
 

  

Abstract—To address the issue of urban "garbage siege" 

and promote low-carbon garbage collection and transportation, 

this study constructs a garbage collection and transportation 

optimization model that integrates vehicle capacity and time 

window constraints, aiming at minimizing fixed costs, 

operating costs and carbon emission costs. The study 

introduces the carbon tax mechanism and analyzes the effects 

of vehicle weight and load on fuel consumption and carbon 

emissions. Aiming at the NP-hard nature of the problem and 

the dynamic characteristics of carbon emission, a variety of 

large-neighborhood search operators for destruction and 

repair solutions are designed, and the destruction-repair large-

neighborhood search operators are integrated into the 

improved genetic algorithm in order to enhance the 

algorithm's global search capability, and to improve the 

efficiency and accuracy of the solution. Meanwhile, a sensitivity 

analysis of the carbon tax price was conducted to explore its 

impact on cost-effectiveness. The empirical analysis is based on 

the waste collection and transportation data of a transfer 

station in Wuhan City, Hubei Province, to verify the 

effectiveness of the model and algorithm. The results show that, 

with the proposed optimization strategy, the waste collection 

distance is reduced by 7.3% compared with the pre-

optimization period, and the carbon emission cost and 

collection cost are reduced by 1.28% and 1.33%, respectively. 

This work provides a scientific framework for optimizing 

urban waste logistics, offering significant economic and 

environmental benefits. 

 

Index Terms—waste collection and transportation 

optimization, low carbon-based transportation, hybrid meta-

heuristic algorithm, carbon tax. 
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I. INTRODUCTION 

ITH the rapid development of China's economy and 

urbanization at the beginning of the 21st century, 

municipal solid waste production has shown a significant 

growth trend, with an annual output of more than 100 

million tons. This growth has led to the phenomenon of 

"garbage surrounding the city," which has gradually become 

a major factor threatening the health of citizens and severely 

restricting the sustainable development of cities. The 

Chinese government has implemented several waste 

separation policies to address this challenge and promote 

resource conservation and environmental protection. 

However, the implementation of waste separation has been 

inconsistent across the country, especially in remote areas, 

where irrational mixing of waste collection and 

transportation is still prevalent, reducing the efficiency of 

resource recycling and exacerbating the problem of 

environmental pollution. In addition, the waste collection 

and transportation cost has accounted for more than half of 

the total management cost above, highlighting the urgency 

of optimizing vehicle routes and staffing. 

The sorted garbage collection path problem, essentially 

the Vehicle Routing Problem (VRP), was first proposed by 

Dantzig et al. (1959). This problem encompasses various 

constraints, including vehicle capacity and time 

constraints[1]. To address these challenges, researchers both 

domestically and internationally have conducted extensive 

studies on methods to optimize path selection, aiming to 

enhance operational efficiency and cost-effectiveness by 

incorporating environmental and economic considerations. 

Ahkamiraad et al. (2018) modeled the vehicle routing 

challenge with capacity and scheduling constraints, utilizing 

multiple intersecting bins and incorporating hybrid genetic 

and particle swarm algorithms for its solution[2]. Lahyani et 

al. (2019) introduced an adaptive large-neighborhood search 

strategy, integrating a local optimization approach within a 

hybrid meta-heuristic framework to enhance problem-

solving efficiency. They demonstrated the effectiveness of 

this methodology through computational experiments[3]. Hu 

et al. (2018) designed a strategy combining an improved 

genetic algorithm for global search and simulated annealing 

for local optimization to solve the problem based on the 

demand-splittable problem to minimize the total distance 

with vehicle capacity constraints[4]. Matijević et al. (2024) 

used a mixed integer programming model to solve the 
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asymmetric vehicle path problem. Path optimization is 

performed by meta-heuristic algorithms such as Multi-Start 

Local Search (MLS), Greedy Random Adaptive Search 

Procedure (GRASP), and Generalized Variable 

Neighborhood Search (GVNS). The results show that 

GVNS performs well in improving the efficiency and 

quality of the solution and can effectively deal with complex 

transportation optimization requirements[5]. Rizkiani et al. 

(2024) investigated the vehicle path problem for multiple 

trips and simultaneous deliveries and pickups of buckets of 

water. The model was solved using a forbidden search 

algorithm combining Saving Matrix and Nearest Neighbor, 

and the results showed a significant cost reduction. In 

addition, through sensitivity analysis, the study evaluates the 

specific impact of different operations on the cost, thus 

enhancing the robustness and adaptability of the model[6].  

With increasing environmental protection awareness, the 

green vehicle path problem has received extensive attention 

from scholars, intending to save energy and reduce 

emissions through rational scheduling and different path 

optimization strategies. Xiao et al. (2017) addressed the 

constraints of urban subregions and vehicle types, 

formulating a path optimization model that minimizes 

carbon output and transportation costs, and introduced a 

variable domain search algorithm for solving the model[7]. 

Zhou et al. (2023) examined the impact of incident speed 

and real-time load variations on carbon emissions, and 

developed a dual-objective green vehicle path model that 

incorporates time-dependent and simultaneous delivery 

constraints, alongside a hybrid algorithm based on NSGA-II 

and extensive neighborhood search techniques for model 

resolution[8]. Cui et al. (2023) considered the problem of 

non-mixing of some goods in the distribution process and 

classified three types of priority delivery: non-priority 

pickup and delivery, non-priority pickup, and delivery 

according to customer demand. They established the green 

VRP model of priority delivery with the minimum total cost 

and developed a hybrid heuristic approach to address the 

challenge[9]. Zhai et al. (2024) introduced a snow-melt 

heuristic algorithm to optimize the green low-carbon 

logistics path, which improved the convergence speed and 

reduced the local optimum problem. The cost is reduced, 

and a well-designed objective function minimizes 

environmental impact. The efficiency and practicality of the 

algorithm were validated using simulation-based assessmen-

ts[10]. Jabir et al. (2017) developed an integer linear 

programming model integrating economic and 

environmental objectives to optimize green logistics paths, 

resulting in a dual optimization of costs and environmental 

impacts[11]. Peng et al. (2021) addressed the passenger 

route optimization problem using a Genetic Algorithm (GA) 

and Monte Carlo simulation, incorporating constraints such 

as travel cost, number of interchanges, and the goal of 

minimizing the total travel time[12]. Mu et al. (2022) 

optimized the multi-warehouse green vehicle path problem 

with an improved adaptive large neighborhood search 

algorithm (ALNS), with a special introduction of the 

destruction operator to reduce carbon emissions. The 

algorithm was shown to significantly improve the 

computational efficiency and accuracy through simulation 

experiments[13].  

