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Abstract—This paper considered a repairable MX/G/1 queue-
ing system with the gated service, setup time and multiple
adaptive vacation rules. Customers arrive according to Markov
flow. The system has a main queue and an infinite buffer queue
separated by a gate. After the customers arrival, they enter the
buffer and wait for service in order. Before each service period
begins, the system has a random setup period. After the setup
period ends, the system opens the gate and customers waiting in
the buffer zone enter the main queue according to the original
order to receive the service. This paper uses tools such as the
intuitive total probability decomposition theorem, regeneration
cycle method, PGF and LST transform to analyze the system’s
queue length and waiting time.The probabilities for the server
being in the states of general service, idle, setup, and vacation
are presented individually. .

Index Terms—gated service, repairable server, setup time,
multiple adaptive vacation, batch arrival, regeneration cycle
method

I. INTRODUCTION

IN recent years, extensive research has been conducted on
the exhaustive service vacation queueing system, yield-

ing numerous satisfactory results. However, comparatively
less research has been dedicated to nonexhaustive service
queueing systems.

Leung and Eisenberg [1] built an M/G/1 queueing system
subject to gated rule. The system provides a fixed service
time to the queue at each visit. Upon completion of this
period or after service for all eligible customers, the server
stops service and starts vacation. The service mechanism is
according to the gated rule, wherein only customers who
already entered the system at the initiation of the service are
eligible for service during that particular visit, and customers
who arrive later are deferred to the next visit. Tian and Zhang
[2] summarized the research of queueing systems into two
categories: exhausted services and nonexhausted services. In
daily life, batch arrivals of customers are more realistic than
individual arrivals. Vishnevsky et al. [3] investigated a gated
service queueing system incorporating adaptive vacation. The
duration of the vacation is contingent upon the count of
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consecutive vacation finished moments at which the buffer
has no customers. Several key performance metrics including
the mean sojourn time are computed. Vishnevsky et al. [4]
studied a gated service BMAP/G/1 type queueing system
subjected to adaptive vacations. This system is effective
in solving problems in WiMax networks and broadband
wireless Wi-Fi. Dudin et al. [5] studied a gated service
BMAP/G/1 type queueing system. The length of vacations is
contingent upon the frequency of system vacancies after the
previous vacation periods. Banik and Ghosh [6] analyzed a
nonexhaustive service BMAP/R/1/N (∞) queues. The system
assumes that batch customers arrive according to Markov
processes and receive services according to gated service
discipline, and the system can provide batch services to
customers. Qi et al. [7] established a nonexhaustive queueing
system subjected to gated rule, to analyze the indicators of
light load traffic blockchain systems. Simulate the operation
mechanism of blockchain as a queuing system, and then
calculate and analyze its performance. The regeneration cycle
method and embedded Markov chain are utilized to analyze
the system’s indexes.

In the practical application of queueing systems, the
server may breakdown and cannot serve customers. Server
breakdown is an unavoidable situation. Therefore, queueing
systems with unreliable servers have received widespread
attention from scholars.

Ke and Huang [8] examined an MX/G/1 queueing sub-
jected to delayed Repair and randomized vacation. Suppose
that once the vacation concludes, the system is devoid of
customers. Subsequently, the server has two potential states.
It has a 1 − p probability of starting a new vacation and
a p probability of becoming idle. The system can take
up to Jth consecutive vacations. If the system still has no
customers after Jth consecutive vacations, the system begins
an idle period. The repair may be delayed when server
failure occurs. The distributions of significant indexes, such
as queue size and reliability indices are derived. Ayyappan
and Karpagam [9] discussed a repairable queueing with re-
service, standby server and batch arrivals. The PGF of queue
length along with other system performance indicators are
obtained. Furthermore, the specific instances are derived. A
retrial MAP/M/1 queueing system subjected to repairable
server was examined by Zhou and Zhou [10]. Quasi-birth
and death procedures are used to derive the main queueing
indices. Additionally, numerical experiments are performed
to show how the variables affect a number of performance
indexes. Kalita and Choudhury [11] analyzed an unreliable
M[X]/G/1 batch arrival queue under a randomized vacation
strategy. Customers arrival according to a compound Poisson
process, and the system offers two distinct types of services.
While the server is working it may breakdown and delay
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repair at any instant. Saggou et al. [12] built a repairable
M[X]/G/1 system subject to delays of verification, geometric
loss, special vacation and batch arrivals. The expressions of
stationary performance measures are calculated. A repairable
M[x]/GK /1 queueing was analyzed by Kalyanaraman and
Nagarajan [13]. Additionally, the server may experience
breakdown and require repair before resuming service. Jain
and Kumar [14] considered a service retrial queueing system
with vacation interruption, bulk arrival, balking and feed-
back. The server may break, but it can be repaired. The
failures of vacation service time, retrial attempts and repair
are represented by employing the supplementary variables
method. The expressions of crucial performance metrics and
PGF (Probability Generating Function) of the queue size are
obtained.

