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Abstract—This research focuses on developing discrete
fundamental theorems related to q(α)-delta anti-difference
operator, applied to a class of q(α)-delta integrable functions.
The fractional sum of a function f can be expressed
in two ways: as a closed form and as a summation
form. This dual representation motivates the creation of
a new technique to derive several identities for q(α)-delta
integrable functions, which possess both discrete anti-difference
and integer summation referred to as discrete fundamental
theorems. Additionally, by introducing the concept of ∞-order
q(α)-delta integrable functions, we derive the discrete integral
related to the fractional sum of f using Newton’s method. The
theoretical results are illustrated and validated by numerical
examples.

Index Terms—Discrete integration, Delta integrable function,
Closed form, Summation form, Fractional sum.

I. INTRODUCTION

D ISCRETE fractional calculus has attracted considerable
focus in the literature over the past several decades

[1], [11], [12], [17], [19]. Difference equations are meant
for discrete process where as the differential equations deals
with continuous system. In [2], [13], [14], the authors
applied a discrete case approach to a continuous scenario
to determine closed form solutions for both continuous
and discrete fractional order integration. They derived
various theorems and formulas using the Riemann-Liouville
fractional integral, incorporating the gamma function.
Additionally, they formulated the discrete counterpart of the
continuous νth-fractional order integration. A key innovation
of this work lies in the introduction of fractional-order
exponential functions and the development of corresponding
theorems.

In [4], the authors explored the application of
the forward hybrid delta operator, incorporating a shift
value, to derive a generalized infinite series for fractional
hybrid summation formulas. Additionally, they presented
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numerical closed form solutions for fractional order hybrid
difference equations. In [5], [8], the researchers presented
a discrete-time fractional calculus of variations on the time
scale (hZ)a, a ∈ R, h > 0. Necessary optimality conditions
of first and second order are derived. Also, they provided
the examples demonstrating the application of the newly
developed Euler-Lagrange and Legendre-type conditions.
Addition to this, the authors in [8] proposed a novel approach
to quantum calculus by introducing q-symmetric variational
calculus. In [6], the authors introduced the q-difference
operator ∆q and presents key findings on the inverse of the
q-difference operator of the tth-order, utilizing generalized
polynomial factorials and the Stirling numbers of the second
kind.

In the articles [7], [15], the authors derived the
solutions for a generalized αi-mixed difference equation in
closed form as well as in finite and infinite multi-series
representations. By equating the closed-form solutions
with the multi-series solutions of the αi-mixed difference
equation, they determined the values of specific finite
and infinite multi-series formula. In [9], the researchers
explored q-integral representations of the q-gamma and
q-beta functions, which reveal a noteworthy q-constant. As
an application of these representations, they provided a
straightforward conceptual proof of a family of identities
related to the Jacobi triple product, including Jacobi’s
identity, as well as Ramanujan’s formula for the bilateral
hypergeometric series.

In this study [10], the theory of fractional h-difference
equations were introduced and enhanced with valuable
tools for explicitly solving discrete equations involving
left and right fractional difference operators. In [16],
the authors explored various properties of q-exponential
functions, both standard and symmetric, for general nonzero
complex q. In [18], [20], the authors derived both numerical
and closed-form solutions for fractional-order Fibonacci
difference equations. Also, they developed generalized
infinite series for fractional Fibonacci summation formulas
using the forward Fibonacci delta operator with various
parameters and its inverse on real-valued functions. In
[20], they explored various products of k-Fibonacci and
k-Lucas numbers. Also, they presented generalized identities
involving these products and establish connection formulas
between them using Binet’s formula.

The goal our research is to develop discrete
fundamental theorems for a class of delta integrable functions
using a novel mechanism known as the delta integration
method. The νth-fractional sum of a function f has two
forms: closed and summation form, which concept is applied
to q(α)-delta integration and its sum. Our finding are the
extension of the results developed for h-delta operator in [3]
and validated with numerical examples.
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II. PRELIMINARIES RELATED TO q(α) - DELTA
INTEGRATION

In this section, we present basic definitions of
falling factorials, the q(α)-delta operator and summation
formula arrived by inverse of q(α)-delta operator. It is
clear that, whenever f is defined on a set aqZ =
{. . . , aq−2, aq−1, a, aq, aq2, . . .}, then ∆qf is also defined
on the set aqZ for a ∈ R = (−∞,∞).

