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Abstract—The Liu and Story (LS) conjugate gradient (CG)
parameter βLS

k (J. Optim, Theory and Appl., 69:129-137,
(1991)) is among the classical CG parameters with remarkable
numerical performance. However, its global convergence is not
always guaranteed. This paper presents a modified LS scheme
for solving constrained monotone nonlinear equations with
application to compressive sensing. Using eigenvalue analysis,
it has been shown that the symmetrized direction matrix of the
modified scheme is positive-definite and descent. By incorporat-
ing the proposed algorithm with Solodov & Svaiter’s projection
algorithm (1999), some convex-constrained monotone systems of
nonlinear equations were solved with impressive performance.
Using appropriate assumptions, the global convergence of the
new scheme was proved, and the numerical performance
as compared with some recent algorithms in the literature
indicates its robustness and effectiveness. Furthermore, the new
algorithm performed better than the compared algorithm in
restoring some signal problems in compressed sensing.
Keywords: Liu & Story CG parameter, Eigenvalue analysis,
Convex constraints, Compressed sensing, Search direction ma-
trix, Positive definite matrix.

Index Terms—Liu & Story CG parameter, Eigenvalue anal-
ysis, Convex constraints, Compressed sensing, Search direction
matrix, Positive definite matrix.

I. INTRODUCTION

CONSIDER the system:

F (x) = 0, x ∈ ψ. (1)

Here, F : Rn → Rn is continuous and monotone mapping.
ψ ⊆ Rn is a non-empty, closed, and convex set. F being
monotone satisfies the following

(F (x)− F (y))
T
(x− y) ≥ 0 ∀x, y ∈ Rn. (2)

In this paper, Rn and ∥.∥ refer to the real n-dimensional
space and Euclidean norm, respectively, while F (xk) = Fk.
The above system is present in sciences and engineering;
many scientific formulations often ended up to systems of
nonlinear equations. They appeared in mathematical research
fields such as differential equations, optimization theory,
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and integral equations. They are useful in the generalized
proximal algorithms with Bregman distances as subprob-
lems [4]. They are applied in chemistry when determining
chemical equilibrium points. Similarly, the equilibrium in
an economic analysis is determined in the same way [5].
Some variational inequalities are converted to monotone
systems before solving [6]. Furthermore, they are applicable
in compressed sensing for signal reconstruction and image
deblurring [9], [10], [5], [8]. They play an essential role in
optimal power flow equations [7]. They are helpful in the ra-
dioactive transfer process by discretizing the Chandrasekhar
integral equation [5]. They appeared in financial institutions
for forecasting mechanizing [21].

Dozens of methods and/or techniques have been inves-
tigated, designed, and analyzed for finding the solutions
of system (1). The most popular among them is Newton’s
methods and their improved versions [11], [13]. Steepest
descent was investigated in the past, but it was neglected
due to its low convergence rate [14]. Levenberg-Marquardt’s
approach is also a good alternative for solving system (1)
[15], [16].

Due to the presence of a large-scale system, researchers’
attention turned to CG methods. Being derivative-free, they
have the capacity of solving large-scale systems with less
CPU time [17].

The CG methods are iterative, i.e., given any starting point,
xk, it generates the next iterative point xk+1, via

xk+1 = xk + αkdk, k = 0, 1, 2, ..., (3)

where αk, is the step length and dk is the search direction.
The dk = for the CG methods is represented by the following
expression:

dk =

{
−Fk, if k = 0,

−Fk + βksk−1, if k ≥ 1,
(4)

sk−1 = xk − xk−1, and βk is the CG parameter.
This CG parameter βk, is of different expression and

format based on the way they have been formed; for example,

βLSk = − FTk yk−1

FTk−1dk−1
, (5)

is called a conjugate descent (CD) CG parameter [43].
The parameter βk is considered the most critical part of

any CG direction, as different CG parameters bring about
different CG directions with unique convergence properties
and numerical performance. Although some CG parameters
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are computationally excellent, some often do not satisfy the
inequality below, an essential ingredient for global conver-
gence [5].

FTk dk ≤ −τ∥Fk∥2, τ > 0, (6)

The conjugate descent (CD) parameter βCDk belongs to
the class of classical CGs with good convergence attributes
but weak numerical performance. In an effort to address
the above challenge, Yang et al., [18] hybridized Liu-story
(LS) and CD parameters using Wolfe’s line search strategy.
The algorithm they produced was an efficient one. Kaelo et
al. [19] hybridized Liu-Story LS, Hestenes-Steifel (HS), and
Dai-Yuan (DY) CG parameters and produced an algorithm
that satisfied (6), an ingredient for global convergence. Using
strong Wolfe’s line search strategy, the proposed algorithm
converged globally. Similarly, Snezana & Djordjevic [20]
proposed a new hybrid of CD and LS, with a hybrid
parameter generated in a way that (6) is satisfied. Liu et
al. [22] presented a scheme that satisfies condition (6) and
presented an LS-type CG parameter for solving the system
(1) by applying Powell’s strategy on the LS-type scheme
[23]. Motivated by the method presented in [24], Wang et al.
[25] presented a three-term CG algorithm for the solution to
the system (1). Similarly, Li wang, in [26], based on FR-type
CG iterative scheme, proposed an algorithm for symmetric
system by improving the method of Zhang et al. [27]. The
method satisfies (6) and converges globally. Furthermore, in
their effort to come up with a better algorithm that solve
(1), Liu and Li [28] updated the scheme of Yu et al. [29]
and presented a multivariate spectral algorithm for solving
the system of the form (1). Motivated by the fact that
the numerical performance of the classical CD method is
weak, Zhang et al., [30] proposed a three-term CG direction
that satisfies the (6) and trust-region property. The proposed
method’s convergence was achieved by a modified Weak
Wolf-Powell (MWWP) line search strategy coupled with
the projection algorithm. The numerical results outperformed
most of the available algorithms.

Originally, classical conjugate gradient methods were de-
signed for solving systems of the form

min f(x), x ∈ Rn, (7)

such that f : Rn → R is nonlinear and continuous mapping
and the second derivative exists. Considering their nice prop-
erties and the fact that the first-order optimality condition for
(7) i.e.,∇f(x) = 0 is the same as (1) whenever, ∇f = Fk
is the first derivative of some nonlinear functions, all the
methods applied to (7), can be extended to tackle the problem
of the form (1).

II. MOTIVATION AND DERIVATION

To modify an existing or to produce a new successful CG
parameter, two factors must be considered:

• The new modified CG parameter must satisfy (6), which
will give way to global convergence.

• It must outperform the existing methods computation-
ally by carrying out numerical comparisons with the
relevant existing methods in the literature.

