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Abstract—In this paper, the expectation values of the Hosoya
and Merrifield-Simmons exponents for random octagonal
chains are obtained by classification and discussion. For the
study of polygonal chemicals, some of the indices in the
graph theory are shown to be strongly correlated with their
physicochemical properties. The exact formulas established in
this paper will undoubtedly help to study their corresponding
chemical properties.

I. I

Index Terms—random octagonal chains, Hosoya index,
Merrifield-Simmons index, expected values.

NTRODUCTION

THE Hosoya indicator was introduced and studied by the
Japanese chemist Haruo Hosoya in 1971 in the literature

[2], which denotes the number of all matches in the graph
G, denoted as µ(G). This index is closely related to the
boiling point, entropy, chemical bonding calculations and
chemical structure of substances. The Merrifield-Simmons
metric is a chemical topological metric introduced in 1989
by the American chemists Richard E. Merrifield and Howard
E. Simmons in the literature [3-6], which represents the
number of all independent sets in the graph G, denoted as
σ(G). This indicator is closely related to the boiling point
of a substance.These two topological indicators are of great
significance in structural chemistry, and they are often used
to characterize the physicochemical and pharmacological
properties of organic compounds, which are described in the
literature [7-12].

In this paper, we define a graph G = (V,E) with vertex 

set V and edge set E. If the new graph obtained by removing 

this vertex from the graph, i.e., G−v, has more components 

than the original graph G, for a vertex v ∈ V , we call this 

vertex v is a cut vertex of this graph G. A maximal connected 

branch H of this graph G is called a block if it does not 

contain cut vertices. It follows that if there is only one cut 

vertex in G, then the cut vertex is contained in H . A vertex 

subset I ⊆ V is said to be independent if any pair of vertices 

in a vertex set I is disjoint in G. Similarly, an edge subset 

M ⊆ E is said to be matched if any two edges in an edge
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set M have no common vertices. We use Ck to denote a
cycle of length k
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The randomized helical chains discussed in this paper are
composed of cut-points connected by progressively adding
octagons; each of his blocks is an octagon, and each octagon
has at most two cut-points, with each cut-point shared by
exactly two octagons. A regular octagonal chain is a graph
that all the blocks are C8. In this paper, we define for
a random octagonal chain Rn(k1, k2, k3, k4) containing n
octagons as follows: for a non-negative integer n, when
there exist non-negative real numbers k1,k2,k3,k4 satisfying
k1+k2+k3+ = 1. When n = 0, it is clear that at this point
R (0 k1, k2, k , k

k

3

4

)4 is empty. For = 1, R1(k1, k2, k3, k4)n is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 successively along the chain with 1, ... , n − 1 consecu-
tively labeled with the (n − 1)th octagons that make up 

Rn−1(k1, k2, k3, k4). So, depending on the distance between 

a vertex of the octagon O and the (n − 1)th cut vertex of 

Rn−1(k1, k2, k3, k4), it can be categorized as follows. When 

the distance between these two vertexes is 1, the probability
of this happening is said to be k1. When the distance betw-
een two vertexes is 2, the probability of this happening is 

said to be k2. When the distance between two vertexes is
3, the probability of this happening is k3. When the 

distance between two vertexes is 4, the probability of  this
happening is said to be k4

an octagon. And when n = 2, R2(k1, k2, k3, k4) consists of
two octagons that have one and only one common vertex.
When n ≥ 3, we need to start a discussion based on the
different distances between the cut vertexes of octagons. 
Here, we consider the graph Rn(k1, k2, k3, k4) obtained by
combining Rn−1(k1, k2, k3, k4              ) and an octagon O. We label

.

In a related study of the Hosoya index and Merrifield-
Simmons index in random chains, Chen et al.[20] gave 

explicit expressions for the expectation of the Merrifield-
Simons index for random phenylene chains and random 

hexagonal chains. In 2022, Sun et al. found, for random 

cyclooctene chains containing n octagons, a recursive re-
lationship between the expected values of its Hosoya index 

and Merrifield-Simmons index.Very recently in 2024,Moe et 

al. [18] obtained the expected values of these two indices for 

the random hexagonal cactus and built a generating function 

by solving the recurrence relation for these indices.In this 

paper, we would like to solve the problem of the expected 

value of these indices for random octagonal chains. After 

categorization and discussion, finally we get the expectation 

generating functions for these indices.
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II. PRELIMINARIES