Definition II.1. For n ∈ N = {1, 2, 3, . . .}, the nth-order
falling factorial of t, denoted as t(n)q , is defined by

t(n)q =
n−1∏
r=0

(t− qr) and t(0)q = 1, t ∈ R.

Definition II.2. Let a, q 6= 0 and aqZ =
{. . . , aq−2, aq−1, a, aq, aq2, . . .}. Let f : aqZ → R.
The q(α)-delta operator on f is defined as

∆q(α)f(t) = f(tq)− αf(t), t ∈ aqZ. (1)

The inverse of q(α)-delta operator on f is defined by, if there
exists f1 : aqZ → R such that

∆q(α)f1(t) = f(t)⇔ f1(t) + c = ∆−1q(α)f(t), (2)

where c is an arbitrary constants. Here, we consider a larger
size domain aqZ.

Lemma II.3. For any positive integer n > 0, qn 6= α and
t ∈ (−∞,∞), then q(α)-delta operator for the nth-order
falling factorial t(n)q is given by,

∆q(α)t
(n)
q = (qn − α)t(n)q . (3)

Proof: From the definition of q(α)-delta operator,

∆q(α)t
(n)
q = (tq)

(n)
q − αt(n)q

= tq(t− q)q(t− q2)q · · · (t− qn−1)q

−αt(t− q)(t− q2) · · · (t− qn−1)

= (qn − α)[t(t− q)(t− q2) · · · (t− qn−1)]

which gives the equation (3).

Lemma II.4. For any positive integer n > 0, qn 6= α and
t ∈ (−∞,∞), then the inverse q(α)-delta operator for the
nth-order falling factorial t(n)q is given by,

∆−1q(α)t
(n)
q =

t
(n)
q

(qn − α)
. (4)

Proof: The proof follows by applying ∆−1q(α) operator
on both sides of the equation (3) .

Lemma II.5. For any positive integer n > 0, qn 6= α and
t ∈ (−∞,∞), then the higher order q(α)-delta operator for
the nth-order falling factorial t(n)q is given by,

∆m
q(α)t

(n)
q = (qn − α)mt(n)q (5)

and its inverse q(α)-delta operator for the nth-order falling
factorial t(n)q is given by,

∆−mq(α)t
(n)
q =

t
(n)
q

(qn − α)m
. (6)

Proof: The proof follows by applying ∆q(α) and ∆−1q(α)
operator m times on the equations (3) and (4) respectively.

Theorem II.6. (First Fundamental Theorem) If ∆q(α)f1 =
f and m ∈ N, then

f1(aqm+1)− αm+1f1(a) =
m∑
s=0

αm−sf(aqs). (7)

Proof: The given condition ∆qf1 = f , and (1) yield for
t ∈ aqZ,

f1(tq) = f(t) + αf1(t). (8)

Replacing t by t/q in (8), we get

f1(t) = f(t/q) + αf1(t/q). (9)

Now, we substitute (9) in (8) to obtain,

f1(tq) = f(t) + αf(t/q) + α2f1(t/q). (10)

Simillarly f1(t/q), f1(t/q2), f1(t/q3), . . . and f1(t/qm) are
obtained by replacing t by t/q2, t/q3, . . . , t/qm respectively
in (9) and then substituting repeatedly all these values again
in (10) yields

f1(tq) = f(t) + αf(t/q) + α2f(t/q2) + α3f(t/q3)

+ · · ·+ αmf(t/qm) + αm+1f1(t/qm). (11)

Now, (7) follows by taking t = aqm in (11) and m ∈ N.
The following Corollary II.7 motivates us to develop

integer order q(α)-delta integration of certain function.

Corollary II.7. Let t = aqm, m ∈ N and ∆−1q(α)f = f1.
Then

∆−1q(α)f(aqm)−αm∆−1q(α)f(a) =
m−1∑
s=0

αm−1−sf(aqs). (12)

Proof: Since t = aqm, the proof follows by taking ∆−1q(α)f =
f1, (11) and replacing m by m− 1 in Theorem II.6.