In [31], Yu and Guan presented a modified version of the
DY CG parameter as follows:

βDDYk = βDYk − b∥Fk∥2

(dTk−1yk−1)2
dTk−1Fk. (8)

In the effort to prove the convergence of the method, they
showed that (6) is satisfied for τ = 1 − 1

4b and b > 1
4 .

motivated by Guan’s scheme; Yu et al. [29] proposed a spec-
tral DY of the method in [31] and presented the following
direction

dk =
1

δk
Fk + βDSDYk dk−1, (9)

where

βDSYk =
∥Fk∥2

δk(dTk−1yk−1)
− b∥Fk∥2

δk(dTk−1yk−1)2
dTk−1Fk. (10)

Both the schemes in [31] and [29] satisfy (6) for b > 1
4 i.e.,

b ∈ ( 14 ,∞). Moreover, Yu and Guan presented a modified
Liu–Storey CG parameter in [31] for solving unconstrained
optimization problems. They presented the following

βMLS
k = − gTk yk−1

dTk−1gk−1
− b∥yk−1∥2

(dTk−1gk−1)2
gTk−1dk−1, b >

1

4
.

(11)
They showed that the scheme with modified LS satisfied
equation (6) for b ∈ ( 14 ,∞) only. However, the main
challenge with the scheme (11) is that the parameter b is
not mathematically derived but is randomly selected in the
interval ( 14 ,∞),, and the scheme will not satisfy (6) for
b > 0.
Motivated by the above and the fact that the modified LS
scheme for the system of nonlinear equations is limited in
the literature, the following modification is proposed:

βMLS
k = −ξ F

T
k yk−1

FTk−1sk−1
−ξ bk∥yk−1∥2

(FTk−1sk−1)2
(FTk sk−1), ξ > 0,

(12)
and bk > 0 is a parameter to be determined.
The notable features of the new scheme are

• The inequality (6) is satisfied throughout the interval
(0,∞).

• The value of the positive parameter bk, is not fixed, but
it is mathematically derived.

Then by (4) and (12), we have

dk = −Fk − ξ
FTk yk−1

sTk−1Fk−1
sk−1 − ξ

bk∥yk−1∥2FTk sk−1

(sTk−1Fk−1)2
sk−1.

(13)
By Perry’s idea in [33], (13) can be written as

dk = −QkFk. (14)

Here Qk is called the search direction matrix, which is
expressed as

Qk = I + ξ
sk−1y

T
k−1

FTk−1sk−1
+ ξ

bk∥yk−1∥2(sk−1s
T
k−1)

(FTk−1sk−1)2
(15)

Qk non-symmetric; it shall be symmetrized as follows:

Hk = I+ ξ
sk−1y

T
k−1 + yk−1s

T
k−1

FTk−1sk−1
+ ξ

bk∥yk−1∥2sk−1s
T
k−1

(FTk−1sk−1)2
.

(16)
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Then (14) becomes

dk = −HkFk, (17)

where Hk is the symmetric version of Qk in (14).

Theorem 1. Hk defined in (16), has eigenvalues λ+k , λ
−
k

and 1 (n− 2) times where,

λ+k =
1

2

[
(2 + 2ξpk + ξbkqk)

+
√

(ξbkqk + 2ξpk)2 + 4ξ2(qk − p2k)
] (18)

λ−k =
1

2

[
(2 + 2ξpk + ξbkqk)

−
√
(ξbkqk + 2ξpk)2 + 4ξ2(qk − p2k)

] (19)

with

pk =
yTk−1sk−1

FTk−1sk−1
, qk =

∥yk−1∥2∥sk−1∥2

(FTk−1sk−1)2
. (20)

Moreover, the eigenvalues are real and positive.

Proof: Let’s assume the function Fk−1 and sk−1 are
not zero unless the solution is reached; hence, FTk sk−1 > 0.
Let V be a vector space spanned by {Fk−1, sk−1}. Then
the dimension of V and its orthogonal complement V ⊥, are
dim(V ) ≤ 2 and dim(V ⊥) ≥ n−2, respectively. Let a set of
mutually orthogonal vectors be {ιik−1}

n−2
i ⊂ V ⊥ satisfying

FTk−1ι
i
k−1 = sTk−1ι

i
k−1 = 0, i = 1, ..., n− 2. (21)

Using (16) and (21) we get

Hkι
i
k−1 = ιik−1, (22)

The above equation is an eigenvector equation, and ιik−1,
for i = 1, 2, ...n− 2 is an eigenvector with a corresponding
eigenvalue of 1 up to (n− 2) times.
Let the remaining eigenvalue be λ+k and λ−k .
Furthermore, (16) can also be written as

Hk = I + ξ
yk−1F

T
k

FTk−1sk−1
+

ξ

(
bk∥yk−1∥2sk−1 + yTk−1sk−1Fk

(FTk−1sk−1)2

)
sTk−1.

(23)

It is clear that (23) is a rank-2 update matrix; therefore, from
theorem 1.2.16 of [34], the relation

det(I + a1a
T
2 + a3a

T
4 ) =

(
1 + aT1 a2

)(
1 + aT3 a4

)
−
(
aT1 a4

)(
aT2 a3

)
, (24)

where the vectors a1, a2, a3, and a4 are defined as:

a1 = ξ
sk−1

FTk−1sk−1
, a2 = yk−1,

a3 = ξ
bk∥yk−1∥2sk−1 + FTk−1sk−1 + yk−1

(FTk−1sk−1)2
, a4 = sk−1.

can be used to get the determinant matrix of Ak as

det(Hk) =

(
ξ
(yTk−1sk−1)

(FTk−1sk−1)
+ 1

)2

+ ξ
bk∥yk−1∥2∥sk−1∥2

(FTk−1sk−1)2
−

ξ2
∥yk−1∥2∥sk−1∥2

(FTk−1sk−1)2
.

(25)

Furthermore, it is known that the trace of (16) is equivalent
to the total number of its eigenvalues; hence we have

trace(Hk) = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
(n−2)times

+λ+k + λ−k

= n+ 2ξ
yTk−1sk−1

FTk−1sk−1
+ ξ

bk∥yk−1∥2∥sk−1∥2

(FTk−1sk−1)2

(26)

and consequently,

λ+k + λ−k = 2+2ξ
yTk−1sk−1

FTk−1sk−1
+ ξ

bk∥yk−1∥2∥sk−1∥2

(FTk−1sk−1)2
. (27)

Then by (20), (25) and (27), we get

λ2k−(2 + 2ξpk + ξbkqk)λk+
(
(ξpk + 1)2 + ξ(bk − ξ)qk

)
= 0.

(28)
Then using the quadratic equations formula we obtain

λ±k =
1

2
[(2 + 2ξpk + ξbkqk)±√
(ξbkqk + 2ξpk)2 + 4ξ2(qk − p2k)

]
. (29)

This gives (18) and (19).
Next is to show that λ+k and λ−k are real and positive. The
discriminant is positive, since qk > p2k. Therefore we need
to have

2 + 2ξ
yTk−1sk−1

FTk−1sk−1
+ ξ

bk∥yk−1∥2∥sk−1∥2

(FTk−1sk−1)2
> 0. (30)

λ+k is real and positive when

bk > −2
(yTk−1sk−1)(F

T
k−1sk−1)

∥yk−1∥2∥sk−1∥2
− 2

(FTk−1sk−1)
2

ξ∥yk−1∥2∥sk−1∥2
.