MCVRP, a combinatorial optimization problem derived 

from VRP, is particularly difficult to solve. Ilon et al. (2017) 

proposed a two-stage task path optimization algorithm that 

generates tasks in the first stage, assigns characters in the 

second stage. They enhanced a genetic approach to optimize 

the assignment problem and validate the algorithm’s 

efficiency[14]. Reed et al. (2014) applied the ant colony 

optimization method to the multi-compartment vehicle 

routing problem, solving the vehicle path optimization 

challenge with capacity constraints for household waste 

collection, and suggested that k-means clustering 

significantly enhances solution efficiency[15]. Akhtar et al. 

(2017) introduced an enhanced backtracking search 

algorithm that employs the bright bin concept to identify the 

optimal waste collection routing solution for the capacitated 

VRP[16]. Liu et al. (2024) developed an optimization model 

aimed at reducing vehicle, energy, and cooling costs for the 

multi-compartment electric vehicle routing problem 

(MCEVRP-PP). The model utilizes an innovative hybrid ant 

colony optimization (HACO) technique, which notably 

improves path planning flexibility, lowers operational costs, 

and boosts vehicle utilization efficiency[17]. Li et al. (2023) 

clustered waste nodes based on the spatiotemporal 

distribution pattern, introduced a carbon tax system to 

evaluate carbon emissions, and developed a low-carbon 

waste management model aimed at minimizing overall costs. 

They also designed an enhanced ACO algorithm to solve the 

model[18]. Xiao et al. (2023) introduced a multi-cycle and 

multi-compartment vehicle routing model for waste sorting 

and collection. The goal of this model is to minimize total 

costs while considering factors such as timeliness and the 

multi-compartment nature of the vehicles. They employed 

an enhanced adaptive large neighborhood search (ALNS) 

method, structured in two stages, to solve the problem[19]. 

Rattanawai et al. (2024) optimized the waste collection 

routes for the northern Thailand region of Khao Kho and 

proposed a differential evolutionary approach to address the 

model[20]. 

The Multi-Compartment Vehicle Routing Problem with 

Time Windows (MCVRPTW) extends the classical Multi-

Compartment Vehicle Routing Problem (MCVRP) by 

incorporating time window constraints. Zhou et al. (2021) 

analyzed the effect of vehicle load on carbon emissions and 

developed a green waste collection and transportation 

optimization model to determine the shortest route while 

minimizing emissions. Additionally, they introduced an 

enhanced DMBSO approach to refine the model’s 

performance, verifying its robustness and applicability[21]. 

Shen et al. (2024) proposed a two-layer optimization model 

to address the siting and routing challenges in medical waste 

management and transportation, utilizing simulated 

annealing and an improved harmonic search algorithm. The 

model integrates the reliability assessment of loading and 

travel time, effectively improving the system's safety and 

efficiency[22]. (Peña D et al., 2024) integrated battery range 

and load limitations into a waste collection optimization 

model and developed an energy consumption model that 

combined route height, vehicle speed, and collection 

operations. By optimizing the routes with a genetic 

algorithm, the model significantly improves efficiency in 

applications in New York City and Puerto Real[23]. 
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The Flexible Multi-Cabin Vehicle Routing Problem with 

Time Windows (FMCVRPTW) extends the MCVRPTW, 

adapting it to the specific requirements of waste collection 

and transportation in China. This study develops an 

optimization model using mixed integer linear programming, 

leveraging waste collection and transportation data from a 

transfer station in Wuhan, Hubei Province. The model aims 

to minimize operational costs and carbon emissions, while 

also addressing the complexities of municipal solid waste 

management and the NP-hard nature of the problem. It 

combines an enhanced genetic algorithm with an adaptive 

neighborhood search strategy, improving solution efficiency. 

The integrated carbon tax mechanism examines the impact 

of vehicle loads on energy consumption and carbon 

emissions, with the goal of reducing fuel use and CO2 

output. The model’s performance was tested in practical 

scenarios, showing that the proposed approach can 

significantly lower both operating costs and carbon 

emissions. 

In contrast, the visualization results of the vehicle 

scheduling optimization scheme show the effectiveness and 

adaptability of the designed algorithm. This research 

supports constructing a "double carbon target" and 

"garbage-free city." It provides complete garbage collection 

and transportation solutions for sustainable urban 

development and environmental protection. 

The main contributions of this paper are as follows: 

(1) We examine the components of each optimization 

objective, establish an FMCVRPTW model, and introduce a 

carbon tax mechanism to promote low-carbon operation. 

(2) A hybrid technique combining genetic algorithms and 

adaptive neighborhood search (GA-ALNS) is applied to 

tackle the optimization task. The results demonstrate a 

significant improvement in solution efficiency and quality. 

Solomon's standard case test confirmed the superiority of 

the GA-ALNS in optimizing waste collection and 

transportation.  

(3) An empirical analysis using Wuhan as an example 

shows that the optimized system effectively reduces 

operation cost, driving distance, and carbon emissions, 

which has significant economic and environmental benefits. 