In this section, to obtain the theorem, we made the follow-
ing preparations. Firstly, for a non-negative integer n, when
there exist four non-negative real numbers k1,k2,k3 and k4
satisfying k1+k2+k3+k4 = 1, the graph R0(k1, k2, k3, k4)
is empty, the graph R1(k1, k2, k3, k4) is an octagon and the
graph R2(k1, k2, k3, k4) consists of two octagons that have
one and only one common vertex. For n ≥ 3, the graph
Rn(k1, k2, k3, k4) is obtained from Rn−1(k1, k2, k3, k4), by
identifying different distances between the cut vertex of the
(n − 1)th octagon and a vertex of O, four possibilities can
be classified as k1,k2,k3 and k4. Figure 1 gives four possible
cases of Rn(k1, k2, k3, k4).

Fig. 1. The graphs Rn(k1, k2, k3, k4).

From left to right, top to bottom, in the figure 1, depending
on the distance between a vertex of the octagon O and
the (n − 1)th cut vertex of Rn−1(k1, k2, k3, k4), it can be
categorized with the probabilities k1,k2,k3 and k4. Similarly,
there are the following definitions.

′
The graph Rn(k1, k2, k3, k4) is obtained from the

Rn(k1, k2, k3, k4) and a path P7 = x1x2x3x4x5x6x7, by
different distances between x1 of P7 and the nth cut ver-
tex of Rn(k1, k2, k3, k4), four possibilities can be classi-
fied as k1,k2,k3,k4. Figure 2 gives four possible cases of

′
Rn(k1, k2, k3, k4).

′
Fig. 2. The graphs Rn(k1, k2, k3, k4).

From left to right, top to bottom, in the figure 2,by 

identifying different distances between x1 of the path P7

=x1x2x3x4x5x6x7 and a vertex of the octagon On, fo
ur possibilities can be classified as k1,k2,k3 and k4.

˜The graph Rn(k1, k2, k3, k4) is obtained from the

by different distances between x2 of P7 and the nth

cut vertex of Rn(k1, k2, k3, k4), four possibilities can be
classified as k1,k2,k3,k4

Rn(k1, k2, k3, k4) and a path P7 = x1x2x3x4x5x6x7,

. Figure 3 illustrates examples of
R̃n(k1, k2, k3, k4).

˜Fig. 3. The graphs Rn(k1, k2, k3, k4).

From left to right, top to bottom, in the figure 3, by 

identifying different distances between x2 of the path P7

=x1x2x3x4x5x6x7 and a vertex of the octagon On, fo
ur possibilities can be classified as k1,k2,k3 and k4.

ˆThe graph Rn(k1, k2, k3, k4) is obtained from the
Rn(k1, k2, k3, k4) and a path P7 = x1x2x3x4x5x6x7, by
different distances between x3 of P7 and the nth cut ver-
tex of Rn(k1, k2, k3, k4), four possibilities can be classi-
fied as k1,k2,k3,k4. Figure 4 gives four possible cases of
R̂n(k1, k2, k3, k4).

ˆFig. 4. The graphs Rn(k1, k2, k3, k4).

From left to right, top to bottom, in the figure 4, by 

identifying different distances between x3 of the path P7

=x1x2x3x4x5x6x7 and a vertex of the octagon On, fo
ur possibilities can be classified as k1,k2,k3,k4.

The graph Rn
∗ (k1, k2, k3, k4) is obtained from the

Rn(k1, k2, k3, k4) and a path P7 = x1x2x3x4x5x6x7, by
different distances between x4 of P7 and the nth cut ver-
tex of Rn(k1, k2, k3, k4), four possibilities can be classi-
fied as k1,k2,k3 and k4.Figure 5 illustrates examples of
Rn

∗ (k1, k2, k3, k4).
From left to right, top to bottom, in the figure 5, by 

identifying different distances between x5 of the path P7

=x1x2x3x4x5x6x7 and a vertex of the octagon On, fo
ur possibilities can be classified as k1,k2,k3,k4.
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Fig. 5. The graphs R∗
n(k1, k2, k3, k4).