(31)
For λ−k to be real and positive, we require equation (28) to
be greater than zero, i.e., (19) to be greater than zero.
After algebraic simplification, we get

bk > ξ −

(√
ξ(yTk−1sk−1)

∥yk−1∥∥sk−1∥
+

FTk−1sk−1√
ξ∥yk−1∥∥sk−1∥

)2

. (32)

Now (32) can be written as

bk = ξ−φ

(√
ξ(yTk−1sk−1)

∥yk−1∥∥sk−1∥
+

FTk−1sk−1√
ξ∥yk−1∥∥sk−1∥

)2

. (33)

with ξ > 0 and φ ≤ 0.
Defining λ−k = η ∈ (0, 1) and multiplying (17) with Fk, we
have

Fkdk = −FkHkFk ≤ −η∥Fk∥2 < 0. (34)

Hence (6) is satisfied with bk > 0 ∀k
To further improve the boundedness and convergence of

the proposed algorithm, we employed Waziri et.al. idea [35]
and present the following

dk = −Fk + βUMLS
k sk−1, (35)

where

βUMLS
k = −ξ ∥Fk∥

2

Φk
− ξ

bk∥yk−1∥2(FTk sk−1)

Φ2
k

, (36)

Φk = max{FTk−1sk−1, ξ∥yk−1∥∥sk−1∥},

IAENG International Journal of Applied Mathematics

Volume 55, Issue 6, June 2025, Pages 1454-1465

 
______________________________________________________________________________________ 



and

bk = ξ − φ

(√
ξ(yTk−1sk−1)

Uk
+
FTk−1sk−1

Vk

)2

,

ξ > 0, φ ≤ 0.

(37)

Uk = max{∥yk−1∥∥sk−1∥, ξ∥Fk−1∥∥sk−1∥},

Vk = max{∥Fk−1∥∥sk−1∥, ξ∥Fk∥∥sk−1∥}.

Let us define Solodov’s projection mapping here.

Definition 1. Let ψ ⊆ Rn not empty, be convex, and closed.
For x ∈ Rn, its projection onto ψ is given by

Pψ = argmin{∥x− y∥ : y ∈ ψ}. (38)

The above mapping is a projection map that satisfies

∥Pψ(x)− Pψ(y)∥ ≤ ∥x− y∥, called nonexpensive, (39)

and finally,

∥Pψ(x)− y∥ ≤ ∥x− y∥, ∀y ∈ ψ (40)

Algorithm 1 Updated Modified (UMLS)
Given x0 ∈ ψ, d0 = −F0, ρ ∈ (0, 1), σ > 0, ϵ = 10−6, and
ζ > 0, set k = 0.
Step i: find Fk. If ∥Fk∥ ≤ ϵ stop, otherwise go to Step ii.
Step ii: Let αk = ζρmk , where mk is the least positive
integer m such that

−F (xk + αkdk)
T dk ≥ σαk∥F (xk + αkdk)∥∥dk∥2. (41)

Step iii: Set
zk = xk + αkdk. (42)

Step iv: If zk ∈ ψ and ∥F (zk)∥ ≤ ϵ, stop; else, go to Step
v.
Step v: Solve for xk+1 by

xk+1 = Pψ[xk − λkF (zk)], (43)

where, λk =
(xk − zk)

TF (zk)

∥F (zk)∥2
.

Step vi: Get the new dk+1 using (35), (36) and (37).
Step vii: Update k = k + 1 and repeat Step ii.

III. CONVERGENCE RESULTS

This part presents the analysis of the proposed algorithm
UMLS and some certain preassumptions.

Assumption 1. The map F is Lipschitz continuous; that is,
there is a constant L > 0 such that

∥F (x)− F (y)∥ ≤ L∥x− y∥ holds for any x, y ∈ Rn.
(44)

Assumption 2. F is strongly monotone, i.e., ∀ x, y ∈ Rn
there exists c > 0 such that

(x− y)T (F (x)− F (y)) ≥ c∥x− y∥2, for all x, y ∈ Rn
(45)

Assumption 3. Let S̄, nonempty, be the solution set of (1)

Lemma 1. Let the assumptions hold, and {xk}, {zk} are
sequences defined by UMLS algorithm, then {xk}, {zk} are
bounded and

∥dk∥ ≤M. (46)

lim
k→∞

∥xk − zk∥ = 0. (47)

lim
k→∞

∥xk+1 − xk∥ = 0. (48)

Proof: Let x̄ ∈ S̄ be a solution of (1), using (45) we
have

(xk − x̄)TF (zk) ≥ (xk − zk)
TF (zk). (49)

By (41) and definition of zk

(xk − zk)
TF (zk) ≥ σα2

k∥dk∥2 > 0. (50)

And from (43) we have

∥xk+1 − x̄∥2 = ∥xk − λkF (zk)− x̄∥2

= ∥xk − x̄∥2 − 2λk(xk − x̄)TF (zk)

+ λ2k∥F (zk)∥2

≤ ∥xk − x̄∥2 − 2λk(xk − zk)
TF (zk)

+ λ2k∥F (zk)∥2

= ∥xk − x̄∥2 − ((xk − zk)
TF (zk))

2

∥F (zk)∥2
≤ ∥xk − x̄∥2.

(51)

Hence,
∥xk+1 − x̄∥ ≤ ∥xk − x̄∥. (52)

Repeatedly, ∥xk − x̄∥ ≤ ∥x0 − x̄∥ ∀k.
This means that {xk−x̄} is decreasing and {xk} is bounded.
Furthermore, by (1)-(3) and (52), we get

∥Fk∥ = ∥Fk − Fk(x̄)∥ ≤ L∥xk − x̄∥ ≤ ∥x0 − x̄∥. (53)

Hence
∥Fk∥ ≤ N1 for N1 = ∥x0 − x̄∥. (54)

Then from (37)

|bk| =

∣∣∣∣∣∣ξ − φ

(√
ξ(yTk−1sk−1)

Uk
+

(FTk−1sk−1)

Vk

)2
∣∣∣∣∣∣

≤ |ξ|+ |φ|

∣∣∣∣∣
(√

ξ∥yk−1∥∥sk−1∥
Uk

+
∥Fk−1∥∥sk−1∥

Vk

)2
∣∣∣∣∣

≤ ξ + |φ|

∣∣∣∣∣
(√

ξ∥yk−1∥∥sk−1∥
∥yk−1∥∥sk−1∥

+
∥Fk−1∥∥sk−1∥
∥Fk−1∥∥sk−1∥

)2
∣∣∣∣∣

= ξ + |φ|
(√

ξ + 1
)2
.

