearizing transformation is
found by solving the following equations

φω = 0, ψωω =
ψω(aK2 − 3)

3ω
. (62)

One can find the particular solution for equations in (62) as

φ = x, ψ = ω(
aK2

3 ).

So that, one obtains the linearizing transformation

t = x, u = ω(
aK2

3 ). (63)

From Corollary 2.3, the coefficients ν̃, ω̃, α̃, β̃ and γ̃ of the
resulting linear equation (3) are

ν̃ = K5, ω̃ = K7, α̃ = K10, β̃ =
K2K11

3
, γ̃ = 0.

Hence, the nonlinear equation (61) can be mapped by trans-
formation (63) into the linear equation

u(4) +K5u
′′′ +K7u

′′ +K10u
′ +

K2K11

3
u = 0. (64)

Example 3.4: Equation in the article [19]
• The significance of the problem
In [19], Ablowitz, Chakravarty, and Halburd studied a general
class of Chazy equation, defined as

y′′′ − 2yy′′ + 3y′2 − 4(6y′ − y2)2

36− n2
= 0. (65)
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This equation was first written down and solved by Chazy
[20]-[22] and is known today as the generalized Chazy
equation. Clarkson and Olver [23] showed that a necessary
condition for equation (65) to possess the Painlevé property
is that the coefficient of the right hand side must be some
α = 4

36−n2 , provided that n ̸= 6. It has been further shown
that the cases n = 2, 3, 4 and 5, correspond to the dihedral
triangle, tetrahedral, octahedral and icosahedral symmetry
classes.

In [18], Guha, Choudhury, and Khanra considered equa-
tion (65) the case n = 2. The third-order Riccati equation is
equivalent to

y′′′ − 2yy′′ + 3y′2 − (6y′ − y2)2

8
= 0. (66)

• Applying the obtained theorems to the problem
Let us consider the nonlinear third-order ordinary differential
equation (66), under the Riccati transformation y = aω′

ω ,
equation (66) becomes

8ω(4)ω3 − 16ω′′′ω′aω2 − 32ω′′′ω′ω2

− 12ω′′2aω2 − 24ω′′2ω2 + 12ω′′ω′2a2ω

+ 72ω′′ω′2aω + 96ω′′ω′2ω − ω′4a3

− 12ω′4a2 − 44ω′4a− 48ω′4 = 0. (67)

It is an equation of the form (5) in Theorem 2.1 with the
coefficients

A1 = −2(a+ 2)

ω
, A0 = 0, B0 = −3(a+ 2)

2ω
,

C2 =
3(a2 + 6a+ 8)

2ω2
, C1 = 0, C0 = 0,

D4 = −a
3 + 12a2 + 44a+ 48

8ω3
, D3 = 0,

D2 = 0, D1 = 0, D0 = 0.

One can check that these coefficients obey the conditions in
Theorem 2.2. Hence an equation (66) is linearizable via a
fiber preserving transformation. Applying Corollary 2.3, the
linearizing transformation is found by solving the following
equations

φω = 0, ψωω = −ψω(a+ 2)

2ω
. (68)

One can find the particular solution for equations in (68) as

φ = x, ψ = ω− a
2 .

So that, one obtains the linearizing transformation

t = x, u = ω− a
2 . (69)

From Corollary 2.3, the coefficients ν̃, ω̃, α̃, β̃ and γ̃ of the
resulting linear equation (3) are

ν̃ = 0, ω̃ = 0, α̃ = 0, β̃ = 0, γ̃ = 0.

Hence, the nonlinear equation (67) can be mapped by trans-
formation (69) into the linear equation

u(4) = 0.

So that,
u = C0 + C1t+ C2t

2 + C3t
3, (70)

where C0, C1, C2 and C3 are arbitrary constants. Substituting
equation (69) into equation (70), we get

ω− a
2 = C0 + C1x+ C2x

2 + C3x
3.

So that,

ω = (C0 + C1x+ C2x
2 + C3x

3)−
2
a .

Hence, the original nonlinear solution is

y = − 2(C1 + 2C2x+ 3C3x
2)

(C0 + C1x+ C2x2 + C3x3)
.

B. Linearization for Some Interesting Fourth-Order Partial
Differential Equations Under the Travelling Wave Solutions

Travelling waves are observed in many areas of science
such as a result of a chemical reaction in combustion [24] and
the impulses that are apparent in nerve fibres [25]. Travelling
wave solutions are derived from solving the corresponding
partial differential equations. These solutions are in the form

u(x, t) = H(z) ,where z = x−Dt.

Here, the spatial and time domains are represented as x and
t, with the velocity of the wave given as D.

Example 3.5: Equation in the article [26]
• The significance of the problem
The symmetry reductions of a class of nonlinear fourth-order
partial differential equation given by

utt =(κu+ γu2)xx + νuuxxxx + µuxxtt

+ αuxuxxx + βu2xx, (71)

where α, β, γ, µ, ν and κ are arbitrary constants. This equa-
tion maybe thought of as fourth-order analogue of a gen-
eralization of the Camassa-Holm equation, in which there
has been considerable interest recently. Furthermore, this
equation is a Boussinesq-type equation which arises as a
model of vibrations of harmonic mass-spring chain.
• Applying the obtained theorems to the problem
Let us consider the nonlinear fourth-order partial differential
equation (71), Of particular interest amoung solutions of
equation (71) are travelling wave solutions:

u(x, t) = H(x−Dt),

where D is a constant phase velocity and the argument x−Dt
is a phase of the wave.