 

II.  PROBLEM DESCRIPTION AND MODEL 

A. Problem Description 

The low-carbon collection path optimization problem for 

garbage vehicles with flexible compartments can be 

described as follows: a garbage transfer station is known to 

have a collection vehicle, S, responsible for collecting 

domestic garbage in a particular area. In a time cycle, one or 

more vehicles with flexible compartments (Vehicles, with 

adjustable compartments) Vehicles are assigned to each 

drop-off point to collect various types of waste, while both 

the transfer station and drop-off locations are bound by 

specific time windows. After collecting waste from all 

points, vehicles return to the transfer station, ensuring 

compliance with capacity and scheduling requirements. In 

this context, a waste collection optimization model with 

flexible compartments is developed to minimize vehicle 

operating costs, fixed expenses, and carbon emissions. 

B. Problem Assumptions  

Considering the complexity of the actual situation and the 

solvability of the model, the following key assumptions are 

made to simplify the problem and ensure the rationality of 

the model: 

1) There is only one garbage transfer station in the region 

responsible for all the garbage drop-off points. 

2) All the garbage collection vehicles start and end at the 

garbage transfer station, i.e., they start from the garbage 

transfer station, visit each garbage drop-off point, and return. 

3) Each vehicle travels at a constant speed with no road 

irregularities. 

4) The waste equivalent generated at the drop-off points is 

always less than their maximum capacity limit and does not 

exceed the maximum vehicle load limit. 

5) Multiple drop-off points can be visited by one vehicle, 

but each can be visited by only one vehicle. 

6) The bulkhead adjustment time of the refuse collection 

vehicle is fixed and negligible. 

 

C. Symbols Definition 

A detailed description of the sets and variables involved is 

required before constructing the FMCVRPTW model. The 

relevant definitions are given below. 

 

Sets 

 N: the set of garbage drop-off points and waste transfer 

stations, N = {0,1,2,3,..n,n+1}, where 0 denotes the 

waste transfer station and n+1 denotes the virtual waste 

transfer station returned after each visit to the garbage 

drop-off point  

 I: the set of garbage drop-off points, I = {1,2,3,..n} 

 K: the set of vehicles 

 E: the number of times each vehicle travels, E={1,2,..e} 

 D: the set of four garbage, D = {1,2,3,4} 

 

Parameters 

 fk: fixed costs for vehicle k (CNY) 

 : time taken to load unit volume of waste (min/kg) 

 tij: time consumed by a vehicle driving away from node 

i to reach node j (min) 

 Q: maximum vehicle weight (kg) 

  : CO2 emission factors (kg/L) 

 P: unit fuel price (CNY/L) 

  : carbon emissions per unit of waste collected and 

transported, per unit of distance traveled (kg/km) 

 ul
ike: type l waste loading at trip e when vehicle k leaves 

node i (kg) 

 qd
j: current quantity of garbage awaiting transportation 

at drop-off point j (kg) 

 wike: the moment when vehicle k reaches node i in the eth 

trip (min) 

 (ul
ike): fuel consumption per unit distance for category l 

waste loads as the waste collection vehicle drives away 

from node i and during the drive towards node j (L/km) 

Decisionvariables 

 xijke: If vehicle k drives from node i to node j for the eth  

time, xijke =1; otherwise xijke =0. 

 Gk: The kth garbage collection vehicle is in service,then         

Gk =1; otherwise Gk =0. 
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D. Optimization Objective Definition 

In this section, we examine the optimization goals. One of 

the primary objectives is to minimize fixed costs, which 

encompass vehicle maintenance, depreciation, and employee 

wages, irrespective of distance and time. The total cost is 

defined as:  

 
1

1

E =
K

k k

k

f G
=

   (1) 

The second objective function is the transportation cost of 

the garbage collection vehicle, which is mainly related to 

fuel consumption and transportation distance. The fuel 

consumption per unit collection distance of the garbage 

collection vehicle is mainly related to the garbage's loaded 

weight at the time of collection[24], so the fuel consumption 

when the vehicle's loaded weight is X is defined in equation 

(2). The total transportation cost is shown in equation (3). 

 

 ( ) 1 0
0X X

Q

 
 

−
=  +   (2) 

Where: 1 and 0 are the fuel consumption per unit 

collection distance for fully loaded and unloaded refuse 

collection vehicles, respectively; X is the vehicle's load 

capacity. 

 

 

( ),

2 ( )l

ike ij ijke

k K e E i j A

E p u d x
  

=       (3) 

Where: p is the current fuel price, is the fuel usage per 

distance for the kth collection vehicle performing its eth trip 

from node i to load class l unit weight of waste. 

The main objective is to minimize carbon emission cost. 

A vehicle’s carbon output is closely linked to its fuel 

consumption and fuel type. To estimate a vehicle’s carbon 

emissions during operation, a carbon emission factor is 

introduced to convert fuel consumption directly into carbon 

output, thus facilitating the conversion from fuel usage to 

carbon emissions: 

 

 ( )1

l

ike ijH u d =     (4) 

Emissions of CO2 from waste decay during collection and 

transportation are also related to transportation distance and 

loading capacity. 

 

 2

l

ike ijH u d=     (5) 

Therefore, from equation (4) and equation (5), the total 

carbon emission cost is:   

 

( )( )
( )

3

,

l l

c ike ike ij ijke

i j A k K e E

E C u u d x  
  

=   +    

  (6) 

Where: Cc is the price per unit of carbon tax;  is the 

carbon emission factor;  is the CO2 emission per unit of 

waste decay per unit distance traveled by the vehicle. 

The objective function for the FMCVRPTW model is 

defined in equation (7). 

 

 1 2 3E E E E= + +   (7) 

E. Mathematical Model 

Based on the hypothetical situation, a mathematical 

model is developed to minimize the total costs, including 

vehicle fixed costs, operating expenses, and carbon 

emissions. 