(55)

This implies

|bk| ≤ λ for λ = ξ + |φ|
(√

ξ + 1
)2
. (56)

And from (35), (36), (37), (54) and (56), we arrive

∥dk∥ =
∥∥−Fk + βUMLS

k sk−1

∥∥
=

∥∥∥∥−Fk +

(
ξ(FTk yk−1)

Φk
− ξbk∥yk−1∥2(FTk sk−1)

Φ2
k

)
sk−1

∥∥∥∥
≤ ∥Fk∥+

|ξ|∥Fk∥∥sk−1∥∥yk−1∥
Φk

+
|ξ||bk|∥Fk∥∥yk−1∥2∥sk−1∥2

Φ2
k

≤ ∥Fk∥+ ∥Fk∥+
1

ξ
λ∥Fk∥ ≤ (2 +

1

ξ
λ)N1. (57)
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Let M = (2 + 1
ξλ)N1, (46) is proved.

Since {dk}, {xk} are bounded sequences, from (42) we have
that {zk} is bounded. Using the same argument as in (53)
we have

∥F (zk)∥ ≤ ℓ, ℓ is a positive constant. (58)

From (51),(
(xk − zk)

TF (zk)
)2 ≤ ∥Fk∥2

(
∥xk − x̄∥2 − ∥xk+1 − x̄∥2

)
.

(59)
From (41), we get

σ2α4
k∥dk∥4 ≤ α2

k(F (zk)
T dk)

2. (60)

By (51) and (58), we have

σ2α4
k∥dk∥4 ≤ ∥F (zk)∥4(∥xk − x̄∥2 − ∥xx+1 − x̄∥2), (61)

{xk − x̄} converged and {F (zk)} is bounded, we can apply
limit on (59) to get

σ2 lim
k→∞

α4
k∥dk∥4 ≤ 0. (62)

and hence
lim
k→∞

αkdk = 0. (63)

(61) and (42) indicates that (47) is true. We can, however,
deduce from the definition of λk that

∥xk+1 − xk∥ = ∥xk − λkF (zk)− xk∥
= ∥χkF (zk)∥
≤ ∥xk − zk∥.

(64)

This means (48) is proved.

Theorem 2. Lets assumptions (1)-(3) be true and {xk} be
a sequence defined by UMLS algorithm, then

lim inf
k→∞

∥Fk∥ = 0. (65)

Proof: Let us starts by contradicting the above assump-
tions i.e., (65) not true, then

∥Fk∥ ≥ ϵ0 is true∀k > 0. (66)

Let ∥dk∥ ̸= unless when ∥Fk∥ = 0, then there exists
δ1 > 0 such that

∥dk∥ ≥ δ1. (67)

If αk ̸= ξ, then αk, ρ−1αk does not agrees (41)
i.e.,

−F (xk+ρ−1αkdk)
T dk < σρ−1αk∥F (xk+ρ−1αkdk)∥∥dk∥2.

(68)
Using (68) and (6) yields

τ∥Fk∥2 ≤ −FTk dk
=
(
F (xk + ρ−1αkdk)− Fk

)T
dk

− Fk
(
xk + ρ−1αkdk

)T
dk

≤ Lρ−1αk∥dk∥2 + σρ−1αk∥dk∥2

= αk∥dk∥(L+ σ)ρ−1∥dk∥.

(69)

And from (69) we get

αk∥dk∥ >
ρ

L+ σ

τ∥Fk∥2

∥dk∥
≥ ρ

L+ σ

τδ0
M

. (70)

Equation (70) contradicts (63). Hence (65) is true. This
completes the proof.

IV. NUMERICAL EXPERIMENTS

This section is divided into two parts, the first and the
second. In this part, numerical results of the proposed method
is presented to highlight the development achieved by the
proposed algorithm. The following algorithms were used for
the comparisons:

• MDDYM (2021) Algorithm proposed in [35].
• DTCG1 (2020) Algorithm proposed in [9].

In the second part, UMLS Algorithm is applied to solve
problems arising in compressive sensing. The Algorithm is
compared with CHCG Algorithm for signal reconstruction
and recovery. Below are the parameters used for the
UMLS Algorithm: The codes are written in MaTlab
8.3.0 (R2014a) and run on a laptop computer with the
following specifications: 1.80 GHz, processor (CPU), and
8 RAM (GB). However, the parameters of MDDYM and
DTCG1 Algorithms, were chosen as in [35] and [9], while
the parameters for UMLS were chosen to be ξ = 1,
σ = φ = 10−4 and ρ = ζ = 0.9. The iterations of
all the three algorithms were stop when ∥Fk∥ ≤ 10−6,
∥F (zk)∥ ≤ 10−6, or the number of iterations exceed
2000 but stopping criteria is not satisfied. The numerical
experiments of the three methods were carried out using the
following ten test problems (T1-T6), and with the following
initial points:
x10 = (0.01, 0.01, ..., 0.01)T , x20 = (0.25, 0.25, ..., 0.25)T ,
x30 = (0.4, 0.4, ..., 0.4)T , x40 = (0.5, 0.5, ..., 0.5)T ,
x50 = (1.25, 1.25, ..., 1.25)T , x60 = (0.3, 0.3, ..., 0.3)T ,
x70 = (1, 1, ..., 1)T , and x80 = (0.1, 0.1, ..., 0.1)T .

T1 [9]
F1(x) = ex1 − 1,
Fi(x) = exi + xi−1 − 1, i = 2, 3, 4, . . . , n− 1,
where ψ = Rn+.

T2 [10]
Fi(x) = log(xi + 1)− xi

n , i = 2, 3, . . . , n− 1,

where ψ = {x ∈ Rn :

n∑
i=1

xi ≤ n, xi > −1,

i = 1, 2, 3, . . . , n}.

T3 [35]
Fi(x) = 2xi − sin |xi|, i = 1, 2, 3, . . . , n,
where ψ = Rn+.

T4[10]
Fi(x) = cosxi + xi − 1. i = 1, 2, 3, . . . , n,
where ψ = Rn+.

T5 [9]
Fi(x) = exi − 1, i = 1, 2, 3, . . . , n,
where ψ = Rn+.

T6 [35]
F1(x) = −2x1 − x2 + ex1 − 1,
Fi(x) = −xi−1 + 2xi − xi+1 + exi − 1,
Fn(x) = −xn−1 + 2xn + exn − 1, i = 2, 3, 4, . . . , n− 1,

where ψ = {x ∈ Rn :
n∑
i=1

xi ≤ n, xi ≥ 0, i =

1, 2, 3, . . . , n}.
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Fig. 1: Performance profile for the number of iterations.
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Fig. 2: Performance profile for the function evaluations.