Substituting the representation of a solution into equation
(71), one finds

(νH + µD2)H(4) + αH ′H ′′′ + βH ′′2

+ (2γH + κ−D2)H ′′ + 2γH ′2 = 0. (72)

It is an equation of the form (5) in Theorem 2.1 with the
coefficients

A1 =
α

νH + µD2
, A0 = 0, B0 =

β

νH + µD2
,

C2 = 0, C1 = 0, C0 =
2γH + κ−D2

νH + µD2
, D4 = 0,

D3 = 0, D2 =
2γ

νH + µD2
, D1 = 0, D0 = 0.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 5, May 2025, Pages 1377-1390

 
______________________________________________________________________________________ 



From Theorem 2.2 equation (72) is linearizable if and only
if

α = 0, β = 0, γ = 0, ν = 0 (73)

α = 0, β = 0, γ = 0, κ = D2 (74)

α = 4ν, β = 3ν, ν ̸= 0, κ =
(2γµ+ ν)D2

ν
. (75)

In the cases of equations (73) and (74), these relations make
equation (72) becomes linear equation. Consider the case of
equation (75).

Case α = 4ν , β = 3ν , ν ̸= 0 , κ = (2γµ+ν)D2

ν .
Applying Corollary 2.3, the linearizing transformation is
found by solving the following equation

φH = 0, ψHH =
ψHν

D2µ+Hν
. (76)

One can find the particular solution for equations in (76) as

φ = x−Dt, ψ = 2D2µH + νH2.

So that, one obtains the linearizing transformation

t̃ = x−Dt, ũ = 2D2µH + νH2. (77)

From Corollary 2.3, the coefficients ν̃, ω̃, α̃, β̃ and γ̃ of the
resulting linear equation (3) are

ν̃ = 0, ω̃ =
2γ

ν
, α̃ = 0, β̃ = 0, γ̃ = 0.

Hence, the nonlinear equation (72) can be mapped by trans-
formation (77) into the linear equation

ũ(4) +
2γ

ν
ũ′′ = 0. (78)

where γ , ν are arbitrary constants.
• Case 2γ

ν = 0, the solution of equation (78) is

ũ(t̃) = C0 + C1t̃+ C2t̃
2 + C3t̃

3, (79)

where C0, C1, C2 and C3 are arbitrary constants. Substituting
equation (77) into equation (79), we get the solution of
ordinary differential equation

2D2µH + νH2 = C0 + C1(x−Dt) + C2(x−Dt)2

+C3(x−Dt)3.

So that, the solution of partial differential equation (71) is

2D2µu+ νu2 = C0 + C1(x−Dt) + C2(x−Dt)2

+C3(x−Dt)3.

• Case 2γ
ν > 0, the solution of equation (78) is

ũ(t̃) = C0 + C1t̃+ C2 cos(

√
2γ

ν
t̃) + C3 sin(

√
2γ

ν
t̃), (80)

where C0, C1, C2 and C3 are arbitrary constants. Substituting
equation (77) into equation (80), we get the solution of
ordinary differential equation

2D2µH + νH2 = C0 + C1(x−Dt)

+C2 cos(

√
2γ

ν
(x−Dt))

+C3 sin(

√
2γ

ν
(x−Dt)).

So that, the solution of partial differential equation (71) is

2D2µu+ νu2 = C0 + C1(x−Dt)

+C2 cos(

√
2γ

ν
(x−Dt))

+C3 sin(

√
2γ

ν
(x−Dt)).

• Case 2γ
ν < 0, the solution of equation (78) is

ũ(t̃) = C0 + C1t̃+ C2e
√

2γ
ν t̃ + C3e

−
√

2γ
ν t̃, (81)

where C0, C1, C2 and C3 are arbitrary constants. Substituting
equation (77) into equation (81), we get the solution of
ordinary differential equation

2D2µH + νH2 = C0 + C1(x−Dt) + C2e
√

2γ
ν (x−Dt)

+C3e
−
√

2γ
ν (x−Dt).

So that, the solution of partial differential equation (71) is

2D2µu+ νu2 = C0 + C1(x−Dt) + C2e
√

2γ
ν (x−Dt)

+C3e
−
√

2γ
ν (x−Dt).

C. Linearization for Some Interesting Third-Order Partial
Differential Equations Under the Travelling Wave Solutions

Example 3.6: Equation in the article [27] and [28]
• The significance of the problem
Members of the class of evolutionary PDEs

mt +Auxm+Bumx + Cuux +Duxxt = Kux,

where m = u − α2uxx is the Helmholtz operator acting on
the dependent variable u, function of the spatial variable x
and time t, and A, B, C, D, K are constants, have recently
attracted intense interest from both a mathematical and
physical perspective, following the derivation of a member
of this class (also known as the Camassa-Holm equation), in
the context of shallow-water wave dynamics.

For A = 0, B = 1, C = 0, D = 0, and K = 0, this is a
regularized Burgers equation

ut + uux = α2(uxxt + uuxxx). (82)

In [27] Bhat and Fetecau showed that solutions of this
equation converge strongly to physically relevant weak solu-
tions of the Hopf equation ut+uux = 0 as α→ 0, provided
the initial data u(x, 0) are in a suitable function space. Thus,
equation (82) has been proposed as an alternative to Burgers
equation ut + uux = 0 in this respect.

In [28] Camassa, Chiu, Lee, and Sheu employed a two-
step iterative scheme for solving a class of PDEs involving
the Helmholtz operator. They investigated solution properties
of members of this class of PDEs.
• Applying the obtained theorems to the problem
Let us consider the nonlinear third-order partial differential
equation (82), Let u = wt, then equation (82) become

wtt + wtwxt = α2(wxxty + wtwxxxt). (83)

Of particular interest amoung solutions of equation (83) are
travelling wave solutions:

w(x, t) = H(x−Dt),
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where D is a constant phase velocity and the argument x−Dt
is a phase of the wave.

Substituting the representation of a solution into equation
(83), one finds

D2H ′′ +D2H ′H ′′ − α2(D2H(4) +D2H ′H(4)) = 0. (84)

It is an equation of the form (5) in Theorem 2.1 with the
coefficients

A1 = A0 = B0 = C2 = C1 = 0, C0 = − 1
α2 ,

D4 = D3 = D2 = D1 = D0 = 0.

One can check that these coefficients obey the conditions in
Theorem 2.2. Hence, an equation (83) is linearizable via a
fiber preserving transformations. Applying Corollary 2.3, the
linearizing transformation is found by solving the equation

φH = 0, ψHH = 0. (85)

One can find the particular solution for equations in (85) as

φ = x−Dt, ψ = H.