III. INTEGER ORDER q(α) - DELTA INTEGRATION

The relation (7) is a fundamental theorem of q(α)-delta
integration. The relations (7) as well as (12) can be
considered as first order q(α)-delta integration of f . We
propose a main theorem for integer order q(α)-delta
integration in this section, which is an extension of equation
(12).

Definition III.1. A function f : aqZ → R is called an
nth-order q(α)-delta integrable function if there exists a
sequence of functions, say (f1, f2, · · · , fn) such that

∆r
q(α)fr = f, r = 1, 2, 3, · · · , n. (13)

The sequence (f1, f2, · · · , fn) can be called as q(α)-delta
integrating sequence of f .

Example III.2. Let f(t) = t
(n)
q with t ∈ R and qn 6= α is an

mth-order q(α)-delta integrable function having integrating

sequence

(
t
(n)
q

qn − α
,

t
(n)
q

(qn − α)2
, ...,

t
(n)
q

(qn − α)m

)
, Since

f(t) = t(n)q =
∆q(α)t

(n)
q

qn − α
=

∆2
q(α)t

(n)
q

(qn − α)2
= ... =

∆m
q(α)t

(n)
q

(qn − α)m
,

(14)
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∀ m ∈ N.

Definition III.3. Let f : aqZ → R be an q(α)-delta
integrable function having q(α)-delta integrating sequence
(f1, f2, · · · , fn). Let t = aqm and m,n ∈ N. The nth-order
q(α)-delta integration of f based at a is defined by

Fna (t) := fn(tq)−
n−1∑
r=0

αm+1−r (m+ 1)(r)

r!
fn−r(a). (15)

Example III.4. Let f(t) = t
(k)
q with qk 6= α, where t ∈ aqZ.

Then the nth-order q(α)-delta integration of t(n)q based at
a is defined as,

Fna (t) = fn(tq)− [αm+1fn(a) +
m+ 1

1!
αmfn−1(a)

+ . . .+
m+ 1(n−1)

(n− 1)!
αm−(n−2)f1(a)]

Fna (t) =
(tq)

(k)
q

(qk − α)n
−

[
αm+1a

(k)
q

(qk − α)n
+

(m+ 1)αma
(k)
q

(1!)(qk − α)n−1

+ . . .+
(m+ 1)

(n−1)
αm−(n−2)a

(k)
q

((n− 1)!)(qk − α)

]

Fna (t) =
(tq)

(k)
q

(qk − α)n
−
n−1∑
r=0

αm+1−r (m+ 1)(r)

r!

a
(k)
q

(qk − α)n−r
.

Theorem III.5. Consider the conditions given in Theorem
II.6 and let f : aqZ → R be having q(α)-delta integrating
sequence (f1, f2, · · · , fn), t = aqm such that n,m ∈ N
and a∆−nq(α)f(t) be the nth-order q(α)-delta integration of f
based at a. Then

a∆−n
q(α)f(t) :=

1

(n− 1)!

m−(n−1)∑
s=0

αm−(n−1)−s(m−s)(n−1)f(aqs).

(16)

Proof: Since ∆q(α)f1 = f , by putting ∆−1q(α)f = f1 in
Theorem II.6, we get, the first order qα(`)-delta integration
as

∆−1q(α)f(tq)− αm+1∆−1q f(a) = f1(tq)− αm+1f1(a)

=
m∑
s=0

αm−sf(aqs) (17)

f1(tq)−αm+1f1(a) = f(t)+αf(t/q)+α2f(t/q2)+· · ·+αmf(t/qm)
(18)

Now applying the inverse q(α)-delta operator ∆−1q(α) on both
sides of the above equation yields

f2(tq)− αm+1f2(a)

= f1(t)+αf1(t/q)+α2f1(t/q2)+ · · ·+αmf1(t/qm) (19)

=
[
f(t/q) + αf(t/q2) + α2f(t/q3) + · · ·+ αmf1(t/qm)