Tables II-IV display the performance of the proposed
algorithm (UMLS) in comparison with recent CG algorithms;
MDDYM [35] and DTCG1 [9]. In the tables, the terms IP,
Iter, and Fval refer to the initial point, number of iterations,
and function evaluations respectively. Also, Time(s) and
∥Fk∥ refers to CPU time and norm of residual functions
respectively.
To be just a comparison, the two algorithms were run with
the same initial starting point. The large dimension, i.e.,
(100,000), indicates the proposed algorithm’s applicability
to practical problems.
As it is observable from the tables, the UMLS algorithm
solves all the test functions with the least number of
iterations, least CPU time, and least number of function
evaluations as compared to the DTCG1 and MDDYM
algorithms. Based on the above, the UMLS algorithm
outperformed the compared algorithms and can be used for
practical purposes where large-scale systems are involved.

Furthermore, using Dolan and Moré [36] performance
profile, data of tables II-IV were used to plot Figures 1-
3. Each Figure compares the proposed method with that
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Fig. 3: Performance profile for the CPU Time (in seconds).

of MYYDM and DTCG1 algorithms based on the selected
metric.
Figure 1 displays the comparison based on the number of
iterations. In this Figure, it is clear that the UMLS algorithm
wins over MYYDM algorithm in about 80% of the entire
experiment. The same thing happened with Figure 2 where
UMLS algorithm wins over MYYDM algorithm in about
53% of the entire experiment based on function evaluations.
The same trend with Figure 3. Therefore, based on the
above, the proposed algorithm (UMLS) could be relied on
for solving system (1) and extending to compressive sensing.
Furthermore, using Dolan and Moré performance profile, the
data in tables II-IV were used to plot figures 1-3. Each
figure displays the performance based on the criteria used
i.e., number of iterations, CPU and number of function
evaluations.

A. Application of UMLS Algorithm to signal recovery

Among the applications of constrained monotone nonlin-
ear systems of equations is signal and image recovery in com-
pressive sensing (CS). Compressing sensing or compressed
sensing, concerns with the reconstruction of a sparse signal
from incoherent measurements. It asserts that some signals
in real applications have a better representation in a specific
domain after transformation while the remaining ones are
insignificant or zeros. It replaces the traditional sampling
technique, thereby reducing the number of samples for better
signal sampling and reconstruction. The technique depends
mainly on mathematical algorithms, especially derivative-
free based algorithms that need less storage facility and
a high chance of solving large-scale systems. Therefore,
optimization procedures that aim at the sparsest solution in
a suitable representation will be a good candidate for the
job. The CS theorem is present in biological engineering,
medical sciences, sciences and engineering [37], [38]. It uses
the following linear equation to recover the sparse signal

ϕ = Nx, (71)

x ∈ Rn, ϕ ∈ Rm, N ∈ Rmxn (m << n) is a linear operator.
The popular method for solving the sparse solution is to
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Fig. 4: Displays, from top to bottom, the original signal, the measurement, and the recovery signals recovered by the UMLS
and CHCG algorithms.

minimize the relation below

min
x

1

2
∥ϕ−Nx∥22 + τ∥x∥1, (72)

τ is a positive parameter (regularized).
Equation (72) is a non-smooth due to the presence of ℓ1-norm
therefore, derivative-free algorithms can not be applied to
solve it. As such, gradient projection for sparse reconstruc-
tion (GPSR) proposed by Figueredo et al. [39] is among
the best approach for solving (72). In [39], problem (72) is
written as

x = u− v, u ≥ 0, v ≥ 0, u, v ∈ Rn, (73)

ui = (xi)+, and vi = (−xi)+ for i = 1, 2, ..., n, where
(.)+ denotes positive-part operator, which is defined as
(x)+ = max{0, x}. Using ℓ1-norm definition, it implies
∥x∥1 = eTnu + eTnv, with en = (1, 1, ..., 1)T ∈ Rn and
problem (72) become

min
u,v

1

2
∥ϕ−N(u− v)∥22 + τeTnu+ τeTnv, u, v ≥ 0. (74)

Figueredo et al., [39] demonstrates how to express problem
(74) in a more formal bound quadratic programming problem
as

min
z

1

2
zTHz + cT z, s.t z ≥ 0, (75)

where z =
(
u
v

)
, c = τe2n +

(
−b
b

)
, b = NTϕ,

H =

(
BTB −BTB
−BTB BTB

)
.

The matrix H is a positive semi-definite. Equation (75) can
be transformed to a linear variable inequality (LVT), which
is the same thing to

F (z) = min{z,Hz + c} = 0. (76)

The function Fk in (75) is a vector-valued function, it was
shown to be Lipschitz continuous and monotone in Lemma
3 of [40] and Lemma 2.2 of [41]. Hence, our proposed
algorithm, UMLS algorithm, could be a good choice for
solving it.
Numerical comparison is carried out in comparison with
CHCG algorithm in signal reconstruction and recovery. The
size of the signal is considered to be n = 212 with k = 210.
The Error, termed as means square error (MSE) is used to
assess the quality of the restoration process, it is measured
by

MSE =
1

n
∥x̂− x̃∥2, (77)

where x̂ refers to the original signal, and x̃ is the recovered
signal. The experiment starts by initializing x0 = NTϕ,
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Fig. 5: Compares UMLS and CHCG Algorithm in signal
recovery experiment. In above figure, x-axes represent the
number of iterations, y-axes represent MSE, and the number
of function evaluations.

conducting ten (10) trials recording the data of interest for

each trial. It set to stop when |fk−fk−1|
|fk−1| < 10−5,

where f(x) = 1
2∥Nx− ϕ∥22 + τ∥x∥1 is a merit function.

The following information is recorded:
As seen from the Figures and the table, both algorithms

performed well in recovering the signals with a reasonable
degree of accuracy. But considering the number of iterations
(ITER) and the TIMES (CPU times), the proposed algorithm
is faster and more efficient than the compared algorithm.
Then it is evident that UMLS algorithm is an excellent
algorithm to be applied to ℓ1-norm minimization and signal
recovery.

V. CONCLUSION

This paper presented a modified Liu and Storey algo-
rithm for the constrained monotone nonlinear equation. The
algorithm satisfied the descent condition by conducting an
eigenvalue analysis of the search direction matrix. Unlike
methods presented by Yu and Guan [31], and YU et al.
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Fig. 6: Compares UMLS and CHCG Algorithm in signal
recovery experiment. In above figure, x-axes represent CPU
time (seconds), and y-axes represent MSE and the number
of function evaluations.