Wan and Lan [15] utilizing the total probability formula
and the LST (Laplace-Stieltjes Transform), considered some
metrics such as server failure time, unavailability, the failure
rate and average number of failures in (0, t). Reliability
indicators have been shown to meet the stochastic decom-
position property. Li and Li [16] examined a repairable
queueing system subjected to working and interruption vaca-
tion. During busy periods, negative customer arrival causes
server to breakdown. By employing the matrix-analytic and
supplementary variable methods, the system indicators are
derived. Variable arrival and failure rates were included in
the M/M/1 type queueing by Lv et al. [17]. The length of
the queue affects the rate at which consumers arrive. The
fault rate of the unreliable server varies over time. There are
reliable maintenance personnel in the system for repairs. The
stationary performance metrics of the system are analyzed.

In vacation queueing systems, multiple adaptive vacation
strategy are more commonly applied than classical vacations.
Common vacation strategies such as single and multiple
vacation are boundary cases of multiple adaptive vacations.
With multiple adaptive vacations systems, we can investigate
systems under various vacation states based on boundary
conditions.

Ma [18] considered a multiple adaptive vacation M/G/1
queueing subjected to a gated service policy by utilizing the
regeneration cycle method. The service cycle of the system is
analyzed, and The probability expression of the system at dif-
ferent stages is solved. Additionally, the stochastic decompo-
sition structure of some reliability performance indicators are
calculated. Numerical experiments are used to analyze how
various factors affect the system performance indices. Liu
et al. [19] introduced the multiple adaptive vacation into the
repairable queueing system, and the impacts of a replaceable
facility on the system reliability are also considered. Employ-
ing the probability decomposition method and renewal pro-
cess theory, the system availability, the mean failure numbers
during (0, t) and the renewal time distribution of the system
are obtained. Luo et al. [20] analyzed antypical queueing
model subjected to a delayed multiple adaptive vacation
strategy. Building upon the workload of servers and the num-
ber of customers, a modified Min(N, D) strategy is added.
Under this strategy, server interruption of vacations and begin
service when the customer count exceeds threshold N or
when the cumulative service requirement surpasses threshold
D within the vacation period. The distribution of steady state
along with transient queue length is analyzed. Qin and Tang

[21] discussed a complicated queueing subjected to a random
number of vacations, a setup and Min(N, V)-policy control.
Employing a total probability decomposition approach, the
stationary and transient distributions of the queue length are
analyzed under arbitrary initial conditions. The expression of
LST of the transient queue size is calculated.

For queuing systems with setup time, Choudhury [22]
deals with a batch arrival queueing model subjected to
random setup period. The server is shut off whenever the
idle period begins or the system is empty. The system begins
the setup and starts a busy period when customers arrival.
The stationary distribution and some system indexes are
calculated. The system’s explicit expressions as well as a
few performance metrics are obtained. Gao [23] considered
a system with single vacation, startup period and batch
arrival. The LST of sojourn time and the system’s online
period are derived, together with the PGF of queue size.
An investigation of an repairable M/G/1 queueing model
with setup period was conducted by Bu and Liu [24]. The
server may breakdown in busy and setup periods. Various
performance indexes are studied. Additionally, a cost analysis
of the system is conducted. Combined with setup time and
N-policy, Kalita and Choudhury [25] stuied a repairable
M[X]/G/1 system. The server must go through a setup period
before the service begins, and it is always shut down until
the system is empty. Ayyappan and Deepa [26] analyzed
the batch arrival M/G(a, b)/1 system subjected to admittance
control, limited service, closedown and setup period. When
the service period is finished, the customer requests for re-
service, and the system accepts the request both occur with
a certain probability. If the queue size is less than a once
a service is finished, the system shuts down and begins
vacation. When the system ends its vacation status, the server
is enabled and service is resumed if the queue size is at least
a.

The queueing rule examined in this study is gated service
within a nonexhaustive service system. In the queueing
system, the system may stop service and enter vacation. At
the end of the vacation, there may be a random setup time
before resuming service. Compared with ordinary vacation
policies, multiple adaptive vacation rules are more general.
Furthermore, this article presents two key factors: the arrival
of customers in batches and the potential for server failures
during operation. These elements are incorporated to make
the developed queueing model more related to reality. In
this study, we integrate these strategies—batch arrivals, setup
times, server failures, multiple adaptive vacations, and the
gate service rule—into an M/G/1 queueing. In the current
study no prior research has specifically addressed such a
queueing system. The analysis and computation in this paper
primarily utilize total probability decomposition and the
regeneration cycle method.