]
+α
[
f(t/q2)+αf(t/q3)+α2f(t/q4)+· · ·+αm−1f1(t/qm)

]
+ · · ·+ αm−1

[
f(t/qm) + f1(t/qm)

]
+ αmf1(t/qm)

After simplifing this, we get

f2(tq)−
1∑
r=0

αm+1−r (m+ 1)(r)

r!
f2−r(a)

=

m−1∑
s=0

αm−s−1(m− s)f(aqs), (20)

which is the second order q(α)-delta integration formula.
Again applying the ∆−1q(α) operator on both sides of the
equation (20) and then proceeding the steps from equation
(19) to (20) yields

f3(tq)−
2∑
r=0

αm+1−r (m+ 1)(r)

r!
f3−r(a)

=
m−2∑
s=0

αm−2−s
(m− s)(2)

2!
f(aqs). (21)

Similarly applying the ∆−1q(α) operator repeatedly upto n− 1

times and proceeding the similar steps, we will get the (n−
1)th-order q(α)-delta integration as

fn−1(tq)−
n−2∑
r=0

αm+1−r (m+ 1)(r)

r!
fn−1−r(a)

=

m−(n−2)∑
s=0

αm−(n−2)−s
(m− s)(n−2)

(n− 2)!
f(aqs). (22)

Hence, again applying the ∆−1q(α) operator on both sides of
above equation and by equation (22), we can easily find the
n-th order q(α)-delta integration as

fn(tq)−
n−1∑
r=0

αm+1−r (m+ 1)(r)

r!
fn−r(a)

=

m−(n−1)∑
s=0

αm−(n−1)−s
(m− s)(n−1)

(n− 1)!
f(aqs) (23)

The proof completes by taking

a∆−nq(α)f(t) = fn(tq)−
n−1∑
r=0

αm+1−r (m+ 1)(r)

r!
fn−r(a).

The following corollary gives fundamental theorem of
nth-order q(α)-delta integration.

Corollary III.6. If f is nth-order q(α)-delta integrable
function based at a, then

Fna (tq) := fn(tq)−
n−1∑
r=0

αm+1−r (m+ 1)(r)

r!
fn−r(a)

=
1

(n− 1)!

m−(n−1)∑
s=0

αm−n−s+1(m−s)(n−1)f(aqs), n ∈ N.

(24)
Proof: The proof follows by (23) and

a∆−nq f(t) =
1

(n− 1)!

m−(n−1)∑
s=0

αm−(n−1)−s(m−s)(n−1)f(aqs).

Corollary III.7. Let t = aqm and n,m ∈ N. If f is
nth-order q(α)-delta integrable function based at a, then

Fna (t) =a ∆−nq(α)f(t). (25)

Proof: The proof follows from Corollary III.6 and Definition
III.3.

Remark III.8. If f is nth-order q(α)-delta integrable
function based at a, then

fn(aqm)−
n−1∑
r=0

αm−r
m(r)

r!
fn−r(a)

=
1

(n− 1)!

m−n∑
s=0

αm−n−s(m− 1− s)(n−1)f(aqs). (26)
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Now (26) is obtained from Corollary III.6 by replacing t by
t/q.

The following example illustrates Corollary III.6.

Example III.9. Consider the function f(t) = t, t = 40,
a = 10, q = 2, m = 2, α = 1.5 in (24). It will becomes

f2(tq)− αm+1f2(a)− (m+ 1)αmf1(a)

=
m−1∑
s=0

αm−s−1(m− s)f(aqs) (27)

LHS =
tq

(q − α)2
− αm+1 a

(q − α)2
− (m+ 1)αm

a

q − α

=
(40)(2)

(0.5)2
− (1.5)3

10

(0.5)2
− (3)(1.5)2

10

0.5

= 320− 135− 135 = 50

RHS =
1∑
s=0

(1.5)1−s(2− s)(aqs)

= (2)(1.5)(10) + (1)(10)(2) = 30 + 20 = 50

Hence, the equation (27) is verified.