TABLE I: Ten trials recorded of UMLS and CHCG
signal’s recovery with ℓ1-norm regularization

UMLS CHCG
MSE ITER TIME(s) MSE ITER TIME(s)

2.13E-04 91 2.76 2.30E-05 137 2.06
8.16E-06 92 2.52 1.96E-05 141 2.06
8.11E-06 89 2.6 2.38E-05 121 3.55
2.09E-04 91 2.52 2.38E-05 135 2.98
4.62E-05 84 2.34 1.62E-05 140 3.09
7.70E-06 96 2.88 1.85E-05 125 3.77
2.72E-05 87 2.72 4.31E-05 135 3.16
1.09E-05 84 2.53 1.94E-05 147 3.17
0.74E-05 75 2.25 2.10E-04 108 0.41
1.19E-05 72 2.53 2.71E-05 122 4.53

AVERAGE 3.62E-05 92.8 2.556 4.24E-05 132 2.878

[32], which assured global convergence only for C ∈ ( 14 ,∞)
interval, the proposed method converges globally in the set
C ∈ (0,∞). The impact of this development is clearer in
the comparison section. Being fast and robust, the proposed
algorithm is extended and outperforms the CHCG algorithm
in signal recovery in compressive sensing. In the future, more
classical CGs’ should be utilized, analyzed in similar fashion
and prove the global convergence.
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TABLE II: Numerical of UMLS, MDDYM & DTCG1 methods for problems 1 and 2

UMLS MDDYM DTCG1

Problem Dimension IP Iter Fval Time(s) ∥Fk∥ Iter Fval Time(s) ∥Fk∥ Iter Fval Time(s) ∥Fk∥

1 1000 x1
0 4 6 0.02721 1.65x10−07 15 47 0.05013 1.85x10−07 – – – –

x2
0 5 7 0.01554 1.85x10−07 12 37 0.02560 1.65x10−07 – – – –

x3
0 5 7 0.01107 2.37x10−07 14 44 0.01818 1.65x10−07 37 181 0.05749 6.96x10−07

x4
0 6 8 0.01787 9.07x10−07 14 46 0.01873 1.65x10−07 18 133 0.03628 0

x5
0 5 7 0.01478 1.65x10−07 16 51 0.02003 1.65x10−07 29 321 0.07102 0

x6
0 5 7 0.01571 1.65x10−07 13 43 0.01832 1.65x10−07 29 318 0.04908 0

x7
0 5 7 0.01673 1.65x10−07 11 33 0.01508 1.65x10−07 – – – –

x8
0 6 7 0.01700 1.65x10−07 18 58 0.02026 6.96x10−07 8 46 0.01811 0

10,000 x1
0 4 6 0.06954 1.65x10−07 14 43 0.08175 8.65x10−07 103 1155 1.09874 0

x2
0 6 7 0.06813 1.65x10−07 13 42 0.08544 1.72x10−07 32 284 0.27656 0

x3
0 6 7 0.07684 4.72x10−07 6 15 0.03590 4.90x10−07 16 122 0.14851 0

x4
0 6 7 0.07881 7.14x10−07 6 15 0.03468 1.65x10−07 92 1015 1.17238 0

x5
0 6 8 0.09135 5.55x10−08 11 33 0.07394 2.99x10−07 25 45 0.10508 9.34x10−07

x6
0 6 7 0.06874 5.45x10−07 10 28 0.05651 2.13x10−07 92 1030 1.09964 0

x7
0 6 8 0.08200 4.72x10−07 8 23 0.05284 8.54x10−07 9 60 0.09466 0

x8
0 6 7 0.07325 1.65x10−07 17 61 0.10574 9.75x10−07 – – – –

100,000 x1
0 4 6 0.40163 9.07x10−07 16 46 0.60481 4.68x10−07 30 199 1.86071 0

x2
0 6 8 0.55833 7.15x10−07 10 27 0.42738 1.28x10−07 28 286 2.22426 0

x3
0 6 8 0.61761 6.96x10−07 7 17 0.27876 1.13x10−07 101 1163 8.61800 0

x4
0 6 7 0.51188 7.15x10−07 6 15 0.25381 9.96x10−07 26 43 0.64096 8.31x10−07

x5
0 6 8 0.59577 1.65x10−07 10 31 0.42040 5.01x10−07 29 72 0.86860 7.15x10−07

x6
0 6 8 0.54648 7.15x10−07 8 21 0.34679 4.92x10−07 27 68 0.81840 5.14x10−07

x7
0 6 8 0.57418 1.49x10−07 8 23 0.35909 9.48x10−07 29 71 0.84687 5.14x10−07

x8
0 6 7 0.48058 1.91x10−07 11 34 0.45743 7.74x10−07 9 58 0.51423 0

2 1000 x1
0 2 4 0.00658 1.54x10−07 5 11 0.01064 8.95x10−07 18 20 0.01990 6.96x10−07

x2
0 3 5 0.00831 1.16x10−07 7 15 0.01153 1.74x10−07 23 25 0.03049 6.96x10−07

x3
0 3 5 0.00732 1.07x10−07 6 12 0.01029 9.99x10−07 24 26 0.02492 5.14x10−07

x4
0 3 5 0.00802 3.71x10−07 14 38 0.01838 9.56x10−07 24 26 0.02431 7.58x10−07

x5
0 4 6 0.00754 1.80x10−07 9 18 0.01394 1.10x10−07 26 28 0.03217 8.44x10−07

x6
0 3 5 0.00730 2.58x10−07 10 26 0.01591 8.72x10−07 23 25 0.02636 7.58x10−07

x7
0 4 6 0.00921 2.90x10−07 14 30 0.01793 7.75x10−07 26 28 0.02475 5.14x10−07

x8
0 2 4 0.00655 4.43x10−07 9 25 0.01563 5.40x10−07 21 23 0.02674 8.44x10−07

10,000 x1
0 1 3 0.01447 6.61x10−07 5 11 0.03786 2.71x10−07 19 21 0.10785 9.45x10−07

x2
0 3 5 0.02728 5.76x10−07 7 15 0.04710 5.14x10−07 24 26 0.14158 9.45x10−07

x3
0 5 7 0.04079 1.85x10−07 7 13 0.04656 8.67x10−07 25 27 0.12629 8.44x10−07

x4
0 5 7 0.03502 8.71x10−07 14 38 0.10976 1.68x10−07 26 28 0.14233 5.86x10−07

x5
0 6 8 0.05201 3.53x10−07 9 18 0.05696 4.65x10−07 28 30 0.14684 6.96x10−07

x6
0 4 6 0.03174 2.27x10−07 11 27 0.07181 7.88x10−07 25 27 0.12188 5.86x10−07

x7
0 5 7 0.03385 2.68x10−07 15 32 0.09280 3.92x10−07 27 29 0.14370 8.68x10−07

x8
0 5 7 0.04305 1.09x10−07 12 32 0.08737 5.56x10−07 23 25 0.12935 6.96x10−07

100,000 x1
0 5 7 0.27125 1.56x10−07 5 11 0.26042 8.52x10−07 21 23 0.71941 7.62x10−07

x2
0 3 5 0.19059 7.89x10−07 8 16 0.38236 2.72x10−07 26 28 0.86779 7.62x10−07

x3
0 5 7 0.24291 5.19x10−07 7 13 0.31723 2.70x10−07 27 29 0.89661 6.96x10−07

x4
0 6 8 0.28945 2.61x10−07 17 45 0.80638 5.08x10−07 27 29 0.90785 9.36x10−07

x5
0 7 9 0.32860 1.03x10−07 10 19 0.43548 3.93x10−07 30 32 1.01914 5.86x10−07

x6
0 4 6 0.21091 5.14x10−07 11 27 0.54315 2.47x10−07 26 28 0.87760 9.36x10−07

x7
0 5 7 0.23726 6.96x10−07 15 32 0.65560 2.94x10−07 29 31 0.97489 6.96x10−07

x8
0 5 7 0.28842 3.29x10−07 12 32 0.62117 1.73x10−07 25 27 0.84362 5.86x10−07
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TABLE III: Numerical of UMLS, MDDYM & DTCG1 methods for problems 3 and 4