III. THE EXPECTED VALUES FOR HOSOYA INDEX OF
RANDOM OCTAGONAL CHAINS

Recall that E(mn(k1, k2, k3, k4)) is the expected value
of matches of Rn(k1, k2, k3, k4) , and Mk1,k2,k3,k4(x)
is the generating function of E(mn(k1, k2, k3, k4)). Let
E(mn) and M(x) to denote E(mn(k1, k2, k3, k4)) and
Mk1,k2,k3,k4

(x), when there is no danger of confusion,
respectively. Therefore,

M(x) =
∞∑

n=0

E(mn)x
n

Similarly, recall that E(m
′

n),E(m̃n),E(m̂n) and E(m∗
n)

be the expected values of matches of R
′

n(k1, k2, k3, k4),
R̃n(k1, k2, k3, k4), R̂n(k1, k2, k3, k4) and R∗

n(k1, k2, k3, k4),
respectively. The M

′
(x), M̃(x), M̂(x) and M∗(x) is the

generating functions of E(m
′

n),E(m̃n),E(m̂n) and E(m∗
n).

Thus,

M
′
(x) =

∞∑
n=0

E(m
′

n)x
n

M̃(x) =
∞∑

n=0

E(m̃n)x
n

M̂(x) =
∞∑

n=0

E(m̂n)x
n

M∗(x) =
∞∑

n=0

E(m∗
n)x

n

Now, for a random octagonal chain, the following equation
must be proved in order to obtain the expected value for
Hosoya index.

M(x) = 1 + 26x+ 21xM(x) + 26k1x
2M

′
(x)

+26k2x
2M̃(x) + 26k3x

2M̂(x) + 26k4x
2M∗(x).

(1)

M
′
(x) =8 + 13M(x) + 8k1xM

′
(x) + 8k2xM̃(x)

+8k3xM̂(x) + 8k4xM
∗(x).

(2)

M̃(x) =13 + 8M(x) + 13k1xM
′
(x) + 13k2xM̃(x)

+13k3xM̂(x) + 13k4xM
∗(x).

(3)

M̂(x) =14 + 7M(x) + 10k1xM
′
(x) + 10k2xM̃(x)

+10k3xM̂(x) + 10k4xM
∗(x).

(4)

M∗(x) =15 + 6M(x) + 10k1xM
′
(x) + 10k2xM̃(x)

+10k3xM̂(x) + 10k4xM
∗(x).

(5)

A. Proof of Equation (1).

For the nth octagon On of Rn(k1, k2, k3, k4), we recall
the vertices of it in clockwise by p1, p2, ..., p8, and the p1
is the cut vertex of the On and the On−1. Recall that the
vertices of On−1 in clockwise by l1, l2, ..., l8, and the l1
is the cut vertex of the On−1. Since Rn(k1, k2, k3, k4) is a
chain, l1 ̸= p1. Due to the different distances between p1
and l1, it can be classified into four cases.

1) Case 1: The distance between p1 and l1 is one.
Therefore, p1 = l2 or p1 = l8. Without prejudice to

generality, assume that p1 = l2. The probability that this
occurs is k1. So there are three subcases.
Subcase 1.1: When p1p2 is included in the matches. In this
subcase,it cannot contain l1l2 ,l2l3, p2p3 and p1p8. Therefore,
in this instance, this subcase is equivalent to the combination
of the path P6 = p3p4p5p6p7p8 and R

′

n−2(k1, k2, k3, k4).
Since P6 has 13 matches, there’s 13E(m

′

n−2).
Subcase 1.2: When p1p8 is included in the matches.
This instance is similar to subcase 1.1. Therefore, there’s
13E(m

′

n−2).
Subcase 1.3: When neither p1p2 nor p1p8 is included in the
matches. Therefore, in this instance, this subcase is equiv-
alent to the combination of the path P7 = p2p3p4p5p6p7p8
and Rn−1(k1, k2, k3, k4). Since P7 has 21 matches, there’s
21E(mn−1).

Thus, there’s 26k1E(m
′

n−2)+21k1E(mn−1) from the
above subcases.

2) Case 2: The distance between p1 and l1 is two.
Therefore, p1 = l3 or p1 = l7. Without prejudice to

generality, assume that p1 = l3. The probability that this
occurs is k2. So there are three subcases.
Subcase2.1: When p1p2 is included in the matches. In
this subcase, it cannot contain l2l3, l3l4, p2p3 and p1p8.
Therefore, in this instance, this subcase is equivalent to
the combination of the path P6 = p3p4p5p6p7p8 and
R̃n−2(k1, k2, k3, k4). Since P6 has 13 matches, there’s
13E(m̃n−2).
Subcase 2.2: When p1p8 is included in the matches.This
instance is similar to subcase 2.1. Therefore, there’s
13E(m̃n−2).
Subcase 2.3: When neither p1p2 nor p1p8 is included in the
matches. Therefore, in this instance, this subcase is equiv-
alent to the combination of the path P7 = p2p3p4p5p6p7p8
and Rn−1(k1, k2, k3, k4).Since P7 has 21 matches, there’s
21E(mn−1).