Minimize E 

Constraints: 

 0 1 , ,ike in ke

i I
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i L
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  (18) 

 

Equation (7) represents the objective function, aiming to 

minimize the total collection cost. Equation (8) states that 

each vehicle trip must depart from the waste transfer station 

and eventually return. Equations (9)-(10) indicate that each 

vehicle trip departs from the waste transfer station to a 

certain waste drop-off point and eventually returns to the 

waste from a specific drop-off point transfer station. 

Equation (11) defines the vehicle flow balance, where the 

number of vehicles visiting a node matches the number of 

vehicles departing from it. Equation (12) denotes that each 

waste drop-off point is visited only once; Equation (13) 

denotes the elimination of the sub-loop, where |S| is the set 

of waste drop-off points. Equation (14) denotes that the 

amount of garbage loaded by each vehicle leaving point j on 

each trip is the sum of the amount loaded when leaving 

point i and the current amount of garbage transported at 

node j. Equation (15) shows that the amount of waste per 

vehicle trip will not exceed its maximum capacity. Equation 

(16) shows that the total garbage loaded onto the vehicle 

will not exceed its maximum capacity for any trip from a 

collection point. Equation (17) indicates that the vehicle's 

arrival at each node is subject to meeting the scheduling 

constraints to reach each node before the deadline. Equation 

(18) defines the continuity of the travel time for refuse 

collection vehicle k, where the time to reach point j equals 

the time of arrival at point i, the time spent loading refuse at 
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point i, and the travel time between points i and j, with M 

being an integer tending to positive infinity.  

III. HYBRID GENETIC ADAPTIVE LARGE NEIGHBORHOOD 

SEARCH ALGORITHM 

A. Outline of GA-ALNS 

To tackle the distinct characteristics of the waste 

collection model, particularly the complexity of the solution 

space, this paper proposes a hybrid algorithm combining 

genetic algorithms (GA) with adaptive large neighborhood 

search (ALNS) to solve the problem. The algorithm takes 

advantage of the strengths of both GA and ALNS, with GA 

serving as the central component of the framework, guiding 

the search during the initial stages of each evolutionary 

cycle. The solution space is systematically explored through 

key genetic operations such as selection, crossover, and 

mutation, with the individual exhibiting the highest fitness 

being selected for further iterations. 

This process not only promotes the maintenance of 

population diversity but also provides a favorable starting 

point for subsequent searches; then, the highest fitness 

individuals obtained in the genetic algorithm are used as the 

initial solution for the adaptive extensive neighborhood 

search; finally, the "individual replacement" strategy is 

carried out, and the improved solution of the ALNS 

algorithm is used to replace the lower fitness individuals in 

the population in the GA. Ultimately, the enhanced solution 

from the ALNS algorithm replaces the less suitable 

individuals within the genetic algorithm, creating a new 

population. This process not only boosts the overall quality 

of the current population but also strengthens the 

algorithm’s ability to escape local optima, continuing to 

iterate until it converges to the optimal solution or reaches 

the predefined maximum iteration limit. 

The hybrid genetic adaptive large neighborhood search 

algorithm (GA-ALNS) developed in this study, leverages 

the strengths of both algorithms., aiming to make full use of 

the complementary advantages of the two methods in global 

and local search to achieve more efficient and accurate 

optimization results. GA-ALNS is designed to introduce an 

advanced adaptive mechanism to select the best-performing 

operator in each generation for solution transformation by 

dynamically updating the operator weights. This strategy 

optimizes the decision path in the search process and 

significantly improves the quality of the solution. The 

specific algorithm flow is shown in Fig. 1. 

 

B. Chromosome Code 

For the waste collection path optimization problem, the 

chromosome is encoded using real number coding to reflect 

the waste collection network's structural characteristics 

accurately. In the proposed coding strategy, 0 represents the 

garbage transfer station, while the consecutive integer 

sequences 1, 2, ..., n-1, and n represent the individual trash 

drop-off points, respectively. For example, the chromosome 

"013502460" represents that the refuse transfer station sends 

two vehicles to six drop-off points to collect refuse, forming 

two refuse collection routes. Route 1: 0-1-3-5-0; Route 2: 0-

2-4-6-0. When the number of refuse transfer stations is n, 

and the number of vehicles used is k, the length of the 

chromosome is n+k+1. 

 

 
Fig. 1.  Flow of hybrid Genetic Adaptive Large Neighborhood Search 

Algorithm (GA-ALNS) 

 

C. Population Initialization and Adaptation 

In the research and application of GA, population 

initialization is one of the key factors determining the 

efficiency and accuracy of the algorithm, which, as the 

starting point of the algorithm's evolutionary process, 

significantly impacts the subsequent iteration process. 

Reasonably determining the population size is an important 

step in realizing the optimization of the algorithm, which is 

directly related to the algorithm's convergence speed and 

computational accuracy. Generally speaking, the standard 

population size is set in the range of 30 to 150. Too large a 

size may lead to an excessive computational burden. At the 

same time, a size that is too small may lead to insufficient 

search capability, which will negatively impact the 

algorithm's computational efficiency. The random function 

generation method is employed to efficiently create the 

initial population, reducing both population generation time 

and computational complexity. This approach is applied 

here to form an initial population of 100 individuals, striking 

a balance between population size and optimization 

performance. 

Genetic algorithms evaluate the quality of individuals 

using a fitness function. A higher fitness value indicates a 

better individual, while a lower fitness score corresponds to 

lower quality, leading to gradual elimination in subsequent 

algorithm iterations. Fitness is also utilized to handle the 
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model's constraints, with violations addressed through a 

penalty function approach. Key constraints include vehicle 

load, time windows at collection points, and carbon 

emission costs. These constraints are incorporated into the 

objective function via a specific penalty function, resulting 

in an objective function that integrates the constraints. As 

indicated in equation (7), to ensure the load weight 

constraint is met, M is chosen as a sufficiently large positive 

number, making the objective function value of any 

chromosome that violates the constraint extremely large. 

The fitness function is based on the inverse of the objective 

function, as demonstrated in equation (19).: 

 

 ( ) 1/ ifit i E=   (19) 

 

Where: fit(i) is the fitness value of individual i and Ei is 

the objective function value of individual i. 