So that, one obtains the linearizing transformation

t̃ = x−Dt, ũ = H. (86)

From Corollary 2.3, the coefficients ν̃, ω̃, α̃, β̃ and γ̃ of the
resulting linear equation (3) are

ν̃ = 0, ω̃ = − 1

α2
, α̃ = 0, β̃ = 0, γ̃ = 0.

Hence, the nonlinear equation (83) can be mapped by trans-
formation (86) into the linear equation

ũ(4) − 1

α2
ũ′′ = 0. (87)

The solution of equation (87) is

ũ(t̃) = C1 + C2t+ C3e
− 1

α t̃ + C4e
1
α t̃, (88)

where C1, C2, C3 and C4 are arbitrary constants. Substituting
equation (86) into equation (88), we get the solution of
ordinary differential equation

H = C1 + C2(x−Dt) + C3e
− 1

α (x−Dt) + C4e
1
α (x−Dt).

So that, the solution of partial differential equation (83) is

w = C1 + C2(x−Dt) + C3e
− 1

α (x−Dt) + C4e
1
α (x−Dt).

Hence, the solution of nonlinear equation (82) is u = wt ,
i.e.

u = −DC2 +
D

α
C3e

− 1
α (x−Dt) − D

α
C4e

1
α (x−Dt).

IV. CONCLUSION

In summary, if a fourth-order ordinary differential equation
is not in one of the forms specified in Theorem 2.1, it
definitely cannot be linearized by the point transformation.
The form that satisfies corresponding conditions in either
Theorem 2.2 or Theorem 2.5 is linearizable via the point
transformation. The original solution can be attained by
applying the transformations derived from Corollary 2.3 and
Corollary 2.6. This method has been proven to be effective
for various fourth-order ordinary differential equations in
literature, as well as some third-order ordinary differential
equations and fourth-order partial differential equations un-
der specific conditions.

APPENDIX

A. The coefficients of equation (5)

A1 =(4ψyy)/ψy, (A.1)

A0 =− ((6φxx − φ2
xν)ψy − 4φxψxy)/(φxψy), (A.2)

B0 =(3ψyy)/ψy, (A.3)
C2 =(6ψyyy)/ψy, (A.4)
C1 =3((φxψyyν + 4ψxyy)φx − 6φxxψyy)/(φxψy), (A.5)

C0 =((15φ2
xx + φ4

xω − 4φxxxφx)ψy + 3((φxψxyν

+ 2ψxxy)φx − (φxψyν + 6ψxy)φxx)φx)

/(φ2
xψy), (A.6)

D4 =ψyyyy/ψy, (A.7)
D3 =((φxψyyyν + 4ψxyyy)φx − 6φxxψyyy)

/(φxψy), (A.8)
D2 =− (3((φxψyyν + 6ψxyy)φx − 5φxxψyy)φxx

− (φ2
xψyyω + 3φxψxyyν + 6ψxxyy)φ

2
x

+ 4φxxxφxψyy)/(φ
2
xψy), (A.9)

D1 =((3((φxψyν + 10ψxy)φx − 5φxxψy)φxx

− (φ2
xψyω + 6φxψxyν + 18ψxxy)φ

2
x)φxx

+ (φ3
xψyα+ 2φ2

xψxyω + 3φxψxxyν

+ 4ψxxxy)φ
3
x − ((φxψyν + 8ψxy)φx

− 10φxxψy)φxxxφx − φxxxxφ
2
xψy)

/(φ3
xψy), (A.10)

D0 =(((φ2
xψxxω + φxψxxxν + ψxxxx

+ (βψ + γ)φ4
x)φ

2
x + 3(φxψxν

+ 5ψxx)φ
2
xx − ((φxψxω + 3ψxxν)φx

+ 6ψxxx)φxxφx + ((10φxx − φ2
xν)ψx

− 4φxψxx)φxxx)φx(15φ
3
xx − φ6

xα

+ φxxxxφ
2
x)ψx)/(φ

3
xψy). (A.11)

B. The coefficients of equation (6)

F2 =((φyν∆+ 4∆y)φy − 10φyy∆)/(φy∆), (B.1)
F1 =(2((2(∆x +∆yr − 5ry∆) + φyνr∆)φy

− 10φyyr∆))/(φy∆), (B.2)
F0 =(−((2((5ry∆− 2∆x)r + 5rx∆)

− φyνr
2∆)φy + 10φyyr

2∆))/(φy∆), (B.3)

H2 =3(10φyy∆− φ2
yν∆− 4φy∆y)/(φy∆), (B.4)

H1 =− 3((5∆x + 3∆yr − 25ry∆

+ 2φyνr∆)φy − 20φyyr∆)/(φy∆), (B.5)

H0 =− 3(((φyνr
2 − 15rx − 10ryr)∆ + (5∆x

−∆yr)r)φy − 10φyyr
2∆)/(φy∆), (B.6)

J4 =− (10φyyyφy∆− 45φ2
yy∆+ 6φyyφ

2
yν∆

+ 30φyyφy∆y − φ4
yω∆− 3φ3

y∆yν

− 6φ2
y∆yy)/(φ

2
y∆), (B.7)
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J3 =((6(2(∆xy +∆yyr − 5ry∆y)

− 5ryy∆) + (3(∆x + 3∆yr − 4ry∆)ν

+ 4φyωr∆)φy)φ
2
y − 6((5(∆x + 3∆yr

− 4ry∆) + 4φyνr∆)φy − 30φyyr∆)φyy

− 40φyyyφyr∆)/(φ2
y∆), (B.8)

J2 =3((2(∆xx +∆yyr
2 + 4∆xyr − 5(2∆x

+ 3∆yr − 5ry∆)ry − 10ryyr∆− 5rx∆y

− 5rxy∆) + (((3(∆x +∆yr)− 10ry∆)r

− 2rx∆)ν + 2φyωr
2∆)φy)φ

2
y

− 2((5((3(∆x +∆yr)− 10ry∆)r

− 2rx∆) + 6φyνr
2∆)φy − 45φyyr

2∆)φyy

− 20φyyyφyr
2∆)/(φ2

y∆), (B.9)