Corollary III.10. If |q| < 1, |α| ≤ 1 and lim
m→∞

fn(aqm)

converges, then

lim
m→∞

[ 1

(n− 1)!

m−n∑
s=0

αm−n−s(m− 1− s)(n−1)f(aqs)

+
n−1∑
r=0

αm−r
m(r)

r!
fn−r(a)

]
(28)

converges.

Proof: The proof follows from Remark III.8. As m → ∞,
fn(aqm) converges when |q| < 1, |α| ≤ 1 and the proof
completes from the equation (26).

The following remark gives q(α)-delta integer integration
method is coincided with the standard q-delta integer
integration when α = 1.

Remark III.11. If f is nth-order q-delta integrable function
based at a, then

fn(aqm)−
n−1∑
r=0

m(r)

r!
fn−r(a)

=
1

(n− 1)!

m−n∑
s=0

(m− 1− s)(n−1)f(aqs), (29)

n ∈ N and m− n ∈ N.

The following example illustrates Remark III.11.

Example III.12. Consider the function f(t) = t
(2)
q , n = 2,

a = 6, q = 2, m = 2 in (29), then it will becomes

f2(aqm+1)− f2(a)− (m+ 1)f1(a) =
m−1∑
s=0

(m− s)f(aqs)

LHS =
(aqm+1)

(2)
q

(q2 − 1)2
− a

(2)
q

(q2 − 1)2
− (m+ 1)

a
(2)
q

q2 − 1

=

(aqm+1)
1∏
r=1

(a− qr)qm+1

(q2 − 1)2
−
a

1∏
r=1

(a− qr)

(q2 − 1)2

−(m+ 1)

a
1∏
r=1

(a− qr)

(q2 − 1)

=
6× 8× 4× 8

9
− 6× 4

9
− 3× 6× 4

3
= 170.67− 2.67− 24 = 144

RHS =
1∑
s=0

(2− s)(aqs)(2)q =
1∑
s=0

(2− s)aqs(a− q)qs

=
1∑
s=0

(2− s)(6)2s(6− 2)2s = 48 + 96 = 144

From LHS and RHS, we verified the Remark III.11.

Corollary III.13. If |q| < 1 and lim
m→∞

fn(aqm) converges,
then

lim
m→∞

[ 1

(n− 1)!

m−n∑
s=0

(m−1−s)(n−1)f(aqs)+
n−1∑
r=0

m(r)

r!
fn−r(a)

]
(30)

converges.

Proof: The proof follows from Remark III.11. As m → ∞,
fn(aqm) converges when |q| < 1 and the proof completes
from the equation (29).

IV. FRACTIONAL ORDER q(α) - DELTA INTEGRATION

The expression (26) in Remark III.8 motivates us to form
a conjecture in fractional order q(α)-delta integration. In
this section, we develop infinite and νth order q(α)-delta
integration, which is equal to νth-order fractional sum of f
based at a. For any real ν > 0, the Theorems III.5 and II.6
generate the definition of the νth-order delta sum and delta
integration.

Definition IV.1. If f : aqν+Z → R is nth-order q(α)-delta
integrable function based at a for every n ∈ N, then f is
said to be ∞-order q(α)-delta integrable function.

Definition IV.2. Let f : aqν+Z → R be a function, ν > 0
and t = aqν+m. The fractional order (νth-order) q(α)-delta
sum of f based at a is defined by

a∆−νq(α)f(t) =
1

Γν

m−ν∑
s=0

αm−ν−s
Γ(m− s)

Γ(m− s− ν + 1)
f(aqν+s).

(31)

Definition IV.3. Let f : aqν+Z → R, ν > 0 and t = aqν+m

such that m− ν. If there exists a function, say fνa : a+ ν +
N→ R such that

fνa (t) =
1

Γν

m−ν∑
s=0

αm−ν−s
Γ(m− s)

Γ(m− s− ν + 1)
f(aqν+s),

(32)
then the function fνa is called as ν-order q(α)-delta
integration of f based at a.