UMLS MDDYM DTCG1

Problem Dimension IP Iter Fval Time(s) ∥Fk∥ Iter Fval Time(s) ∥Fk∥ Iter Fval Time(s) ∥Fk∥

3 1000 x1
0 5 7 0.00853 3.14x10−07 5 11 0.00963 7.68x10−07 18 20 0.01455 6.03x10−07

x2
0 6 8 0.00937 7.10x10−07 4 6 0.00599 5.22x10−07 22 24 0.01911 9.29x10−07

x3
0 6 8 0.01021 9.55x10−07 4 6 0.00669 1.27x10−07 23 25 0.01698 7.28x10−07

x4
0 6 8 0.00938 9.86x10−07 4 6 0.00663 2.71x10−07 23 25 0.01919 8.92x10−07

x5
0 7 9 0.00968 3.66x10−07 9 21 0.01272 3.02x10−07 24 26 0.02035 8.51x10−07

x6
0 6 8 0.00941 8.14x10−07 4 6 0.00621 9.44x10−07 23 25 0.01856 5.54x10−07

x7
0 7 9 0.00957 1.92x10−07 9 23 0.01211 4.88x10−07 24 26 0.01970 7.63x10−07

x8
0 6 8 0.00856 3.09x10−07 3 5 0.00596 3.80x10−07 21 23 0.02028 7.52x10−07

10,000 x1
0 5 7 0.03517 9.93x10−07 5 11 0.02923 2.43x10−07 19 21 0.06630 9.54x10−07

x2
0 7 9 0.04194 2.24x10−07 4 6 0.02085 1.65x10−07 24 26 0.09151 7.35x10−07

x3
0 7 9 0.03727 3.01x10−07 4 6 0.02221 4.02x10−07 25 27 0.08422 5.75x10−07

x4
0 7 9 0.03848 3.11x10−07 4 6 0.02084 8.56x10−07 25 27 0.08742 7.05x10−07

x5
0 8 10 0.04967 1.15x10−07 9 21 0.04244 9.55x10−07 26 28 0.08726 6.73x10−07

x6
0 7 9 0.03930 2.57x10−07 4 6 0.02077 2.99x10−07 24 26 0.07492 8.76x10−07

x7
0 7 9 0.04167 6.07x10−07 10 24 0.05214 5.62x10−07 26 28 0.08787 6.03x10−07

x8
0 6 8 0.04243 9.77x10−07 3 5 0.01828 1.20x10−07 23 25 0.07662 5.95x10−07

100,000 x1
0 6 8 0.21705 3.14x10−07 5 11 0.18513 7.68x10−07 21 23 0.47274 7.54x10−07

x2
0 7 9 0.29739 7.09x10−07 4 6 0.12993 5.22x10−07 26 28 0.53435 5.81x10−07

x3
0 7 9 0.26404 9.53x10−07 5 7 0.14596 3.34x10−07 26 28 0.55658 9.10x10−07

x4
0 7 9 0.28047 9.85x10−07 4 6 0.12700 2.71x10−07 27 29 0.55989 5.58x10−07

x5
0 8 10 0.29058 3.65x10−07 10 22 0.35633 9.62x10−07 28 30 0.56943 5.32x10−07

x6
0 7 9 0.30547 8.13x10−07 4 6 0.13119 9.44x10−07 26 28 0.56150 6.93x10−07

x7
0 8 10 0.27400 1.92x10−07 10 24 0.35296 1.78x10−07 27 29 0.55055 9.53x10−07

x8
0 7 9 0.27023 3.08x10−07 3 5 0.11902 3.80x10−07 24 26 0.52348 9.40x10−07

4 1000 x1
0 4 6 0.00751 1.57x10−07 5 11 0.00890 8.51x10−07 18 20 0.01677 6.09x10−07

x2
0 3 5 0.00582 1.88x10−07 10 26 0.01336 3.96x10−07 23 25 0.01723 6.12x10−07

x3
0 5 7 0.00778 1.40x10−07 8 16 0.01060 1.54x10−07 24 26 0.02026 5.79x10−07

x4
0 5 7 0.00854 8.47x10−07 14 32 0.01575 9.25x10−07 24 26 0.02279 8.15x10−07

x5
0 4 6 0.00695 4.27x10−07 13 29 0.01548 3.14x10−07 27 29 0.02235 7.33x10−07

x6
0 4 6 0.00750 1.18x10−07 6 12 0.00807 1.16x10−07 23 25 0.01842 7.76x10−07

x7
0 6 8 0.00896 4.31x10−07 13 30 0.01455 5.36x10−07 26 28 0.02169 7.95x10−07

x8
0 4 6 0.00739 3.74x10−07 10 26 0.01308 6.07x10−07 21 23 0.02000 8.35x10−07

10,000 x1
0 4 6 0.02468 4.98x10−07 5 11 0.02726 2.69x10−07 19 21 0.07851 9.63x10−07

x2
0 3 5 0.02131 5.96x10−07 11 27 0.06135 9.78x10−07 24 26 0.08885 9.67x10−07

x3
0 5 7 0.02761 4.42x10−07 8 16 0.04121 4.87x10−07 25 27 0.08508 9.16x10−07

x4
0 6 8 0.03326 2.68x10−07 14 32 0.06539 2.93x10−07 26 28 0.09025 6.44x10−07

x5
0 5 7 0.02637 1.35x10−07 13 29 0.06477 9.93x10−07 29 31 0.10635 5.79x10−07

x6
0 4 6 0.02229 3.74x10−07 6 12 0.03515 3.67x10−07 25 27 0.07623 6.13x10−07

x7
0 7 9 0.04239 1.36x10−07 13 30 0.07940 1.70x10−07 28 30 0.09822 6.28x10−07

x8
0 5 7 0.02730 1.18x10−07 10 26 0.05617 1.92x10−07 23 25 0.10240 6.60x10−07

100,000 x1
0 5 7 0.19552 1.57x10−07 5 11 0.18691 8.51x10−07 21 23 0.44488 7.62x10−07

x2
0 4 6 0.15867 1.88x10−07 11 27 0.39970 3.09x10−07 26 28 0.57424 7.65x10−07

x3
0 6 8 0.20061 1.39x10−07 9 17 0.31194 2.59x10−07 27 29 0.56037 7.24x10−07

x4
0 6 8 0.19384 8.46x10−07 14 32 0.48130 9.25x10−07 28 30 0.60149 5.09x10−07

x5
0 5 7 0.16203 4.26x10−07 13 29 0.47761 3.14x10−07 30 32 0.61837 9.16x10−07

x6
0 5 7 0.19897 1.18x10−07 7 13 0.25444 5.03x10−07 26 28 0.57032 9.70x10−07

x7
0 7 9 0.25124 4.30x10−07 13 30 0.42969 5.36x10−07 29 31 0.61943 9.94x10−07

x8
0 5 7 0.18047 3.73x10−07 10 26 0.37194 6.07x10−07 25 27 0.52880 5.22x10−07
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TABLE IV: Numerical of UMLS, MDDYM & DTCG1 methods for problems 5 and 6