J1 =− ((2((5(3(3∆x +∆yr)− 14ry∆)ry

− 6(∆xyr +∆xx) + 20ryyr∆)r

+ 5(3(∆x +∆yr)− 16ry∆)rx

+ 5rxx∆+ 20rxyr∆)− (3((3∆x

+∆yr − 8ry∆)r − 4rx∆)ν

+ 4φyωr
2∆)φyr)φ

2
y + 6((5((3∆x

+∆yr − 8ry∆)r − 4rx∆)

+ 4φyνr
2∆)φy − 30φyyr

2∆)φyyr

+ 40φyyyφyr
3∆)/(φ2

y∆), (B.10)

J0 =− (((2((5ryyr∆− 3∆xx)r + 5rxx∆

+ 5rxyr∆)− 5(7ry∆− 6∆x)ryr)r

− 5(2(7ry∆− 3∆x)r + 9rx∆)rx

+ (3((2ry∆−∆x)r + 2rx∆)ν

− φyωr
2∆)φyr

2)φ2
y − (3(2(5((2ry∆

−∆x)r + 2rx∆)− φyνr
2∆)φy

+ 15φyyr
2∆)φyy − 10φyyyφyr

2∆)r2)

/(φ2
y∆), (B.11)

K7 =− (φyyyyφ
2
yψy − 10φyyyφyyφyψy

+ φyyyφ
3
yψyν + 4φyyyφ

2
yψyy

+ 15φ3
yyψy − 3φ2

yyφ
2
yψyν − 15φ2

yyφyψyy

+ φyyφ
4
yψyω + 3φyyφ

3
yψyyν

+ 6φyyφ
2
yψyyy − φ7

yβψ − φ7
yγ − φ6

yψyα

− φ5
yψyyω − φ4

yψyyyν − φ3
yψyyyy)/(φ

2
y∆), (B.12)

K6 =((7φ4
yψyαr − 4∆yyy + 7(βψ + γ)φ5

yr

+ (7ψyyωr − α∆)φ3
y + (7ψyyyνr

− 2∆yω)φ
2
y + (7ψyyyyr − 3∆yyν)φy)φ

3
y

− ((7φ3
yψyωr + 21φ2

yψyyνr − 3φ2
yω∆

+ 42φyψyyyr − 12φy∆yν − 30∆yy)φ
2
y

+ 105(φyψyr −∆)φ2
yy − 3(7φ2

yψyνr

− 30∆y + 5(7ψyyr − ν∆)φy)φyyφy)φyy

− ((7φ2
yψyνr − 20∆y + 4(7ψyyr

− ν∆)φy)φy − 10(7φyψyr

− 6∆)φyy)φyyyφy − (7φyψyr

− 5∆)φyyyyφ
2
y)/(φ

3
y∆), (B.13)

K5 =− (((3((∆xy + 5∆yyr − 4ry∆y − 2ryy∆)ν

− 7ψyyyyr
2) + ((∆x + 11∆yr − 3ry∆)ω

− 21ψyyyνr
2 − 3(7((βψ + γ)φy

+ ψyα)φyr + 7ψyyωr − 2α∆)φyr)φy)φy

+ 2(3(∆xyy + 3∆yyyr − 5ry∆yy

− 5ryy∆y)− 5ryyy∆))φ3
y − 3(((2((∆x

+ 11∆yr − 3ry∆)ν − 21ψyyyr
2)

− (7φyψyωr + 21ψyyνr − 6ω∆)φyr)φy

+ 10(∆xy + 5∆yyr − 4ry∆y − 2ryy∆))φ2
y

− 3((5(∆x + 11∆yr − 3ry∆)− (7φyψyνr

+ 35ψyyr − 10ν∆)φyr)φy + 35(φyψyr

− 2∆)φyyr)φyy)φyy − ((10(∆x + 11∆yr

− 3ry∆)− 3(7φyψyνr + 28ψyyr

− 8ν∆)φyr)φy + 30(7φyψyr

− 12∆)φyyr)φyyyφy + 3(7φyψyr

− 10∆)φyyyyφ
2
yr)/(φ

3
y∆), (B.14)

K4 =− ((((∆xx + 31∆yyr
2 + 13∆xyr − 8(∆x

+ 6∆yr − 2ry∆)ry − 26ryyr∆− 4rx∆y

− 4rxy∆)ν − 35ψyyyyr
3)φy + 2(45ryyry∆

− 10ryy∆x − 55ryy∆yr + 50r2y∆y

− 20ry∆xy − 50ry∆yyr + 11∆xyyr

+ 2∆xxy + 17∆yyyr
2 − 20ryyyr∆

− 5rx∆yy − 10rxy∆y − 5rxyy∆)

+ (((5(∆x + 5∆yr)− 14ry∆)r − rx∆)ω

− 35ψyyyνr
3 − 5(7((βψ + γ)φy

+ ψyα)φyr + 7ψyyωr − 3α∆)φyr
2)φ2

y)φ
3
y

− ((10(∆xx + 31∆yyr
2 + 13∆xyr

− 8(∆x + 6∆yr − 2ry∆)ry

− 26ryyr∆− 4rx∆y − 4rxy∆)

+ (6(((5(∆x + 5∆yr)− 14ry∆)r − rx∆)ν

− 35ψyyyr
3)− 5(7φyψyωr + 21ψyyνr

− 9ω∆)φyr
2)φy)φ

2
y − 15((3((5(∆x

+ 5∆yr)− 14ry∆)r − rx∆)− (7φyψyνr

+ 35ψyyr − 15ν∆)φyr
2)φy + 35(φyψyr

− 3∆)φyyr
2)φyy)φyy − 5((2((5(∆x

+ 5∆yr)− 14ry∆)r − rx∆)