The contents of this paper are divided into the following
sections. Section II established the queueing system, pro-
viding the average number of customers at the beginning of
service period. Section III analyzed the steady state indicators
of the system. The system cycle time is given in section IV.
Some special cases of the system are provided in the section
V. The section VI is the conclusion of this paper.
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II. SYSTEM ANALYSIS

A. System Description

A repairable M/G/1 queueing system with the gated ser-
vice, setup time, batch arrival and multiple adaptive vacation
rules is considered. The following are the system’s descrip-
tions.
1) Customers arriving in bacth according to a Poisson pro-

cess with rate λ (λ > 0). The interarrival T obeys the
exponential distribution. The size of the batch is a variable
X , with the distribution xi =P(X = i), i= 1,2,3, · · · . It has

the mean E(X), the PGF X(z) =
∞

∑
i=1

xizi and the second-

order moment E(X2).
2) When the system starts serving, the system closes the

gate and only receives those customers who are already
waiting in the system. Customers who arrive in the
current service period are required to wait outside the
gate and accept services in the next service period. The
mechanism flowchart of gated service is described in Fig.
1. The service time B obeys a general distribution, which
distribution function is expressed as B(t), t ≥ 0. The
mean, second-order moment and LST of B are represented
by

E(B) =
∫

∞

0
tdB(t),

E(B2) =
∫

∞

0
t2dB(t),

B∗(s) =
∫

∞

0
e−stdB(t), ℜ(s)> 0,

where ℜ(s) is the real part of s.
3) The server experiences breakdown randomly during the

service period, breakdown occurs according to a Poisson
process with rate α(α > 0), but remains stable during
idle period. It is assumed that the server is fixed right
away once the breakdown takes place. In repair time, the
server does not provide service, and existing customers
are waiting in place. The server completes the remaining
service after its recovery. The repair time R obeys a gen-
eral distribution, which distribution function is expressed
as R(t),(t > 0). The mean, second-order moment and LST
of R are represented by

E(R) =
∫

∞

0
tdR(t),

E(R2) =
∫

∞

0
t2dR(t),

R∗(s) =
∫

∞

0
e−stdR(t).

4) Following the conclusion of the service period, the server
experiences consecutive H vacations, H is a random
variable with a positive integer. The system has the
following two types of vacation situations. If customers
arrives in the kth (k = 1,2,3, · · · ,H) vacation. The system
finishes the vacation after the kth vacation. When there
are no customer arrivals throughout H vacations, the
system finishes vacation after Hth vacation. H is con-
sidered a discrete random variable, with the distribution
h j = P{H = j} , j = 1,2,3, · · · , the PGF of H is H(z) =

∞

∑
j=1

h jz j. The single vacation time V is an independent

and identically distributed (i.i.d) random variable, which

has the distribution function V (t), the mean E(V ), the
second-order moment E(V 2) and the LST v∗(s).

5) The system includes a setup period denoted as U , before
the start of each service period. U has the distribution
function U(t), the LST u∗(s) and the mean E(U).

6) Since the server may malfunction, the actual time spent by
a single customer receiving service is the aggregate of the
regular service time and potential repair time needed. The
general service time B̃ represents the actual duration of
service for the customer. The mean, second-order moment
and LST of B̃ are given by

B̃∗(s) =
∞

∑
k=0

∫ t

0
R(k)(t − x)

(αx)k

k!
e−αxdB̃(x)

=B∗(s+α −αR∗(s)),

(1)

E(B̃) =−
(
B̃∗(s)

) ′∣∣
s=0 = (1+E(R)α)E(B),

E(B̃2) =
(
B̃∗(s)

) ′′∣∣
s=0

=E(B)E(R2)α +(1+E(R)α)2E(B2).

7) The service time, vacation time, arrival interval, setup
time, breakdown occurrence interval and repair time are
mutually independent. The system serves based on the
FCFS (First Come First Served) rule.

B. The Number of Customers at the Initial Moment of the
Service Period

The duration of nth general service period is denoted by
Sp

(n). At the initial moment of the Sp
(n), the number of

customers is denoted by Qb
(n). The Qb

(n+1) is analyzed as
follows.
1) If the system has customers arriving in Sp

(n), then the
Qb

(n+1) is equivalent to the customers arriving in Sp
(n),

V and U . Fig. 2 describes the state transition of this
situation.

2) If the system has no customers arriving in Sp
(n), but has

customers arriving in Vk, then the Qb
(n+1) is equivalent to

the customers arriving in V and U . Fig. 3 describes the
state transition of this situation.

3) If the system has no customers arriving in Sp
(n) and H

vacation periods, then the Qb
(n+1) is equivalent to the

coutomers arriving in idle period I and U . Fig. 4 describes
the state transition of this situation.

The PGF of customers arriving in U , Sp
(n) and V are

u∗(λ −X(z)λ ), Sp
∗(λ −X(z)λ ) and v∗(λ −X(z)λ ) respec-

tively. The probability that no customers arriving in Sp
(n), V

and U are Sp
(n)∗(λ ), v∗(λ ) and u∗(λ ), respectively.