Thus, there’s 26k2E(m̃n−2)+21k2E(mn−1) from the
above subcases.

3) Case 3: The distance between p1 and l1 is three.
Therefore, p1 = l4 or p1 = l6. Without prejudice to

generality, assume that p1 = l4. The probability that this
occurs is k3. So there are three subcases.
Subcase 3.1: When p1p2 is included in the matches. In
this subcase, it cannot contain l3l4, l4l5, p2p3 and p1p8.
Therefore, This instance is equivalent to the combination of
the path P6 = p3p4p5p6p7p8 and R̂n−2(k1, k2, k3, k4). Since
P6 has 13 matches, there’s 13E(m̂n−2).
Subcase 3.2: When p1p8 is included in the matches.
This instance is similar to subcase 3.1. Therefore, there’s
13E(m̂n−2).
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Subcase 3.3: When neither p1p2 nor p1p8 is included in the
matches. Therefore, in this instance, this subcase is equiv-
alent to the combination of the path P7 = p2p3p4p5p6p7p8
and Rn−1(k1, k2, k3, k4). Since P7 has 21 matches, there’s
21E(mn−1).

Thus, there’s 26k3E(m̂n−2)+21k3E(mn−1) from the
above subcases.

4) Case 4: The distance between p1 and l1 is four.
Therefore, p1 = l5. The probability that this occurs is k4.

So there are three subcases.
Subcase 4.1: When p1p2 is included in the matches. In this
subcase, it cannot contain l4l5, l5l6, p2p3 and p1p8.Therefore,
This instance is equivalent to the combination of the path
P6 = p3p4p5p6p7p8 and Rn

∗
−2(k1, k2, k3, k4). Since P6 has

13 matches, there’s 13E(m∗
n−2).

Subcase 4.2: When p1p8 is included in the matches.
This instance is similar to subcase 4.1. Therefore, there’s
13E(m∗

n−2).
Subcase 4.3: When neither p1p2 nor p1p8 is included in the
matches. Therefore, in this instance, this subcase is equiv-
alent to the combination of the path P7 = p2p3p4p5p6p7p8
and Rn−1(k1, k2, k3, k4). Since P7 has 21 matches, there’s
21E(mn−1).

Thus, there’s 26k4E(m∗
n−2)+21k4E(mn−1) from the

above subcases.

Thus, the following results can be derived from Cases 1,
2, 3 and 4.

′
E(mn) =26k1E(mn−2) + 21k1E(mn−1) + 26k2E(m̃n−2)

+21k2E(mn−1) + 26k3E(m̂n−2) + 21k3E(mn−1)

+26k4E(m∗
n−2) + 21k4E(mn−1)

′
=21(k1 + k2 + k3 + k4)E(mn−1) + 26k1E(mn−2)

+26k2E(m̃n−2) + 26k3E(m̂n−2) + 26k4E(m∗
n−2)

′
=21E(mn−1) + 26k1E(mn−2) + 26k2E(m̃n−2)

+26k3E(m̂n−2) + 26k4E(m∗
n−2).

When n ≥ 2, we can obtain that
∞

n=2

∞

n=2

∞∑
E(mn)x

n =
∑

21E(mn−1)x
n + 26k1

∑
E(m

′

n−2

n=2
∞ ∞

+26k2
∑

E(m̃n−2x
n) + 26k3

∑
E(m̂n−1)x

n=2

n

n=2
∞

+26k4
∑

E(m∗
n−2)x

n=2

n

which implies that

M(x)− E(m0)− E(m1)x = 21x(M(x)− E(m0))
′ ˜+26k1x

2M (x) + 26k2x
2M(x)

ˆ+21k3x
2M(x) + 26k4x

2M∗(x).