 

D. Elite Retention Strategy 

This study employs an elite retention strategy to preserve 

the high-quality genes of the parent generation, preventing 

them from being disrupted by subsequent crossover and 

mutation operations, i.e., the fitness is sorted in descending 

order to preserve the first 1/3 of the excellent individuals in 

each generation, which reduces the risk of the excellent 

solutions being lost due to the random operations, thus 

enhancing the algorithm solving efficiency. 

 

E. Crossover 

We use the step-crossover operator to randomly select the 

garbage collection vehicle's complete subpath containing the 

parent individuals' start and endpoints. The left shift 

operation is executed on the sub-paths of the two selected 

individuals so that they are placed at the forefront of their 

respective individuals. Then, the exchange and fusion of 

genetic information is realized, i.e., the gene sequences after 

the sub-paths of one individual are copied to the other. The 

genes that recur are deleted to form two new individuals. 

The specific operation is shown in Fig. 2. After the 

crossover operation is completed, the newly generated 

individuals also need to be evaluated, i.e., the fitness is 

ranked in descending order to ensure that the individual with 

the highest fitness is selected and retained in each generation, 

which improves the convergence rate of the algorithm and 

the quality of the solution. 

 

F. Mutation 

This paper uses the 2-swap mutation operator to perform 

mutation operations on a single chromosome. Two non-zero 

genes are randomly picked from the chromosome, and the 

values at these positions are swapped to form a new 

chromosome. The process is illustrated in Fig. 3. To 

increase the diversity and quality of the solution, the 

mutation is repeated and implemented several times to 

produce a series of new chromosomes. Using a combination 

of crossover and mutation operations ensures a high level of 

fitness for individuals in each population generation.  

 
Fig. 2.  Schematic diagram of the step-crossing operator 

 

  
Fig. 3. 2-swap mutation operator 

 

G. Local Search 

The essence of the ALNS algorithm lies in employing a 

variety of neighborhood search operators, which enhance 

the algorithm’s ability to perform comprehensive searches 

and fully explore the solution space.This paper introduces 

three kinds of destruction and four kinds of repair operators. 

We adopt a dynamic strategy to search for neighborhood 

solutions by continuously perfor- 

ming destruction and repair operations on individuals [25].  

(1) Destruction operators 

①Random removal: A random perturbation strategy is 

utilized to broaden the search for the global optimum by 

expanding the exploration of the solution space. The route 

with the highest cost in the current solution set is selected, 

and then a garbage drop is randomly removed from that 

route to be deposited in remove_list, and the path is updated 

accordingly. The process continues until the set number of 

removal points is achieved. 

②  Worst-cost removal: Optimize cost efficiency by 

removing the node with the most significant impact on the 

route cost. Calculate the amount of change in the objective 

function before and after each garbage drop point is 

removed, and select the garbage drop point that maximizes 

the difference in the objective function for removal. Repeat 

the removal operation until the preset number of removal 

points is reached. 

③ Longest Time Removal: The core of this operator is to 

identify and remove the nodes in the current route that 

significantly impact the total travel time. Tentatively 

evaluate the nodes on the route one by one and quantify the 

reduction in travel time after each node removal. 

Continuously update the route until a predetermined node 

removal goal is reached.  

(2) Repair operator 

① Random Repair: As with random removal, a random 

insertion strategy is used to randomly reinsert the garbage 

drop points in remove_list into the solution to form a new 

solution in the corrupted solution. 

②  Greedy repair: A point from the remove_list is 

randomly selected, and its cost is analyzed for all potential 

insertion locations in the current route. By selecting the 

location with the smallest increase in the total cost of the 
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route for insertion, the repair operation is performed 

continuously until all points in the remove_list are reinserted. 

③Regret repair: This operator's core lies in its integrated 

consideration of the dual objectives of short-term cost 

optimization and long-term cost impact. The specific 

strategy is to evaluate each garbage drop point in 

remove_list and calculate the amount of change in the 

objective function when inserted at the route's suboptimal 

position. The point that maximizes the change in the 

objective function and its insertion location is selected for 

the restoration operation. 

(3) Adaptive operator weight update strategy 

Assign the same weight and score for each operator, and 

all are 1, and score according to the operator's performance; 

the higher the score of the operator, the better the 

performance. At the same time, the decay coefficient p is set 

reasonably to balance the relationship between the solution 

time and weight update [26]. The adaptive operator weights 

are updated as shown in equation (20). 
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 (20) 

 

Where: (a) is the weight, s(a) is the cumulative score, 

h(a) is the cumulative number of times used. 

IV. ALGORITHM PERFORMANCE VERIFICATION 

A. Experimental and parameter settings 

This algorithm was coded using Matlab R2018b. The 

computer is configured with 11th Generation Intel(R) 

Core(TM) i5-1155G7 @ 2.50GHz. In order to verify the 

superiority of the proposed algorithm, this paper 

experimentally compares GA and ALNS with the hybrid 

algorithm GA-ALNS. To ensure the fairness of the results 

and the rigor of the parameter comparison, the parameter 

settings of the GA-ALNS algorithm are consistent with 

those of the GA and ALNS algorithms.  The initial 

parameters of GA are set as follows: population size gene 

Num = 100; iteration number generation Num = 500; 

variance probability Pc = 0.05; crossover probability Pm = 

0.9. ALNS search range Nr =5, weight inertia Factor  =0.6.  

B. Test instances 

In order to verify the performance of the designed hybrid 

genetic algorithm Adaptive Large neighborhood search 

(GA-ALNS) algorithm, this paper uses the Solomon 

standard algorithm set for testing (Solomon standard 

algorithm set: http://web.cba. neu.edu/~msolomon/problems 

.htm). These datasets are randomly generated based on 

specific distributional characteristics and contain 

information such as each point's X and Y coordinate axes, 

the number of customers and their demands, vehicle 

numbers, and license plate numbers. According to the 

distribution types, Solomon datasets can be categorized into 

three types: R-type with random distribution of customer 

points, C-type with aggregated customer points, and RC-

type with both. 