At the initial moment of U , if no customers arrive in the
previous general service period, let PI denote the probability
that U commences following the ending of an idle period,
and let PV denote the probability that U commences fol-
lowing the ending of the vacation period. PI and PV are
represented by

PI =
∞

∑
j=1

P{H = j}P
{

T >V ( j)
}
= H(v∗(λ ));

PV = 1−H(v∗(λ )),
(2)

where V ( j) is the jth convolution of V (t). Using the total
probability theorem, the PGF of the count of customers at
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the initial moment of Sp
(n+1) can be obtained

Qb
(n+1)(z) =

[
v∗(λ −λX(z))(1−Sp

(n)∗(λ ))

×
Sp

(n)∗(λ −λX(z))−Sp
(n)∗(λ )

1−Sp
(n)∗(λ )

+Sp
(n)∗(λ )PV

v∗(λ −λX(z))− v∗(λ )
1− v∗(λ )

+Sp
(n)∗(λ )PIX(z)

]
u∗(λ −λX(z)).

(3)

In the system with gated service, the duration of Sp
(n) is

equivalent to the cumulative service time of customers served
in Sp

(n). Thus we have that

Sp
(n)∗(s) =

∫
∞

0
e−stdP

{
Sp

(n) < t
}

=
∞

∑
k=1

∫
∞

0
e−stdP

{
B̃1 + · · ·+ B̃k < t

}
P
{

Qb
(n) = k

}
=

∞

∑
k=1

(
B̃∗(s)

)kP
{

Qb
(n) = k

}
= Qb

(n)(B̃∗(s)).
(4)

Replacing s with λ and λ − λX(z) in (4) respectively, we
have that

Sp
(n)∗(λ ) = Qb

(n)(B̃∗(λ )),

Sp
(n)∗(λ −λX(z)) = Qb

(n)(B̃∗(λ −λX(z)).
(5)

Substituting (2) and (5) into (3) , it is evident that

Qb
(n+1)(z) =

[
(1−Qb

(n)(B̃∗(λ )))v∗(λ −λX(z))

Qb
(n)(B̃∗(λ −λX(z)))−Qb

(n)(B̃∗(λ ))

1−Qb
(n)(B̃∗(λ ))

+Qb
(n)(B̃∗(λ ))(1−H(v∗(λ )))

× v∗(λ −λX(z))− v∗(λ )
1− v∗(λ )

+Qb
(n)(B̃∗(λ ))

×H(v∗(λ ))X(z)

]
u∗(λ −λX(z)).

(6)

When system reaches a stable state, we have

Qb
(n+1)(z)→ Qb(z),

(6) simplified as

Qb(z) =u∗(λ −λX(z))

[
Qb(B̃∗(λ −λX(z)))

× v∗(λ −λX(z))+Qb(B̃∗(λ ))

×

(
1−H(v∗(λ ))

1− v∗(λ )
(v∗(λ −λX(z))− v∗(λ ))

+H(v∗(λ ))X(z)− v∗(λ −λX(z))

)]
.

(7)

Taking the derivative of (7) and letting z = 1, the average of
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Qb can be obtained

E(Qb) =(Qb(z))
′∣∣

z=1

=
Qb(B̃∗(λ ))E(X)

(1− v∗(λ ))(1− ρ̃)
[λE(V )(v∗(λ )

−H(v∗(λ )))+H(v∗(λ ))(1− v∗(λ ))]

+
(λE(U)+λE(V ))E(X)

1− ρ̃
,

(8)

where the traffic intensity

ρ̃ = λE(B̃)E(X) = λ (1+E(R)α)E(B)E(X).

III. THE STATIONARY ANALYSIS OF SYSTEM

A. The Stationary Condition of System

1) The Mean of Length of Service Period: The duration
of the general service period is the aggregate of service time
of all customers during in Sp. By using (8), the E(Sp) can
be obtained

E(Sp) =− (Sp
(n)∗(s))′

∣∣∣
s=0

=− (Qb(B∗(s)))′(B∗(s))′
∣∣
s=0 = E(Qb)E(B̃).

(9)

2) The Mean of Length of Vacation Period: The count
of vacations the server takes is denoted by random J. The
continuous vacation series J is a random variable, which is
given by

J = min
{

k : V k−1 < T <V k, H
}
.

The definition of J leads us to the conclusion that

P{J ≥ j}= P
{

V ( j−1) ≥ T
}

P{H ≥ j}

= (v∗(λ )) j−1
∞

∑
k= j

hk, j ≥ 2;

P{J ≥ 1}= 1.

The PGF of continuous vacation series J is calculated by

J(z) = 1+(1− 1
z
)

∞

∑
j=1

z jP{J ≥ j}

= 1− (1− z)(1−H(zv∗(λ )))
1− zv∗(λ )

.

Therefore, the LST of the duration of continuous vacation
period Vh can be obtained

Vh
∗(s) = J(v∗(s)) = 1− (1− v∗(s))(1−H(v∗(λ )v∗(s)))

1− v∗(λ )v∗(s)
.