Note that E(m0) is the number of matches of size 0,
the empty set of the empty graph, thus, E(m0) = 1.
Since E(m1) is the number of matches of one octagon,
E(m1) = 47. Therefore,

′
M(x) =1 + 26x+ 21xM(x) + 26k1x

2M (x)

̸

˜ ˆ+26k2x
2M(x) + 26k3x

2M(x) + 26k4x
2M∗(x).

Equation (1) can be proved from the above.

B. Proof of Equation (2).

The graph
′

Rn(k1, k2, k3, k4) is a combination of
Rn(k1, k2, k3, k4) and a path P7 = x1x2x3x4x5x6x7.
At the same time, x1 is a vertex of the nth oc-
tagon of Rn(k1, k2, k3, k4). For the nth octagon On of

′
Rn(k1, k2, k3, k4), we recall that the vertices of it in clock-
wise direction by p1, p2, ..., p8, and the p1 is the cut vertex
of the On and the On−1. It is clear that x1 = p1.Due to the
different distances between x1 and p1, it can be classified
into four cases.

1) Case 1: The distance between x1 and p1 is one.
Therefore, x1 = p2 or x1 = p8. Without prejudice to

generality, assume that x1 = p2. The probability that this
occurs is k1. So there are two subcases.
Subcase 1.1: When x1x2 is included in the matches. In
this subcase, it cannot contain x2x3, p1p2 and p2p3. There-
fore, this subcase is equivalent to the combination of the

′
Rn 1(k1, k2, k3, k4) and the path P5 = x3x4x5x6x7− . Since

′
P5 has 8 matches, there’s 8E(mn−1).
Subcase 1.2: When x1x2 is not included in the matches.
Therefore, this subcase is equivalent to the combination of
the Rn(k1, k2, k3, k4) and the path P6 = x2x3x4x5x6x7.
Since P6 has 13 matches, there’s 13E(mn).

′
Thus, there’s 8k1E(mn−1)+13k1E(mn) from the above

subcases.

2) Case 2: The distance between x1 and p1 is two.
Therefore, x1 = p3 or x1 = p7. Without prejudice to

generality, assume that x1 = p3. The probability that this
occurs is k2. So there are two subcases.
Subcase 2.1: When x1x2 is included in the matches. In
this subcase, it cannot contain x2x3, p2p3 and p3p4. There-
fore, this subcase is equivalent to the combination of the
R̃n−1(k1, k2, k3, k4) and the path P5 = x3x4x5x6x7. Since
P5 has 8 matches, there’s 8E(m̃n−1).
Subcase 2.2: When x1x2 is not included in the matches.
Therefore, in this subcase, this subcase is equivalent to the
combination of the Rn(k1, k2, k3, k4) and the path P6 =
x2x3x4x5x6x7. Since P6 has 13 matches, there’s 13E(mn).

Thus, there’s 8k2E(m̃n−1)+13k2E(mn) from the above
)xn subcases.

The distance between x1 and p13) Case 3: is three.
Therefore, x1 = p4 or x1 = p6. Without prejudice to

generality, assume that x1 = p4. The probability that this
occurs is k3. So there are two subcases.
Subcase 3.1: When x1x2 is included in the matches. In
this subcase, it cannot contain x2x3, p3p4 and p4p5. There-
fore, this subcase is equivalent to the combination of the
R̂n−1(k1, k2, k3, k4) and the path P5 = x3x4x5x6x7. Since

Thus, there’s 8k3E(m̂n−1)+13k3E(mn) from the above

P5 has 8 matches, there’s 8E(m̂n−1).
Subcase 3.2: When x1x2 is not included in the matches.
Therefore, in this subcase, this subcase is equivalent to the 

combination of the Rn(k1, k2, k3, k4) and the path P6 =
x2x3x4x5x6x7. Since P6 has 13 matches, there’s 13E(mn).

subcases.

The distance between x1 and p14) Case 4: is four.
Therefore, x1 = p5. The probability that this occurs is k4.

So there are two subcases.
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Subcase 4.1: When x1x2 is included in the matches. In
this subcase, it cannot contain x2x3, p4p5 and p5p6. There-
fore, this subcase is equivalent to the combination of the
R∗

n−1(k1, k2, k3, k4) and the path P5 = x3x4x5x6x7. Since
P5 has 8 matches, there’s 8E(m∗

n−1).
Subcase 4.2: When x1x2 is not included in the matches.
Therefore, in this subcase, this subcase is equivalent to the
combination of the Rn(k1, k2, k3, k4) and the path P6 =
x2x3x4x5x6x7. Since P6 has 13 matches, there’s 13E(mn).