To avoid the influence of the distribution type of 

customer points on the algorithm's performance, nine cases 

of the top 20, 50, and 100 scales in the three categories of 

C101, R101, and RC101 are selected from the Solomon 

standard set of cases, respectively. The objective function is 

set to include vehicle fixed costs and transportation costs. 

C. Results on FMCVRPTW 

The three algorithms GA, ALNS, and GA-ALNS are used 

to run the above nine algorithms 10 times, respectively, and 

the results are shown in Table I. Where the first column is 

the number of the algorithm, the second column is the 

algorithm, e.g., the algorithm C101-20 represents the first 20 

customer points in Solomon's standard set of algorithms, 

Min represents the optimal solution obtained in the 10 runs 

of the algorithm, Avg represents the average value of the 

results of the 10 runs, and rate represents the rate of 

performance improvement in terms of the average value of 

the GA-ALNS algorithm relative to the other algorithms. 

As can be seen from Table I, the designed GA-ALNS 

algorithm demonstrates excellent performance in the nine 

standard arithmetic cases. Regarding Min and Avg, when 

the problem size is small, the GA-ALNS algorithm and 

ALNS algorithm have similar performance, significantly 

better than GA. On the other hand, on larger problem sizes, 

the GA-ALNS algorithm is better in optimal value search, 

and its average performance is also excellent. The GA-

ALNS algorithm proposed in this paper combines the 

advantages of the two algorithms, GA and ALNS, to 

maintain efficient searchability and accuracy in problems of 

different scales and effectively improve the solution quality. 

Therefore, the GA-ALNS algorithm outperforms the GA 

and ALNS algorithms in solving the FMCVRPTW problem. 

D. Stability analysis of the proposed algorithm 

In this section, we systematically analyzed the stability of 

the proposed GA-ALNS algorithm. We evaluated its 

performance in different types of instances (i.e., class C 

(clustering), class R (random), and class RC (random and 

clustering combination)). We compared it with the existing 

genetic algorithm (GA) and adaptive large neighborhood 

search algorithm (ALNS). The comparison results are 

shown in Fig. 4. Experimental results show that the GA-

ALNS algorithm has a significantly lower mean standard 

deviation in all instance types, showing superior stability 

and reliability.  

Specifically, in class C instances, the average standard 

deviation of the GA-ALNS algorithm is 9.13, significantly 

lower than that of the traditional GA algorithm (13.40) and 

ALNs algorithm (12.10). This significant decline shows that 

the GA-ALNS algorithm shows excellent stability and 

accuracy when dealing with cluster scenarios, especially 

when it is necessary to maintain the consistency of solution 

quality. In class R instances, the performance of the GA-

ALNS algorithm is further improved, and its average 

standard deviation is 8.49, which is 3.68 and 3.27 lower than 

GA (12.17) and ALNS (11.76), respectively, which fully 

shows the dual advantages of efficiency and reliability of 

GA-ALNS in dealing with random scenes. In these random 

scenarios, the robustness and stability of the algorithm are 

particularly critical due to the increased uncertainty and var- 
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TABLE I 
COMPARISON OF GA-ALNS WITH GA AND ALNS ALGORITHMS ON DIFFERENT SIZES OF LITTERING SITES 

 

iability of the solution. The excellent performance of GA-

ALNS on such problems further verifies its comprehensive 

performance. 

In the most challenging RC instance, the GA-ALNS 

algorithm is adaptable in complex scenes. The RC class 

examples integrate the complexity of cluster scenes and the 

high uncertainty of random scenes, while the average 

standard deviation of the GA-ALNS algorithm in such 

problems is 14.54, which is significantly lower than that of 

GA (22.40) and ALNs (24.31), which is reduced by 7.86 

and 9.77 respectively. These results prove that the GA-

ALNS algorithm can effectively deal with multiple 

challenges in complex optimization problems, and its 

robustness, adaptability, and efficiency performance are 

much better than traditional algorithms. 

To sum up, the average standard deviation of the GA-

ALNS algorithm in C-type, R-type, and RC-type problems 

is always kept at a low level, proving its superior 

performance in terms of computational efficiency and 

stability. Especially in RC-type complex scenes, the GA-

ALNS algorithm shows significant advantages, highlighting 

its robustness and adaptability in solving complex 

optimization problems. Compared with the traditional GA 

algorithm and ALNs algorithm, GA-ALNS not only 

performs better in computational efficiency but also 

significantly improves the quality and stability of the 

solution . 

 

 
Fig.4. average standard deviation of the algorithm and its comparison on 

different types of instances 

V. CASE STUDY OF HONGSHAN DISTRICT, WUHAN CITY 

A. Background information 

Taking the whole-cycle eco-operation center in Hongshan 

District, Wuhan City, Hubei Province as the research object, 

and selecting 24 garbage drop-off points served by this 

sanitation company as the research target, combining with 

ArcGIS to visualize the 24 garbage drop-off points it serves, 

and the geographic location is shown in Fig.5. The 

sanitation company needs to dispatch several vehicles with 

flexible compartments to the 24 garbage drop-off points for 

garbage sorting and collection. The information on the 

sanitation company and the garbage drop-off points is 

shown in Table II. The coordinates of the sanitation 

company are (114.33166 and 30.482391). Parameter 

Settings: Vehicle fixed cost fk =160, vehicle average driving 

speed v =40km/h, the current fuel price of p =7.92 CNY / L, 

carbon tax eco2=0.05, a total of 10 garbage transfer station 

collection trucks, the relevant models refer to the Shenzhen 

Dongfeng Automobile, in order to Foton BJ1045V9JB3-55, 

for example, the vehicle's maximum load capacity of 

2000kg, the vehicle's gross mass 4495kg, traveling unit 

distance carbon emissions =0.0075kg/km, carbon emission 

coefficient  =2.76 kg/L, per kilometer fuel emission 

standard  =0.13L/km. 