The mean of Vh is given by

E(Vh) = −(Vh
∗(s))′

∣∣
s=0 =

1−H(v∗(λ ))
1− v∗(λ )

E(V ). (10)

3) The Mean of Length of Idle Period: If the system has
no customer arriving in the general service period and the
H consecutive vacation periods. The system starts the idle
period after H vacations. The duration of the idle period is
the interarrival of one customer. The mean of I is calculated
by

E(I) =
Sp

∗(λ )H(v∗(λ ))
λ

=
Qb(B̃∗(λ ))H(v∗(λ ))

λ
. (11)

4) Stability Condition of System: For a nonexhaustive
queueing system, the equilibrium condition is that the aver-
age count of customers arriving in service cycle is lower than
served in the general service period. Regarding the queueing
system depicted in this paper, a service cycle includes the
general service, vacation and setup periods. The amount of
customers served in Sp defined as Φ, i.e. Qb = Φ. From this
relation, we obtain that

λ (E(V )+E(Sp)+E(U))< E(Φ). (12)

Substituting (8) and (9) into (12), It can be presented that

0 <
λ (E(U)+E(V ))(E(X)−1)(v∗(λ )−1)

(v∗(λ )−1)(1− ρ̃)

+
(1−λE(B̃))Qb(B̃∗(λ ))E(X)

(v∗(λ )−1)(ρ̃ −1)
[H(v∗(λ ))

× (1− v∗(λ ))+(v∗(λ )−H(v∗(λ )))λE(V )].

(13)

Due to
1−E(X)< 0;

0 < v∗(λ )< 1;

H(v∗(λ )) =
∞

∑
j=1

(v∗(λ )) jh j.

It can be obtained that

H(v∗(λ ))< v∗(λ ). (14)

From (14), it can be concluded that inequality (12) holds.
For inequality (13) to hold, 1− ρ̃ > 0 is required. Therefore,
the system can stabilize, and the stability condition becomes
1− ρ̃ > 0.

B. Analysis of Stationary Queue Length

Theorem 1 When ρ̃ < 1, the queue length Lv is equal to
the aggregate of two parts Lv = L+Ld , where L and Ld are
independent variables. The one part L is the queue length
of the repairable MX/G/1 queueing system, and its PGF is
represented as

L(z) = B̃∗(λ −λX(z))
(1− z)(1− ρ̃)

B̃∗(λ −λX(z))− z
. (15)

The other part Ld is the additional queue length, and its PGF
represented as

Ld(z) =
1

η − zη
(1− v∗(λ ))

[
Qb(B̃∗(λ −λX(z)))

× (1− v∗(λ −λX(z)))u∗(λ −λX(z))

−u∗(λ −λX(z))Qb(B̃∗(λ ))

×

(
(1−H(v∗(λ )))

v∗(λ )−1
(v∗(λ )− v∗(λ −λX(z)))

+X(z)H(v∗(λ ))− v∗(λ −λX(z))

)]
,

(16)

where

η =Qb(B̃∗(λ ))E(X)[(1− v∗(λ ))H(v∗(λ ))

(v∗(λ )−H(v∗(λ )))λE(V )]

+λE(X)(E(U)+E(V ))(1− v∗(λ )).
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Proof In the general service period, the amount of customers
remaining in the system when the nth customer leaves is
denoted as Ln. Hence,

Ln = Qb −n+
n

∑
k=1

Ak, n = 1,2, · · · ,Φ,

where Ak is the amount of customers arriving in general ser-
vice period of the kth customer. Note that Ak(k = 1,2, · · · ,Φ)
are i.i.d, which PGF A(z) = B̃∗(λ −λX(z)). Then

E

(
Φ

∑
n=1

zLn

)
=E

(
Qb

∑
n=1

zQb−n(B̃∗(λ −λX(z)))n

)

=
B̃∗(λ −λX(z))

B̃∗(λ −λX(z))− z
× (Qb(B̃∗(λ −λX(z))−Qb(z))

=
B̃∗(λ −λX(z))

B̃∗(λ −λX(z))− z

[
Qb(B̃∗(λ −λX(z)))

× (1−u∗(λ −λX(z))v∗(λ −λX(z)))

−Qb(B̃∗(λ ))u∗(λ −λX(z))

×
(
(v∗(λ −λX(z))− v∗(λ ))

(H(v∗(λ ))−1)
v∗(λ )−1

+H(v∗(λ ))X(z)− v∗(λ −λX(z))
)]

.

By using regeneration cycle method, the PGF of queue length
can be obtained

Lv(z) =
E
(

Φ

∑
n=1

zLn

)
E(Φ)

=B̃∗(λ −λX(z))
(1− z)(1− ρ̃)

B̃∗(λ −λX(z))− z

× 1− v∗(λ )
η − zη

[
(1−u∗(λ −λX(z))

× v∗(λ −λX(z))Qb(B̃∗(λ −λX(z)))

−Qb(B̃∗(λ ))u∗(λ −λX(z))

×
(
(v∗(λ )− v∗(λ −λX(z)))

(1−H(v∗(λ )))
v∗(λ )−1

+H(v∗(λ ))X(z)− v∗(λ −λX(z))
)]

=L(z)×Ld(z).