Thus, there’s 8k4E(m∗
n−1)+13k4E(mn) from the above

subcases.

Thus, the following results can be derived from Cases 1,
2, 3 and 4.

E(m
′

n) =8k1E(m
′

n−1) + 13k1E(mn) + 8k2E(m̃n−1)

+13k2E(mn) + 8k3E(m̂n−1) + 13k3E(mn)

+8k4E(m∗
n−1) + 13k4E(mn)

=13(k1 + k2 + k3 + k4)E(mn) + 8k1E(m
′

n−1)

+8k2E(m̃n−1) + 8k3E(m̂n−1) + 8k4E(m∗
n−1)

=13E(mn) + 8k1E(m
′

n−1) + 8k2E(m̃n−1)

+8k3E(m̂n−1) + 8k4E(m∗
n−1).

When n ≥ 1, we can obtain that

∞∑
n=1

E(m
′

n)x
n =

∞∑
n=1

13E(mn)x
n + 8k1

∞∑
n=1

E(m
′

n−1)x
n

+8k2

∞∑
n=1

E(m̃n−1x
n) + 8k3

∞∑
n=1

E(m̂n−1)x
n

+8k4

∞∑
n=1

E(m∗
n−1)x

n

which implies that

M
′
(x)− E(m

′

0) =13(M(x)− E(m0)) + 8k1xM
′
(x)

+8k2xM̃(x) + 8k3xM̂(x) + 8k4xM
∗(x).

Note that E(m
′

0) is the number of matches of path of 7
vertices, thus, E(m

′

0) = 21. The E(m0) = 1. Therefore,

M
′
(x) =8 + 13M(x) + 8k1xM

′
(x) + 8k2xM̃(x)

+8k3xM̂(x) + 8k4xM
∗(x).

Equation (2) can be proved from the above.

C. Proof of Equation (3).

The graph R̃n(k1, k2, k3, k4) is a combination of
Rn(k1, k2, k3, k4) and a path P7 = x1x2x3x4x5x6x7.
At the same time, x2 is a vertex of the nth oc-
tagon of Rn(k1, k2, k3, k4). For the nth octagon On of
R̃n(k1, k2, k3, k4), we recall that the vertices of it in clock-
wise by p1, p2, ..., p8, and p1 is the cut vertex of the On

and the On−1. It is clear that x2 ̸= p1. Due to the different
distances between x2 and p1, it can be classified into four
cases.

1) Case 1: The distance between x2 and p1 is one.
Therefore, x2 = p2 or x2 = p8. Without prejudice to

generality, assume that x2 = p2. The probability that this
occurs is k1. So there are three subcases.
Subcase 1.1: When x1x2 is included in the matches. In
this subcase, it cannot contain x2x3, p1p2 and p2p3. There-
fore, this subcase is equivalent to the combination of the
R

′

n−1(k1, k2, k3, k4) and P5 = x3x4x5x6x7. Since P5 has 8
matches, there’s 8E(m

′

n−1).
Subcase 1.2: When x2x3 is included in the matches. In
this subcase, x1x2, x3x4, p1p2 and p2p3 are not included.
Therefore, this subcase is equivalent to the combination of
the path P4 = x4x5x6x7 and the R

′

n−1(a, b, c, d). Since P4

has 5 matches, there’s 5E(m
′

n−1).
Subcase 1.3: When neither x1x2 nor x2x3 is included in the
matches. Therefore, in this subcase, this subcase is equivalent
to the combination of the Rn(k1, k2, k3, k4) and the path
P5 = x3x4x5x6x7. Since P5 has 8 matches, there’s 8E(mn).

Thus, there’s 13k1E(m
′

n−1)+8k1E(mn) from the above
subcases.