 

 
Fig. 5. Refuse collection points in Hongshan District, Wuhan City, Hubei 

Province

num formula 
GA-ALNS GA ALNS 

Min/km Avg/km Min/km Avg/km rate/% Min/km Avg/km Rate/% 

1 C101-20 155.4 155.4 163.1 168.4 8.3 159.3 164.7 5.9 

2 R101-20 473.3 473.3 486.4 497.3 5.1 481.7 483.6 2.2 

3 RC101-20 383.2 393.7 400.6 411.7 4.6 391.1 398.3 1.2 

4 C101-50 361.8 370.2 410.3 425.1 14.8 398.7 409.1 10.5 

5 R101-50 1025.8 1064.3 1092.4 1205.7 13.3 1175.3 1189.7 11.8 

6 RC101-50 969.8 983.4 1027.3 1066.1 8.4 1064.1 1074.1 9.2 

7 C101-100 828.9 842.1 901.2 938.3 11.4 937.2 948.3 12.6 

8 R101-100 1676.5 1703.9 1834.7 1892.8 11.1 1994.3 2045.2 20 

9 RC101100 1740.9 1753.2 1987.4 2026.4 15.6 2113.7 2150.4 22.7 
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TABLE II 

SPAM NODE RELATED INFORMATION 

Nodal Coordinate (geometry)  Volume /kg Left time window Right time window Service time/min 

0 114.3317 30.482391 0 6:10 9:00 0 

1 114.2598 30.457026 216 7:20 9:20 12 

2 114.2915 30.483238 372 7:40 9:20 16 

3 114.252 30.606688 240 7:00 10:00 14 

4 114.3026 30.519323 240 8:00 10:20 15 

5 114.3643 30.52187 360 7:00 10:30 18 

6 114.3778 30.412592 264 8:00 10:40 15 

7 114.3603 30.574747 282 8:00 9:50 16 

8 114.3902 30.466942 210 7:50 9:50 11 

9 114.3089 30.548801 246 7:00 9:50 14 

10 114.3771 30.6268 300 8:50 10:50 12 

11 114.2719 30.57886 228 7:00 9:50 15 

12 114.3797 30.595478 288 7:50 10:00 13 

13 114.2936 30.550716 232 6:30 9:35 13 

14 114.2663 30.538183 241 6:00 9:20 12 

15 114.3483 30.622379 276 6:15 9:35 18 

16 114.3777 30.464103 306 6:30 10:05 20 

17 114.3441 30.547532 246 6:30 9:50 16 

18 114.301 30.618076 234 7:00 10:05 22 

19 114.2431 30.56554 240 6:05 9:20 13 

20 114.2856 30.617871 300 6:45 9:50 13 

21 114.3421 30.526526 186 6:30 10:05 11 

22 114.3248 30.57917 264 6:15 9:35 14 

23 114.3147 30.476637 252 6:25 10:05 17 

24 114.3176 30.641193 240 7:00 10:05 10 

B. Optimization scheme of vehicle dispatching 

Through the above-mentioned solution steps based on the 

GA-ALNS algorithm, the urban waste collection and 

transportation problem is systematically solved. After 290 

iterations, the optimal collection and transportation scheme 

is obtained, and the collection and transportation scheme is 

visually displayed in combination with ArcGIS. The 

iteration curve and the optimal collection and transportation 

path are shown in Fig. 6 and Fig. 7. Among them, the total 

driving distance of vehicles is 108.81 km, the 

comprehensive cost is 1008.487 CNY, and the number of 

vehicles is 4. 

 

 
Fig. 6. Optimal waste collection and transportation solutions obtained by 

the GA-ALNS 

 

 
 

Fig. 7. GA-ALNS Iteration Curve 

 

The specific collection and transportation sequence is 

shown in Table III. It can be seen from Table III that by 

comprehensively considering multidimensional factors such 

as collection and transportation cost, driving distance, and 

carbon emission cost, the collection and transportation tasks 

of 24 waste delivery points in Hongshan District are 

reasonably allocated to 4 vehicles numbered 1-4 in the 

optimization scheme. The optimization results show that the 

task allocation of each vehicle can achieve the equilibrium 

of the driving path and the minimization of cost to meet the 

constraints of capacity and time window. 
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Table III 

ORDER OF GARBAGE COLLECTION AND TRANSPORT 

 

According to the analysis results of the actual vehicle 

trajectory data in Hongshan District, Wuhan, the total 

driving distance of the GA collection and transportation 

scheme is 139.253 km, and the total driving distance of the 

ALNS algorithm collection and transportation scheme is 

136.34 km. In comparison, the total driving distance of the 

GA-ALNS algorithm collection and transportation scheme 

is further optimized to 129.056 km. The comparison of the 

specific vehicle configuration and driving distance of each 

scheme is shown in Fig. 8. The collection and transportation 

route optimization scheme based on the GA-ALNS 

algorithm is superior to other vehicle configuration and 

driving distance algorithms. 

 

Fig. 8. Comparison of travel distances of collection and transport vehicles 

 

 
Fig. 9. Comparison of costs of waste collection andtransport schemes 

 

As shown in Fig. 9, we have compared the performance 

of various cost indicators of waste collection and 

transportation schemes generated by different algorithms. 

Specifically, the fixed cost of the GA algorithm, ALNS 

algorithm, and GA-ALNS algorithm is 640 CNY, indicating 

that the three algorithms are consistent regarding fixed cost. 

However, the GA-ALNS algorithm shows a significant 

optimization effect in terms of fuel consumption and carbon 

emission costs. 

Regarding fuel consumption cost, the GA-ALNS 

algorithm has the lowest cost, only 123.609 CNY. 