Note that a∆−νq(α)f(t) and fνa (t) are νth-order q(α)-delta
sum and νth order q(α)-delta integration of f based at a
respectively. The expression of a∆−νq(α)f(t) is possible for
any given function f by using (31). But finding an exact
function for fνa (t) to a given function f is a challenging
task. we obtain fνa (t) for certain falling factorial function f
using the following conjecture.
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Conjecture IV.4. Assume that f : aqν+Z → R be ∞-order
q(α)-delta integrable function based at a having integrating
sequence (fn)∞n=1. If fn(a) = 0 for n = 1, 2, 3, · · · , n then
fνa (t) exists and satisfies (32) for ν > 0.

Theorem IV.5. If f : aqν+Z → R be having q(α)-delta
integrating sequence (f1, f2, · · · , fn) and also f is in
geometric progression, t = aqm and a∆−nq(α)f(t) be the
nth-order q(α)-delta integration of f based at a, then

fn(tq)−

[
(r+1)(n−1)

(n−1)!
αr+2−nf

(
t

qr+1

)]2
(r+1)(n−1)

(n−1)!
αr+2−nf

(
t

qr+1

)
− (r+2)(n−1)

(n−1)!
αr+3−nf

(
t

qr+2

)

=
r∑

s=n−1
αs+1−n s(n−1)

(n− 1)!
f
( t
qs

)
(33)

Proof: Consider the expression (23) in Theorem II.6,

fn(tq)− αm+1fn(a)− αm(m+ 1)fn−1(a)

−αm−1 (m+ 1)(2)

2!
fn−2(a)− · · ·

−αm−n+3 (m+ 1)(n−2)

(n− 2)!
f2(a)

−αm−n+2 (m+ 1)(n−1)

(n− 1)!
f1(a)

=
(n− 1)(n−1)

(n− 1)!
f
( t

qn−1

)
+ α

(n)(n−1)

(n− 1)!
f
( t

qn

)
+ · · ·

+αm−(n−1)
(m)(n−1)

(n− 1)!
f
( t

qm

)
.

As m → ∞, fs(a) → 0 when s = 1, 2, . . . , n, then appling
this into the above equation and it will becomes

fn(tq) =
(n− 1)(n−1)

(n− 1)!
f
( t

qn−1

)
+ α

(n)(n−1)

(n− 1)!
f
( t

qn

)
+α2 (n+ 1)(n−1)

(n− 1)!
f
( t

qn+1

)
+ · · ·

Now, we spilt the above infinite series into two series

fn(tq) =

[
(n− 1)(n−1)

(n− 1)!
f
( t

qn−1

)
+ α

(n)(n−1)

(n− 1)!
f
( t

qn

)
+ · · ·+ αr+1−n (r)(n−1)

(n− 1)!
f
( t
qr

)]
+

[
αr+2−n (r + 1)(n−1)

(n− 1)!
f
( t

qr+1

)
+αr+3−n (r + 2)(n−1)

(n− 1)!
f
( t

qr+2

)
+ · · ·

]
(34)

Consider the second series of the equation (34)[
αr+2−n (r + 1)(n−1)

(n− 1)!
f
( t

qr+1

)
+αr+3−n (r + 2)(n−1)

(n− 1)!
f
( t

qr+2

)
+ · · ·

]

=

[ (r + 1)(n−1)

(n− 1)!
αr+2−nf

( t

qr+1

)]2
(r + 1)(n−1)

(n− 1)!
αr+2−nf

( t

qr+1

)
− (r + 2)(n−1)

(n− 1)!
αr+3−nf

( t

qr+2

)
Substitute this into the equation (34), we get (33).

Corollary IV.6. If f is νth-order q(α)-delta integrable
function based at a, then

fν(tq)

−

[
1

Γν
Γ(r+2)

Γ(r−ν+3)
αr+2−nf

(
t

qr+1

)]2
1

Γν
Γ(r+2)

Γ(r−ν+3)
αr+2−nf

(
t

qr+1

)
− 1

Γν
Γ(r+3)

Γ(r−ν+4)
αr+3−nf

(
t

qr+2

)

=
1

Γν

r∑
s=ν−1

Γ(s+ 1)

Γ(s− ν + 2)
αs+1−nf

( t
qs

)
. (35)

Proof: The proof follows by Theorem IV.5 and convert (33)
this into gamma function.