− (7φyψyνr + 28ψyyr − 12ν∆)φyr
2)φy

+ 10(7φyψyr − 18∆)φyyr
2)φyyyφy

+ 5(7φyψyr − 15∆)φyyyyφ
2
yr

2)/(φ3
y∆), (B.15)

K3 =− (((13∆xxy + 35∆yyyr
2)r +∆xxx

+ 31∆xyyr
2 − 5(3∆xx + 26∆yyr

2

+ 23∆xyr − (15∆x + 49∆yr

− 25ry∆)ry)ry − 5(13∆x + 32∆yr

− 50ry∆)ryyr − 65ryyyr
2∆− 5(3∆xy

+ 5∆yyr − 16ry∆y − 7ryy∆)rx − 5rxx∆y

− 5rxxy∆− 5(3∆x + 11∆yr − 15ry∆)rxy

− 30rxyyr∆+ (((2(2∆xx + 17∆yyr
2

+ 11∆xyr)− (29∆x + 75∆yr − 51ry∆)ry
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− 45ryyr∆)r − (3∆x + 13∆yr

− 13ry∆)rx − rxx∆− 14rxyr∆)ν

− 35ψyyyyr
4 + (2((5(∆x + 3∆yr)

− 13ry∆)r − 2rx∆)ω − 35ψyyyνr
3

− 5(7((βψ + γ)φy + ψyα)φyr

+ 7ψyyωr − 4α∆)φyr
2)φyr)φy)φ

3
y

− ((10((2(2∆xx + 17∆yyr
2 + 11∆xyr)

− (29∆x + 75∆yr − 51ry∆)ry

− 45ryyr∆)r − (3∆x + 13∆yr

− 13ry∆)rx − rxx∆− 14rxyr∆)

+ (6(2((5(∆x + 3∆yr)− 13ry∆)r

− 2rx∆)ν − 35ψyyyr
3)− 5(7φyψyωr

+ 21ψyyνr − 12ω∆)φyr
2)φyr)φ

2
y

− 15((6((5(∆x + 3∆yr)− 13ry∆)r

− 2rx∆)− (7φyψyνr + 35ψyyr

− 20ν∆)φyr
2)φy + 35(φyψyr

− 4∆)φyyr
2)φyyr)φyy − 5((4((5(∆x

+ 3∆yr)− 13ry∆)r − 2rx∆)

− (7φyψyνr + 28ψyyr − 16ν∆)φyr
2)φy

+ 10(7φyψyr − 24∆)φyyr
2)φyyyφyr

+ 5(7φyψyr − 20∆)φyyyyφ
2
yr

3)/(φ3
y∆), (B.16)

K2 =− (((3((5∆xxy + 7∆yyyr
2)r +∆xxx

+ 7∆xyyr
2)− (3(13∆xx + 28∆yyr

2

+ 39∆xyr) + (204ry∆− 161∆x

− 217∆yr)ry)ry − (79∆x + 116∆yr

− 264ry∆)ryyr − 54ryyyr
2∆)r

− (3(2∆xx + 7∆yyr
2 + 11∆xyr)

+ (171ry∆− 64∆x − 140∆yr)ry

− 72ryyr∆− 18rx∆y)rx − (4∆x

+ 11∆yr − 21ry∆)rxx − 12rxxyr∆

− rxxx∆− ((37∆x + 53∆yr − 150ry∆)r

− 33rx∆)rxy − 33rxyyr
2∆+ (3(((2∆xx

+ 7∆yyr
2 + 6∆xyr − (13∆x + 19∆yr

− 20ry∆)ry − 13ryyr∆)r2 − ((3∆x

+ 5∆yr − 11ry∆)r − rx∆)rx − rxxr∆

− 6rxyr
2∆)ν − 7ψyyyyr

5) + (2((5(∆x

+ 2∆yr)− 12ry∆)r − 3rx∆)ω

− 21ψyyyνr
3 − 3(7((βψ + γ)φy

+ ψyα)φyr + 7ψyyωr

− 5α∆)φyr
2)φyr

2)φy)φ
3
y

− 3((10((2∆xx + 7∆yyr
2 + 6∆xyr

− (13∆x + 19∆yr − 20ry∆)ry

− 13ryyr∆)r2 − ((3∆x + 5∆yr

− 11ry∆)r − rx∆)rx − rxxr∆

− 6rxyr
2∆) + (2(2((5(∆x + 2∆yr)

− 12ry∆)r − 3rx∆)ν − 21ψyyyr
3)

− (7φyψyωr + 21ψyyνr

− 15ω∆)φyr
2)φyr

2)φ2
y − 3((10((5(∆x

+ 2∆yr)− 12ry∆)r − 3rx∆)− (7φyψyνr

+ 35ψyyr − 25ν∆)φyr
2)φy

+ 35(φyψyr − 5∆)φyyr
2)φyyr

2)φyy

− ((20((5(∆x + 2∆yr)− 12ry∆)r

− 3rx∆)− 3(7φyψyνr + 28ψyyr

− 20ν∆)φyr
2)φy + 30(7φyψyr

− 30∆)φyyr
2)φyyyφyr

2 + 3(7φyψyr

− 25∆)φyyyyφ
2
yr

4)/(φ3
y∆), (B.17)