Compared with the GA algorithm (143.381 CNY) and the 

ALNS algorithm (140.376 CNY), it has a year-on-year 

decrease of 15.96% and 13.56%, reflecting its apparent 

advantages in path optimization and energy consumption 

reduction. In terms of carbon emission cost, the cost of the 

GA-ALNS algorithm is 235.616 CNY, which is 3.051 CNY 

and 2.048 CNY lower than that of the GA algorithm 

(238.667 CNY) and ALNS algorithm (237.664 CNY), 

respectively, with a year-on-year decrease of 1.3% and 

0.87%, further verifying its optimization potential in 

reducing environmental costs. 

To sum up, the garbage collection and transportation 

scheme generated based on the GA-ALNS algorithm shows 

superior performance in terms of fuel consumption, carbon 

emissions, and total cost. The total cost is 1008.847 CNY, 

which is significantly lower than the total cost of the GA 

algorithm and ALNs algorithm. 

C. Sensitivity analysis of storage capacity proportion 

In the actual collection and transportation process of 

garbage, the ratio of kitchen waste and other garbage storage 

capacity significantly impacts the efficiency of the two. As 

the proportion of kitchen waste is more significant than that 

of other wastes, this paper gradually increases the storage 

capacity of kitchen waste from 45% to 80%, sets up five 

groups of proportion control experiments, and takes the 

average value after solving each proportion 10 times. The 

results are shown in Fig. 10. 

 

 
Fig. 10. Total distance and total cost of collection and transportation 

vehicles under different proportions of warehouse capacity 

Vehicle Garbage collection and transportation sequence Driving distance/km Cost/CNY 

1 0→16→8→6→0 20.178 184.807 

2 0→21→17→7→12→10→15→24→0 38.253 284.673 

3 0→14→19→11→3→20→18→22→13→0 40.462 285.484 

4 0→23→2→1→4→9→5→0 30.163 253.523 
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As can be seen from Fig. 10, when the capacity ratio of 

kitchen waste bins to other waste bins is 7:3, the total cost of 

collection and transportation decreases significantly. When 

the proportion is further adjusted to 8:2, the total distance of 

the combined transport vehicles is the shortest, and the total 

cost is the lowest. The analysis results show that when the 

proportion of the storage capacity of kitchen waste bin and 

other waste bins is close to the actual proportion of the two 

types of waste, the overall loading rate of the vehicle has 

been significantly improved, which effectively reduces the 

total mileage of the vehicle, and thus reduces the total 

collection and transportation cost.Carbon price sensitivity 

analysis 

D. Sensitivity analysis of carbon price 

Changes in the price of the carbon tax will lead to 

changes in the cost of carbon emissions, leading to changes 

in the scheduling program for waste collection vehicles. 

Higher or lower carbon tax prices directly impact carbon 

dioxide emissions [27]. The carbon tax price is set at 0.05 

CNY/kg when solving the model in this paper, and in order 

to measure the impact of different carbon tax prices on 

carbon dioxide emissions and carbon emission costs, the 

carbon tax price is set at 0.02 CNY/kg, 0.04CNY/kg, 

0.1CNY/kg, 0.15CNY/kg, respectively, and the carbon 

emission costs, total collection and transportation costs, and 

carbon dioxide emissions under different levels of the 

carbon tax price are as shown in Table IV and Fig. 11. 

Table IV 

IMPACTS OF CARBON TAX PRICE CHANGES ON CARBON 

EMISSIONS AND TOTAL COSTS 

Carbon tax 

price/ 

(CNY/kg) 

Carbon emissions/kg 
Total collection and 

transportation costs/CNY 

0.02 4801.23 868.8956 

0.04 4779.16 964.0374 

0.05 4712.32 1018.487 

0.1 4683.74 1241.245 

0.15 4671.42 1473.584 

 

 

Fig.11.Trends in total costs and carbon emissions with carbon tax prices 

VI. CONCLUSION 

This paper introduces multi-vehicle compartment vehicles 

into the transportation of garbage classification and proposes 

a flexible multi-vehicle compartment collection vehicle path 

problem with a time window(FMCVRPTW).  

(1) This study constructs a waste collection and 

transportation optimization model that integrates vehicle 

operating, fixed, and carbon emission costs and introduces a 

carbon tax mechanism to incentivize low-carbon operations. 

To solve the proposed problem, a hybrid genetic adaptive 

large neighborhood search algorithm (GA-ALNS) is 

designed, which combines the global search capability of the 

genetic algorithm and the local optimization property of 

extensive neighborhood search, significantly improving the 

problem-solving efficiency and the quality of the solution. 

The standard case tests of Solomon's problem library show 

that the GA-LNS algorithm outperforms the traditional 

genetic algorithm (GA) and the adaptive large neighbor 

search algorithm (ALNS) in solving garbage collection and 

transportation problems. 

(2) The empirical analysis verifies the effectiveness and 

feasibility of the model and algorithm using Wuhan City in 

Hubei Province as an example. The optimized waste 

collection system significantly reduces operation costs, 

driving distance, and carbon emissions, demonstrating 

economic and environmental benefits. 

(3) Sensitivity analysis reveals that optimizing the 

compartment capacity ratio in multi-compartment vehicles 

enhances collection efficiency and reduces operational costs 

by improving loading rates and minimizing transportation 

distance. Thus, sanitation agencies should allocate storage 

capacity strategically when implementing classified waste 

collection. 

(4) This study further explores the impact of the carbon 

tax on waste collection and transportation optimization. 

Sensitivity analysis reveals the trend of cost and carbon 

emission changes under different carbon tax levels, which 

provides an important theoretical basis and decision support 

for policy formulation. 

In future research, more factors such as residents' 

satisfaction, heterogeneous models, cross-regional waste 

collection, and transportation synergy can enhance the 

model's practicality. In addition, considering the dynamic 

nature of the operation, a real-time data processing 

mechanism can be introduced to dynamically optimize the 

collection and transportation routes to cope with the 

challenges of unexpected events and traffic changes. 
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