(17)

Now, substituting (5) into (17), it can be given the final result
of the PGF of Lv.

From the results of the stochastic decomposition, the E(Lv)
can be obtained

E(Lv) = E(L)+E(Ld).

Taking the derivative of (15) and letting z = 1, the average
of L can be obtained

E(L) =(L(z))′
∣∣
z=1

=ρ̃ +
1

2−2ρ̃

[
λ

2E(X)2(E(B)E(R2)α

+(1+αE(R))2E(B2))+λE(B)

× (1+αE(R))E(X2)

]
.

(18)

Taking the derivative of (16) and letting z = 1, the average
of Ld can be obtained

E(Ld) =(Ld(z))
′∣∣

z=1

=
λρ̃

η
(E(V )+E(U))E(X)E(Qb)(1− v∗(λ ))

+
λ

2η
(1− v∗(λ ))[λE(X)2(E(U2)+E(V 2)

+2E(U)E(V ))+E(X2)(E(U)+E(V ))]

+
λ

2η
Qb(B̃∗(λ ))(v∗(λ )−H(v∗(λ )))

× (2λE(X)2E(U)E(V )+λE(X)2E(V 2)

+E(X2)E(V ))+
1

2η
Qb(B̃∗(λ ))H(v∗(λ ))

× (1− v∗(λ ))(2λE(X)2E(U)+E(X2)).

(19)

From (18) and (19), it is easy to get the mean of Lv is

E(Lv) =E(L)+E(Ld)

=ρ̃ +
1

2−2ρ̃

[
λ

2E(X)2(αE(B)E(R2)

+(1+αE(R))2E(B2))+λE(B)

×E(X2)(1+αE(R))
]
+

λρ̃

η
E(X)E(Qb)

× (E(U)+E(V ))(1− v∗(λ ))+
λ

2η

× (1− v∗(λ ))[λE(X)2(E(U2)+E(V 2)

+2E(U)E(V ))+E(X2)(E(U)+E(V ))]

+
λ

2η
Qb(B̃∗(λ ))(v∗(λ )−H(v∗(λ )))

× (2λE(X)2E(U)E(V )+λE(X)2E(V 2)

+E(X2)E(V ))+
1

2η
Qb(B̃∗(λ ))H(v∗(λ ))

× (1− v∗(λ ))(2λE(U)E(X)2 +E(X2)).

(20)

C. Analysis of Stationary Waiting Time

Theorem 2 When ρ̃ < 1, the waiting time W is equal to
the aggregate of two parts Wv = W +Wd , where W and Wd
are independent variables. The part W is the waiting time
of the repairable MX/G/1 queueing system, and its LST is
represented as

W ∗(s) =
s− ρ̃s

λX(B̃∗(s)))−λ + s
.

The other part Wd is the additional delay, and its LST is
represented as

W ∗
d (s) =

1−X(B̃∗(s)))
x(1− B̃∗(s)))

× λ −λv∗(λ )
sη

×

[
Qb(X(B̃∗(s)))(1−u∗(s)v∗(s))

−u∗(s)Qb(X(B̃∗(λ )))

×
(
(v∗(s)− v∗(λ ))(1−H(v∗(λ )))

1− v∗(λ )

+
(λ − s)H(v∗(λ ))

λ
− v∗(s)

)]
.
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Proof Assuming a batch of customers arriving simultane-
ously constitutes a super customer, the performance metrics
of a super customer in an M/G/1 system are differentiated
using subscript a, contrasting with an MX/G/1 system.

In this system, the waiting customers are selected ran-
domly, thus the waiting time of one customer comprises two
independently composed periods. One part is the waiting
time WX while the customer belongs to a super customer,
and the super customer has not received service. The LST
of the WX is denoted by W ∗

X (s). The other part is the waiting
time Wx within the super customer, and its LST is denoted
by W ∗

x (s).
The Poisson arrival process has independent incremental

characteristics. Within the service period, the waiting time
is not associated with the arrival process. The PGF of the
service time of single super customer is

B̃∗
a(z) =

∞

∑
k=1

[B̃∗(s)]kxk = X(B̃∗(s)). (21)

After providing service to a super customer, the PGF of the
amount of super consumers is supplied by

LX (z) =
(1− ρ̃)B̃∗

a(λ −λXa(z))(1− z)
B̃∗

a(λ −λXa(z))− z

× 1− v∗(λ )
η − zη

[
Qb(B̃∗

a(λ −λXa(z)))

× (1−u∗a(λ −λXa(z))v∗a(λ −λXa(z)))

−u∗a(λ −λXa(z))Qb(B̃∗
a(λ ))

((
1−

H(v∗(λ ))
)v∗a(λ −λXa(z))− v∗(λ )

1− v∗(λ )

+H(v∗(λ ))Xa(z)− v∗a(λ −λXa(z))
)]

.