K1 =− (((7(∆xxy +∆yyyr
2)r + 3∆xxx

+ 7∆xyyr
2 − (33∆xx + 28∆yyr

2

+ 49∆xyr + 2(59ry∆− 56∆x

− 42∆yr)ry)ry − (43∆x + 42∆yr

− 128ry∆)ryyr − 23ryyyr
2∆)r2

− ((12∆xx + 7∆yyr
2 + 21∆xyr

+ 2(86ry∆− 49∆x − 35∆yr)ry

− 49ryyr∆)r + (85ry∆− 15∆x

− 21∆yr)rx)rx − ((8∆x + 7∆yr

− 32ry∆)r − 10rx∆)rxx − 9rxxyr
2∆

− 2rxxxr∆− ((29∆x + 21∆yr − 95ry∆)r

− 46rx∆)rxyr − 16rxyyr
3∆+ (((4∆xx

+ 7∆yyr
2 + 7∆xyr − (23∆x + 21∆yr

− 31ry∆)ry − 17ryyr∆)r2 − ((9∆x

+ 7∆yr − 27ry∆)r − 6rx∆)rx

− 3rxxr∆− 10rxyr
2∆)ν − 7ψyyyyr

5

+ (((5∆x + 7∆yr − 11ry∆)r − 4rx∆)ω

− 7ψyyyνr
3 − (7((βψ + γ)φy + ψyα)φyr

+ 7ψyyωr − 6α∆)φyr
2)φyr

2)φyr)φ
3
y

− ((10((4∆xx + 7∆yyr
2 + 7∆xyr

− (23∆x + 21∆yr − 31ry∆)ry

− 17ryyr∆)r2 − ((9∆x + 7∆yr

− 27ry∆)r − 6rx∆)rx − 3rxxr∆

− 10rxyr
2∆) + (6(((5∆x + 7∆yr

− 11ry∆)r − 4rx∆)ν − 7ψyyyr
3)

− (7φyψyωr + 21ψyyνr

− 18ω∆)φyr
2)φyr

2)φ2
y − 3((15((5∆x

+ 7∆yr − 11ry∆)r − 4rx∆)− (7φyψyνr

+ 35ψyyr − 30ν∆)φyr
2)φy + 35(φyψyr

− 6∆)φyyr
2)φyyr

2)φyyr − ((10((5∆x

+ 7∆yr − 11ry∆)r − 4rx∆)− (7φyψyνr

+ 28ψyyr − 24ν∆)φyr
2)φy

+ 10(7φyψyr − 36∆)φyyr
2)φyyyφyr

3

+ (7φyψyr − 30∆)φyyyyφ
2
yr

5)/(φ3
y∆), (B.18)

K0 =(((((2(rxxy + 2ryyyr
2)r + rxxx

+ 3rxyyr
2)∆ + 3(3∆x + 2∆yr

− 8ry∆)ryyr
2)r − ((10rx + 11ryr)∆

− (4∆x +∆yr)r)rxx − ((13rx + 20ryr)∆

− (7∆x + 3∆yr)r)rxyr + (9∆xx

+ 4∆yyr
2 + 7∆xyr − 2(13∆x + 6∆yr

− 12ry∆)ry)ryr
2 − ((∆xxy +∆yyyr

2)r

+∆xxx +∆xyyr
2)r2)r − ((2((17∆x
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+ 5∆yr − 23ry∆)ry + 6ryyr∆)− (6∆xx

+∆yyr
2 + 3∆xyr))r

2 − (5(3rx + 8ryr)∆

− 3(5∆x +∆yr)r)rx)rx + ((((rxx + 3ryyr
2

+ 2rxyr)∆ + (5∆x + 3∆yr − 6ry∆)ryr

− (∆xx +∆yyr
2 +∆xyr)r)r − ((3rx

+ 7ryr)∆− (3∆x +∆yr)r)rx)ν + ((((rx

+ 2ryr)∆− (∆x +∆yr)r)ω + ψyyyνr
3

+ (((βψ + γ)φy + ψyα)φyr + ψyyωr

− α∆)φyr
2)φy + ψyyyyr

3)r2)φyr
2)φ3

y

− (((10(((rxx + 3ryyr
2 + 2rxyr)∆ + (5∆x

+ 3∆yr − 6ry∆)ryr − (∆xx +∆yyr
2

+∆xyr)r)r − ((3rx + 7ryr)∆− (3∆x

+∆yr)r)rx) + (6(((rx + 2ryr)∆− (∆x

+∆yr)r)ν + ψyyyr
3) + (3(ψyyνr − ω∆)

+ φyψyωr)φyr
2)φyr

2)φ2
y − 3(((5(ψyyr

− ν∆) + φyψyνr)φyr
2 + 15((rx + 2ryr)∆

− (∆x +∆yr)r))φy − 5(φyψyr

− 7∆)φyyr
2)φyyr

2)φyy + ((((4(ψyyr − ν∆)

+ φyψyνr)φyr
2 + 10((rx + 2ryr)∆− (∆x

+∆yr)r))φy − 10(φyψyr − 6∆)φyyr
2)φyyy

+ (φyψyr − 5∆)φyyyyφyr
2)φyr

2)r2)/(φ3
y∆). (B.19)

C. Equations for Theorem 2.5 in Section II.

ω =(10φyyyφy∆
2 + 15φ2

yy∆
2 − 24φyyφy∆y∆

+ 6φyyφyF2∆
2 − 6φ2

y∆yy∆+ 12φ2
y∆

2
y

− 3φ2
y∆yF2∆+ φ2

yJ4∆
2)/(φ4

y∆
2), (C.1)

F1yy =− (F1yF2 − 40F2xy − 16F2xF2 + 20F2yyr

+ 40F2yry + 14F2yF2r + 20J4x − 20J4yr

+ 14ryF
2
2 − 40ryJ4)/10, (C.2)

F2x =(12F2yr − 3F1F2 + 6F 2
2 r + 4J3

− 16J4r)/12, (C.3)

F1x =(60F1yr − 36F0F2 − 15F 2
1 + 66F1F2r

− 36F 2
2 r

2 + 40J2 − 80J3r + 80J4r
2)/60, (C.4)

F0x =(60F0yr − 51F0F1 + 66F0F2r + 36F 2
1 r

− 72F1F2r
2 + 36F 2

2 r
3 + 60J1 − 80J2r

+ 80J3r
2 − 80J4r

3)/60, (C.5)

J0 =(9F 2
0 − 18F0F1r + 18F0F2r

2 + 9F 2
1 r

2

− 18F1F2r
3 + 9F 2

2 r
4 + 20J1r − 20J2r

2

+ 20J3r
3 − 20J4r

4)/20, (C.6)