UMLS MDDYM DTCG1

Problem Dimension IP Iter Fval Time(s) ∥Fk∥ Iter Fval Time(s) ∥Fk∥ Iter Fval Time(s) ∥Fk∥

5 1000 x1
0 5 7 0.00836 2.98x10−07 3 5 0.00616 1.13x10−08 18 20 0.01372 5.97x10−07

x2
0 6 8 0.00978 5.64x10−07 5 9 0.00638 1.50x10−08 22 24 0.01689 7.30x10−07

x3
0 5 7 0.00925 5.05x10−07 8 18 0.00929 3.65x10−08 22 24 0.01649 9.94x10−07

x4
0 6 8 0.00992 7.36x10−07 21 62 0.02099 5.63x10−08 23 25 0.01779 5.54x10−07

x5
0 7 9 0.00951 1.31x10−07 9 22 0.01093 1.03x10−08 18 20 0.01682 5.80x10−07

x6
0 6 8 0.00898 4.78x10−07 7 15 0.00815 1.46x10−08 22 24 0.01617 8.31x10−07

x7
0 7 9 0.00961 1.58x10−07 10 21 0.01099 4.14x10−08 22 24 0.01651 9.21x10−07

x8
0 6 8 0.00917 1.63x10−07 2 4 0.00593 2.99x10−08 21 23 0.01836 6.82x10−07

10,000 x1
0 5 7 0.02735 9.44x10−07 3 5 0.01613 3.57x10−08 19 21 0.06026 9.44x10−07

x2
0 7 9 0.03485 1.78x10−07 5 9 0.02478 4.76x10−08 24 26 0.06837 5.77x10−07

x3
0 6 8 0.03216 1.60x10−07 8 18 0.04011 1.16x10−07 24 26 0.07163 7.86x10−07

x4
0 7 9 0.03838 2.32x10−07 22 65 0.09848 9.08x10−07 24 26 0.08265 8.76x10−07

x5
0 7 9 0.04040 4.16x10−07 9 22 0.04017 3.27x10−08 19 21 0.05703 9.17x10−07

x6
0 7 9 0.03701 1.51x10−07 7 15 0.03766 4.62x10−08 24 26 0.07164 6.57x10−07

x7
0 7 9 0.03967 5.00x10−07 10 21 0.04598 1.31x10−07 24 26 0.07879 7.28x10−07

x8
0 6 8 0.03002 5.16x10−07 2 4 0.01291 9.45x10−08 23 25 0.07202 5.39x10−07

100,000 x1
0 6 8 0.21126 2.98x10−07 3 5 0.08105 1.13x10−07 21 23 0.35696 7.46x10−07

x2
0 7 9 0.23062 5.63x10−07 5 9 0.12459 1.50x10−07 25 27 0.42356 9.13x10−07

x3
0 6 8 0.20330 5.05x10−07 8 18 0.24486 3.65x10−07 26 28 0.43346 6.21x10−07

x4
0 7 9 0.24566 7.35x10−07 23 67 0.69782 2.67x10−08 26 28 0.42764 6.93x10−07

x5
0 8 10 0.26866 1.31x10−07 9 22 0.36473 1.03x10−07 21 23 0.35811 7.25x10−07

x6
0 7 9 0.23379 4.78x10−07 7 15 0.20453 1.46x10−07 26 28 0.54513 5.20x10−07

x7
0 8 10 0.27548 1.58x10−07 10 21 0.30392 4.14x10−07 26 28 0.43737 5.76x10−07

x8
0 7 9 0.22293 1.63x10−07 2 4 0.06697 2.99x10−07 24 26 0.41946 8.52x10−07

6 1000 x1
0 4 5 0.01323 0 46 338 0.11266 0 5 17 0.01536 0

x2
0 6 7 0.02358 0 – – – – 4 27 0.01580 0

x3
0 3 4 0.01376 0 – – – – 4 28 0.01618 0

x4
0 3 4 0.01430 0 152 980 0.21840 9.03x10−07 4 30 0.01213 0

x5
0 2 3 0.01126 0 7 56 0.02595 0 2 15 0.01031 0

x6
0 5 6 0.01809 0 34 239 0.08493 0 4 27 0.01598 0

x7
0 4 5 0.01829 0 140 908 0.25018 9.46x10−07 3 26 0.01242 0

x8
0 6 7 0.02376 0 33 245 0.11966 0 4 27 0.01382 0

10,000 x1
0 3 4 0.04679 0 10 73 0.14656 0 4 27 0.06608 0

x2
0 3 4 0.05887 0 8 57 0.13372 0 3 15 0.04217 0

x3
0 4 5 0.06621 0 9 65 0.12308 0 3 15 0.03669 0

x4
0 2 3 0.03632 0 11 76 0.15159 0 4 27 0.07693 0

x5
0 2 3 0.04617 0 4 35 0.07066 0 2 14 0.03100 0

x6
0 3 4 0.05115 0 8 62 0.13624 0 3 15 0.03967 0

x7
0 2 3 0.03956 0 8 66 0.16883 0 2 14 0.03868 0

x8
0 4 5 0.06691 0 14 94 0.21110 0 3 15 0.03861 0

100,000 x1
0 3 4 0.37248 0 11 76 1.24016 0 3 15 0.30455 0

x2
0 3 4 0.43502 0 5 39 0.63866 0 3 15 0.27900 0

x3
0 2 3 0.26978 0 4 29 0.47312 0 3 15 0.27563 0

x4
0 2 3 0.28419 0 10 80 1.26866 0 3 15 0.26904 0

x5
0 2 3 0.31900 0 3 24 0.39598 0 2 14 0.27089 0

x6
0 4 5 0.61536 0 4 29 0.47028 0 3 15 0.26858 0

x7
0 2 3 0.31410 0 6 48 0.77552 0 2 14 0.24513 0

x8
0 3 4 0.38979 0 9 73 1.16449 0 3 15 0.27406 0
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