(22)

Because the super customer in (22) is regarded as one
customer, Xa(z) = z is established. For a single customer,
the waiting time does not affect the arrival process after its
arrival. we have that

LX (z) =Wa
∗(λ −λXa(z))B̃∗

a(λ −λXa(z)). (23)

Substituting (22) into (23) and letting λ − λXa(z) = s, we
have that

W ∗
X (s) =

(1− ρ̃)s
λX(B̃∗(s))−λ + s

× λ

sη
(1− v∗(λ ))

×

[
Qb(X(B̃∗(s)))(1−u∗(s)v∗(s))−u∗(s)

×Qb(X(B̃∗(λ )))

(
− v∗(s)+

v∗(s)− v∗(λ )
1− v∗(λ )

× (1−H(v∗(λ )))+
(λ − s)H(v∗(λ ))

λ

)]
(24)

Among single super customer, assuming the number of
customers preceding a waiting customer is denoted as Xb.
By the renewal processes, The gap between two successive
update points equals the batch size X . The probability
distribution and PGF of Xb are respectively

P(Xb = k) =
1
x

P(X > k),

Xb(z) =
∞

∑
k=0

P(Xb = k)zk =
1
x

∞

∑
k=0

zk
∞

∑
i=k+1

xi =
x− xX(z)

1− z
.

The LST of Wx can be obtained

W ∗
x (s) = Xb(B̃∗(s)) =

1−X(B̃∗(s))
x(1− B̃∗(s))

. (25)

Because parts WX and Wx are independent, by using (24) and
(25) the LST of the waiting time is

W ∗
v (s) =W ∗

X (s)×W ∗
x (s)

=
s− ρ̃s

λX(B̃∗(s))−λ + s
× λ −λX(B̃∗(s))

sηx− sηxB̃∗(s)

× (1− v∗(λ ))

[
Qb(X(B̃∗(s)))(1−u∗(s)v∗(s))

−u∗(s)Qb(X(B̃∗(λ )))

(
H(v∗(λ ))(λ − s)

λ

+
(v∗(s)− v∗(λ ))(1−H(v∗(λ )))

1− v∗(λ )
− v∗(s)

)]
=W ∗(s)×W ∗

d (s).

(26)

Taking the derivative of (26) and letting s = 0, the mean of
Wv can be obtained

E(Wv) =− (W ∗
v (s))

′∣∣
s=0

=
1

2−2ρ̃
[λE(X)2(αE(R2)E(B)

+(1+αE(R))2E(B2))+E(B̃)E(X2)]+
ρ̃

η

× (1− v∗(λ ))E(X)E(Qb)(E(U)+E(V ))

+
1

2η
(1− v∗(λ ))[λE(X)2(E(U2)+E(V 2)

+2E(U)E(V ))+E(X2)(E(U)+E(V ))]

+
1

2η
Qb(B̃∗(λ ))(v∗(λ )−H(v∗(λ )))

× (2λE(X)2E(U)E(V )+λE(X)2E(V 2)

+E(X2)E(V ))+
1

2λη
Qb(B̃∗(λ ))H(v∗(λ ))

× (1− v∗(λ ))(2λE(X)2E(U)+E(X2))

=E(W )+E(Wd).

(27)

IV. SYSTEM CYCLE ANALYSIS

The cycle C of the system is represented by the during
interval between the moment when one general service
period begins and the moment when the next general service
period begins, including Sp, I, U and V . From (9), (10), and
(11), it is easy to get the mean of C is

E(C) =E(Vh)+E(Sp)+E(I)+E(U)

=
Qb(B̃∗(λ ))ρ̃[(v∗(λ )−H(v∗(λ )))λE(V )]

(λρ̃ −λ )(v∗(λ )−1)

+
Qb(B̃∗(λ ))ρ̃H(v∗(λ ))(1− v∗(λ ))

(1− v∗(λ ))(λ −λρ̃)

+
ρ̃E(U)+ ρ̃E(V )

(1− ρ̃)
+

E(V )(1−H(v∗(λ )))
1− v∗(λ )

+
Qb

(n)(B̃∗(λ ))H(v∗(λ ))
λ

+E(U)

=
β

λ (1− v∗(λ ))(1− ρ̃)
,

(28)

IAENG International Journal of Applied Mathematics

Volume 55, Issue 5, May 2025, Pages 1419-1427

 
______________________________________________________________________________________ 



where

β =ρ̃Qb(B̃∗(λ ))[(v∗(λ )−H(v∗(λ )))λE(V )

+H(v∗(λ ))(1− v∗(λ ))]+λρ̃(E(U)+E(V ))

× (1− v∗(λ ))+(1− ρ̃)[Qb(B̃∗(λ ))H(v∗(λ ))

× (1− v∗(λ ))+λ (1−H(v∗(λ )))E(V )(1− v∗(λ ))

+λE(U)(1− v∗(λ ))].