γ =(φyyyyφyψy∆
2 + 10φyyyφyyψy∆

2

− 6φyyyφyψyy∆
2 − 4φyyyφyψy∆y∆

+ φyyyφyψyF2∆
2 − 12φ2

yyψy∆y∆

+ 3φ2
yyψyF2∆

2 − 4φyyφyψyyy∆
2

+ 12φyyφyψyy∆y∆− 3φyyφyψyyF2∆
2

− 6φyyφyψy∆yy∆+ 12φyyφyψy∆
2
y

− 3φyyφyψy∆yF2∆+ φyyφyψyJ4∆
2

− φ6
yβψ∆

2 − φ5
yψyα∆

2 − φ2
yψyyyy∆

2

+ 4φ2
yψyyy∆y∆− φ2

yψyyyF2∆
2

+ 6φ2
yψyy∆yy∆− 12φ2

yψyy∆
2
y

+ 3φ2
yψyy∆yF2∆− φ2

yψyyJ4∆
2

+ φyK7∆
3)/(φ6

y∆
2), (C.7)

α =(5φyyyyφy∆
3 + 10φyyyφyy∆

3

− 16φyyyφy∆y∆
2 + 4φyyyφyF2∆

3

− 12φ2
yy∆y∆

2 + 3φ2
yyF2∆

3

− 18φyyφy∆yy∆
2 + 36φyyφy∆

2
y∆

− 9φyyφy∆yF2∆
2 + 3φyyφyJ4∆

3

− 4φ2
y∆yyy∆

2 + 24φ2
y∆yy∆y∆

− 3φ2
y∆yyF2∆

2 − 24φ2
y∆

3
y

+ 6φ2
y∆

2
yF2∆− 2φ2

y∆yJ4∆
2

− φ2
yK6∆

3 + 7φ2
yK7r∆

3)/(φ5
y∆

3), (C.8)

J3yy =(216F1yF2y + 54F1yF
2
2 − 48F1yJ4

+ 360F2yyry + 90F2yyF1 − 180F2yyF2r

− 432F 2
2yr + 324F2yryF2 + 189F2yF1F2

− 486F2yF
2
2 r − 192F2yJ3 + 864F2yJ4r

− 60J3yF2 + 720J4xy + 180J4xF2

− 240J4yyr − 1200J4yry + 60J4yF2r

+ 720K6x − 720K6yr − 5040K7xr

+ 5040K7yr
2 + 36ryF

3
2 − 432ryF2J4

− 2160ryK6 + 15120ryK7r + 504F0K7

+ 36F1F
3
2 − 102F1F2J4 − 504F1K7r

− 72F 4
2 r − 48F 2

2 J3 + 396F 2
2 J4r

+ 504F2K7r
2 + 136J3J4 − 544J2

4 r)/120, (C.9)

β =(4φyyyyy∆
4 − 16φyyyy∆y∆

3

+ 4φyyyyF2∆
4 − 24φyyy∆yy∆

3

+ 48φyyy∆
2
y∆

2 − 12φyyy∆yF2∆
3

+ 4φyyyJ4∆
4 − 16φyy∆yyy∆

3

+ 96φyy∆yy∆y∆
2 − 12φyy∆yyF2∆

3

− 96φyy∆
3
y∆+ 24φyy∆

2
yF2∆

2

− 8φyy∆yJ4∆
3 − 4φyyK6∆

4

+ 28φyyK7r∆
4 − 4φyK7x∆

4

+ 4φyK7yr∆
4 − 4φy∆yyyy∆

3

+ 32φy∆yyy∆y∆
2 − 4φy∆yyyF2∆

3

+ 24φy∆
2
yy∆

2 − 144φy∆yy∆
2
y∆

+ 24φy∆yy∆yF2∆
2 − 4φy∆yyJ4∆

3

+ 96φy∆
4
y − 24φy∆

3
yF2∆

+ 8φy∆
2
yJ4∆

2 + 4φy∆yK6∆
3

− 28φy∆yK7r∆
3 − φyF1K7∆

4

+ 2φyF2K7r∆
4)/(4φ5

y∆
4), (C.10)

J4xyy =− (36F1yF2yy + 162F1yF2yF2

− 72F1yJ4y + 36F1yF
3
2

− 168F1yF2J4 − 72F1yK6

− 168F1yK7r − 72F2yyF2yr

+ 144F2yyryF2 + 54F2yyF1F2

− 108F2yyF
2
2 r − 72F2yyJ3

+ 288F2yyJ4r + 432F 2
2yry
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+ 108F 2
2yF1 − 540F 2

2yF2r

− 144F2yJ3y + 528F2yJ4x

+ 192F2yJ4yr + 324F2yryF
2
2

− 1008F2yryJ4 + 162F2yF1F
2
2

− 132F2yF1J4 − 396F2yF
3
2 r

− 180F2yF2J3 + 1320F2yF2J4r

+ 144F2yK6r − 336F2yK7r
2

− 36J3yF
2
2 + 176J3yJ4

+ 120J4xyF2 + 132J4xF
2
2

− 432J4xJ4 − 240J4yyyr

− 960J4yyry − 120J4yyF2r

− 768J4yryF2 − 138J4yF1F2

+ 288J4yF
2
2 r + 184J4yJ3

− 1008J4yJ4r + 960K6xy

+ 240K6xF2 − 960K6yyr

− 3840K6yry − 240K6yF2r

− 1920K7xyr − 2400K7xx

+ 2880K7xry − 600K7xF1

− 480K7xF2r + 4320K7yyr
2

+ 24000K7yryr + 432K7yF0

+ 168K7yF1r + 912K7yF2r
2

+ 20160r2yK7 + 1728ryF1K7

+ 36ryF
4
2 − 264ryF

2
2 J4

− 1248ryF2K6 + 5280ryF2K7r

+ 160ryJ
2
4 + 408F0F2K7

+ 150F 2
1K7 + 27F1F

4
2 − 120F1F

2
2 J4

− 168F1F2K6 + 168F1F2K7r

− 54F 5
2 r − 36F 3

2 J3 + 384F 3
2 J4r

+ 336F 2
2K6r − 1344F 2

2K7r
2

+ 160F2J3J4 − 640F2J
2
4 r − 400J2K7

+ 224J3K6 − 368J3K7r − 896J4K6r

+ 3872J4K7r
2 + 672F0yK7)/240, (C.11)