The following example illustrates Corollary IV.6.

Example IV.7. Applying f(t) = t, t = 9, q = 3, r =
4.5, α = 0.5, ν = 2.5 in (35), then it will become as

f2.5(tq)−

[ 1

Γ2.5

Γ6.5

Γ5
(0.5)4f

( t

q5.5

)]2
1

Γ2.5

Γ6.5

Γ5
(0.5)4f

( t

q5.5

)
− 1

Γ2.5

Γ7.5

Γ6
(0.5)5f

( t

q6.5

)
=

4.5∑
s=1.5

1

Γ2.5

Γ(s+ 1)

Γ(s− 0.5)
(0.5)s−1.5f

( t
qs

)
LHS =

tq

(q − α)2.5

−

[ 1

Γ2.5

Γ6.5

Γ5
(0.5)4

t

q5.5

]2
1

Γ2.5

Γ7.5

Γ6
(0.5)4

t

q5.5
− 1

Γ2.5

Γ7.5

Γ6
(0.5)5

t

q6.5

= 2.7322− (0.012059)2

0.012059− 0.002617
= 2.7322− 0.015357 = 2.7168

RHS =
4.5∑
s=1.5

1

Γ2.5

Γ(s+ 1)

Γ(s− 0.5)
(0.5)s−1.5

t

qs

=
4.5∑
s=1.5

1

Γ2.5

Γ(s+ 1)

Γ(s− 0.5)

9

3s

=
1

1.3296
[3.612329] = 2.71685

From LHS and RHS, we verified the Corollary IV.6.

The following Remark gives the q(α)-delta fractional
integration method is coincided with the standard q-delta
fractional integration when α = 1.

Remark IV.8. If f is νth-order q-delta integrable function
based at a, then

fν(tq)−

[ 1

Γν

Γ(r + 2)

Γ(r − ν + 3)
f
( t

qr+1

)]2
1

Γν

Γ(r + 2)

Γ(r − ν + 3)
f
( t

qr+1

)
− 1

Γν

Γ(r + 3)

Γ(r − ν + 4)
f
( t

qr+2

)

=
r∑

s=ν−1

1

Γν

Γ(s+ 1)

Γ(s− ν + 2)
f
( t
qs

)
.

(36)

The following example illustrates Remark IV.8.

Example IV.9. Applying f(t) = t, t = 10, r = 6.5, q =
2, ν = 1.5 in (36), then the equation (36) will becomes
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f1.5(tq)−

[ 1

Γ1.5

Γ8.5

Γ8
f
( t

q7.5

)]2
1

Γ1.5

Γ8.5

Γ8
f
( t

q7.5

)
− 1

Γ1.5

Γ9.5

Γ9
f
( t

q8.5

)
=

6.5∑
s=0.5

1

Γ1.5

Γ(s+ 1)

Γ(s+ 0.5)
f
( t
qs

)

LHS =
tq

(q − 1)1.5
−

[ 1

Γ1.5

Γ8.5

Γ8

t

q7.5

]2
1

Γ1.5

Γ8.5

Γ8

t

q7.5
− 1

Γ1.5

Γ9.5

Γ9

t

q8.5

= 20− (0.17358)2

0.17358− 0.092214
= 20− 0.370302 = 19.629698

RHS =
6.5∑
s=0.5

1

Γ1.5

Γ(s+ 1)

Γ(s+ 0.5)

t

qs

=
6.5∑
s=0.5

1

Γ1.5

Γ(s+ 1)

Γ(s+ 0.5)

10

2s

=
1

0.88639
[17.401899] = 19.632328

From LHS and RHS, we verified the Remark IV.8.

V. CONCLUSION

Although the fractional order q-delta sum of a given
function f based at a is well-established in the literature, no
previous work has explored the fractional order q(α)-delta
integration of f . In this research, we have developed a
discrete fractional integration method for certain classes
of functions. Furthermore, we extend these results to the
q(α)-delta operator, leading to the formulation of several
new identities and fundamental theorems. These findings
contribute novel insights into the field of discrete fractional
calculus.
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