In steady state, the probabilities that the system is in Sp,
I, V and U are denoted by PB̃, PI , PV and PU , respectively.
We obtain that

PB̃ =
E(Sp)

E(C)
=

ρ̃

β
Qb(B̃∗(λ ))[(v∗(λ )−H(v∗(λ )))

×λE(V )+H(v∗(λ ))(1− v∗(λ ))]

+
λρ̃

β
(E(U)+E(V ))(1− v∗(λ ));

PI =
E(I)
E(C)

=
Qb(B̃∗(λ ))H(v∗(λ ))(1− v∗(λ ))(1− ρ̃)

β
;

PV =
E(Vh)

E(C)
=

λ

β
(1−H(v∗(λ )))(1− v∗(λ ))(1− ρ̃)E(V );

PU =
E(U)

E(C)
=

λ

β
(E(U)− ρ̃E(U))(1− v∗(λ )).

V. SPECIAL CASES

For the queueing system, some special queueing systems
can be obtained by determining certain variables. If the
random variable H → ∞ or H = 1, a multiple or single
vacation queueing system with gated service are considered,
respectively.

A. Special Case 1

For the queueing system, if the count of vacations tends
to infinity ( i.e. H → ∞ ), a repairable MX/G/1 queueing
with gated service, setup period and multiple vacations is
acquired. Under this condition, H(z) = 0. For this queueing
system, the L1(z) and W ∗

1 (s) are respectively as

L1(z) =
B̃∗(λ −λX(z))(1− ρ̃)

η1B̃∗(λ −λX(z))−η1z)
× [Qb(B̃∗(λ −λX(z))

× (1− v∗(λ ))(1−u∗(λ −λX(z))v∗(λ −λX(z)))

+u∗(λ −λX(z))Qb(B̃∗(λ ))v∗(λ )

× (1− v∗(λ −λX(z)))];

W ∗
1 (s) =

1− ρ̃

λX(B̃∗(s))−λ + s
× λ −λX(B̃∗(s))

η1x−η1xB̃∗(s))
×
[
Qb(X(B̃∗(s)))(1− v∗(λ ))(1−u∗(s)v∗(s))

+Qb(X(B̃∗(λ )))v∗(λ )u∗(s)(1− v∗(s))
]
,

where

η1 =λE(X)
[
Qb(B̃∗(λ ))v∗(λ )E(V )+(1− v∗(λ ))

× (E(U)+E(V ))
]
.

B. Special Case 2

For the queueing system, let the count of vacations be 1
( i.e. H = 1 ), and a repairable MX/G/1 queueing with gated
service, setup period and single vacation is acquired. Under
this condition, H(z) = z. For this queueing system, the L2(z)
and W ∗

2 (s) are respectively as

L2(z) =B̃∗(λ −λX(z))
(1− ρ̃)

η2B̃∗(λ −λX(z))−η2z
× (1− v∗(λ ))

[
(1−u∗(λ −λX(z))

× v∗(λ −λX(z)))Qb(B̃∗(λ −λX(z)))

+Qb(B̃∗(λ ))v∗(λ )u∗(λ −λX(z))(1−X(z))
]
;

W ∗
2 (s) =

(1− ρ̃)

λX(B̃∗(s))−λ + s
× λ −λX(B̃∗(s))

η2x−η2xB̃∗(s))
× (1− v∗(λ ))

[
Qb(X(B̃∗(s)))(1−u∗(s)v∗(s))

+Qb(X(B̃∗(λ )))v∗(λ )u∗(s)
s
λ

]
,

where

η2 =(E(X)− v∗(λ )E(X))
[
λ (E(U)+E(V ))

+Qb(B̃∗(λ ))v∗(λ )
]
.

From the derivation of the specific indicators of the two
special cases mentioned above, we can see that all results
for the queueing system and its special cases 1 and 2 in
this paper are consistent with reference [2] and [18], which
further confirms the system’s accuracy and viability in this
paper.

VI. CONCLUSION

The gated service, repairable servers, batch arrival, setup
time and multiple adaptive vacation rules are introduced
into the M/G/1 queueing system. The average number of
customers is calculated at the initial moment of the general
service period. The PGF of the queue length is analyzed by
employing the regeneration cycle method, and the LST of the
waiting time is computed by the independence of the waiting
time from the arrival time interval. The average queue length
and waiting time of the customers are obtained, and the
random decomposition results are provided. Furthermore, the
stability condition and average cycle time are given.The like-
lihoods of the system being in diverse states are calculated.
Finally, by controlling the random variable H, the queueing
system is transformed into several special systems, and the
obtained results are consistent with those in the reference
literature. Hence, verified the reliability of the results in this
paper.

The exponential distribution in this paper can be extended
to more general distributions such as geometric distribution,
PH distribution, etc, to establish a more comprehensive
theoretical framework for multiple adaptive vacation queue-
ing systems. Moreover, using iterative programs to obtain
approximate solutions for Qb(B̃∗(λ )), depicting the trend of
steady state indicators as parameters change, and then using
this system to analyze and optimize practical problems.
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