J4x =(4J4yr − F1J4 + 2F2J4r − 4K5

+ 24K6r − 84K7r
2)/4, (C.12)

K5yy =(672F0yK7 + 36F1yF2yy

+ 162F1yF2yF2 − 216F1yJ4y

+ 36F1yF
3
2 − 144F1yF2J4

− 216F1yK6 + 840F1yK7r

− 72F2yyF2yr + 144F2yyryF2

+ 54F2yyF1F2 − 108F2yyF
2
2 r

− 72F2yyJ3 + 288F2yyJ4r

+ 432F 2
2yry + 108F 2

2yF1

− 540F 2
2yF2r − 144F2yJ3y

+ 1008F2yJ4yr + 324F2yryF
2
2

− 768F2yryJ4 + 162F2yF1F
2
2

− 204F2yF1J4 − 396F2yF
3
2 r

− 180F2yF2J3 + 1416F2yF2J4r

− 528F2yK5 + 3600F2yK6r

− 13440F2yK7r
2 − 36J3yF

2
2

+ 96J3yJ4 − 480J4yyry

− 60J4yyF1 + 120J4yyF2r

− 384J4yryF2 − 174J4yF1F2

+ 492J4yF
2
2 r + 192J4yJ3

− 1152J4yJ4r − 120K5yF2

+ 960K6xy + 240K6xF2

+ 480K6yyr − 960K6yry

+ 480K6yF2r − 1920K7xyr

− 2400K7xx + 2880K7xry

− 600K7xF1 − 480K7xF2r

− 720K7yyr
2 + 3840K7yryr

+ 432K7yF0 + 168K7yF1r

− 1608K7yF2r
2 + 10080r2yK7

+ 1728ryF1K7 + 36ryF
4
2

− 228ryF
2
2 J4 − 384ryF2K6

− 768ryF2K7r + 240ryJ
2
4

+ 408F0F2K7 + 150F 2
1K7

+ 27F1F
4
2 − 132F1F

2
2 J4

− 204F1F2K6 + 420F1F2K7r

+ 78F1J
2
4 − 54F 5

2 r − 36F 3
2 J3

+ 408F 3
2 J4r − 132F 2

2K5

+ 1200F 2
2K6r − 4620F 2

2K7r
2

+ 132F2J3J4 − 684F2J
2
4 r

− 400J2K7 + 272J3K6

− 704J3K7r + 312J4K5

− 2960J4K6r + 11768J4K7r
2)/240, (C.13)

F0yy =− (30F0yF2 + 36F1yF1 − 36F1yF2r

− 60F2yyr
2 + 24F2yF0 − 36F2yF1r

− 54F2yF2r
2 − 40J2y + 40J3yr

+ 80J4yr
2 − 36ryF1F2 + 36ryF

2
2 r

+ 40ryJ3 − 80ryJ4r + 6F0F
2
2

− 6F0J4 + 9F 2
1F2 − 18F1F

2
2 r

− 12F1J3 + 24F1J4r − 6F 3
2 r

2

− 10F2J2 + 22F2J3r + 26F2J4r
2

− 60K4 + 180K5r − 180K6r
2

− 420K7r
3)/60, (C.14)

J2x = (20J2yr + 20J3xr − 20J3yr
2

− 14F0J3 + 28F0J4r − 5F1J2

+ 19F1J3r − 28F1J4r
2 + 10F2J2r

− 24F2J3r
2 + 28F2J4r

3 − 120K3

+ 360K4r − 640K5r
2 + 840K6r

3

− 840K7r
4)/20, (C.15)

J1x = (60J1yr − 40J3xr
2 + 40J3yr

3

− 42F0J2 + 42F0J3r − 70F0J4r
2

− 15F1J1 + 42F1J2r − 52F1J3r
2

+ 70F1J4r
3 + 30F2J1r − 42F2J2r

2

+ 62F2J3r
3 − 70F2J4r

4 − 600K2

+ 1080K3r − 1380K4r
2 + 1700K5r

3

− 2100K6r
4 + 2100K7r

5)/60, (C.16)
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K1 = (3F 2
0F1 − 6F 2

0F2r − 6F0F
2
1 r

+ 18F0F1F2r
2 − 12F0F

2
2 r

3 − 8F0J1

+ 16F0J2r − 24F0J3r
2 + 32F0J4r

3

+ 3F 3
1 r

2 − 12F 2
1F2r

3 + 15F1F
2
2 r

4

+ 8F1J1r − 16F1J2r
2 + 24F1J3r

3

− 32F1J4r
4 − 6F 3

2 r
5 − 8F2J1r

2

+ 16F2J2r
3 − 24F2J3r

4 + 32F2J4r
5

+ 160K2r − 240K3r
2 + 320K4r

3

− 400K5r
4 + 480K6r

5 − 560K7r
6)/80, (C.17)

K0 = −(6F 3
0 − 33F 2

0F1r + 48F 2
0F2r

2

+ 48F0F
2
1 r

2 − 126F0F1F2r
3 + 78F0F

2
2 r

4

+ 40F0J1r − 80F0J2r
2 + 120F0J3r

3

− 160F0J4r
4 − 21F 3

1 r
3 + 78F 2

1F2r
4

− 93F1F
2
2 r

5 − 40F1J1r
2 + 80F1J2r

3

− 120F1J3r
4 + 160F1J4r

5 + 36F 3
2 r

6

+ 40F2J1r
3 − 80F2J2r

4 + 120F2J3r
5

− 160F2J4r
6 − 400K2r

2 + 800K3r
3

− 1200K4r
4 + 1600K5r

5 − 2000K6r
6

+ 2400K7r
7)/400. (C.18)
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