2) Case 2: The distance between x2 and p1 is two.
Therefore, x2 = p3 or x2 = p7. Without prejudice to

generality, assume that x2 = p3. The probability that this
occurs is k2. So there are three subcases.
Subcase 2.1: When x1x2 is included in the matches. In
this subcase, it cannot contain x2x3, p2p3 and p3p4. There-
fore, this subcase is equivalent to the combination of the
R̃n−1(k1, k2, k3, k4) and the path P5 = x3x4x5x6x7. Since
P5 has 8 matches, there’s 8E(m̃n−1).
Subcase 2.2: When x2x3 is included in the matches. In
this subcase, it cannot contain x1x2, x3x4, p2p3 and p3p4.
Therefore, this subcase is equivalent to the combination
of the R̃n−1(k1, k2, k3, k4), the vertex x1 and the path
P4 = x4x5x6x7. Since P4 has 5 matches, there’s 5E(m̃n−1).
Subcase 2.3: When neither x1x2 nor x2x3 is included in the
matches. Therefore, in this subcase, this subcase is equivalent
to the combination of the Rn(k1, k2, k3, k4) and the path
P5 = x3x4x5x6x7. Since P5 has 8 matches, there’s 8E(mn).

Thus, there’s 13k2E(m̃n−1)+8k2E(mn) from the above
subcases.

3) Case 3: The distance between x2 and p1 is three.
Therefore, x2 = p4 or x2 = p6. Without prejudice to

generality, assume that x2 = p4. The probability that this
occurs is k3. So there are three subcases. Subcase 3.1: When
x1x2 is included in the matches. In this subcase, it cannot
contain x2x3, p3p4 and p4p5. Therefore, this subcase is
equivalent to the combination of the path P5 = x3x4x5x6x7

and the R̂n−1(a, b, c, d). Since P5 has 8 matches, there’s
8E(m̂n−1).
Subcase 3.2: When x2x3 is included in the matches. In
this subcase, x1x2, x3x4, p3p4 and p4p5 are not included.
Therefore, this subcase is equivalent to the combination of
the path P4 = x4x5x6x7 and the R̂n−1(k1, k2, k3, k4). Since
P4 has 5 matches, there’s 5E(m̂n−1).
Subcase 3.3: When neither x1x2 nor x2x3 is included in
the matches. Therefore, this subcase is equivalent to the
combination of the Rn(k1, k2, k3, k4) and the path P5 =
x3x4x5x6x7. Since P5 has 8 matches, there’s 8E(mn).

Thus, there’s 13k3E(m̂n−1)+8k3E(mn) from the above
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subcases.

4) Case 4: The distance between x2 and p1 is four.
Therefore, x2 = p5. The probability that this occurs is k4.

So there are three subcases.
Subcase 4.1: When x1x2 is included in the matches. In
this subcase, it cannot contain x2x3, p4p5 and p5p6. There-
fore, this subcase is equivalent to the combination of the
R∗

n−1(k1, k2, k3, k4) and the path P5 = x3x4x5x6x7. Since
P5 has 8 matches, there’s 8E(m∗

n−1).
Subcase 4.2: When x2x3 is included in the matches. In
this subcase, it cannot contain x1x2, x3x4, p4p5 and p5p6.
Therefore, this subcase is equivalent to the combination of
the R∗

n−1(k1, k2, k3, k4) and the path P4 = x4x5x6x7. Since
P4 has 5 matches, there’s 5E(m∗

n−1).
Subcase 4.3: When neither x1x2 nor x2x3 is included in the
matches. Therefore, in this subcase, this subcase is equivalent
to the combination of the Rn(k1, k2, k3, k4) and the path
P5 = x3x4x5x6x7. Since P5 has 8 matches, there’s 8E(mn).

Thus, there’s 13k4E(m∗
n−1)+8k4E(mn) from the above

subcases.

Thus, the following results can be derived from Cases 1,
2, 3 and 4.

E(m̃n) =13k1E(m
′

n−1) + 8k1E(mn) + 13k2E(m̃n−1)

+8k2E(mn) + 13k3E(m̂n−1) + 8k3E(mn)

+13k4E(m∗
n−1) + 8k4E(mn)

=8(k1 + k2 + k2 + k4)E(mn) + 13k1E(m
′

n−1)

+13k2E(m̃n−1) + 13k3E(m̂n−1) + 13k4E(m∗
n−1)

=8E(mn) + 13k1E(m
′

n−1) + 13k2E(m̃n−1)

+13k3E(m̂n−1) + 13k4E(m∗
n−1).

When n ≥ 1, we can obtain that
∞∑

n=1

E(m̃n)x
n =

∞∑
n=1

8E(mn)x
n + 13k1

∞∑
n=1

E(m
′

n−1)x
n

+13k2

∞∑
n=1

E(m̃n−1)x
n + 13k3

∞∑
n=1

E(m̂n−1)x
n

+13k4

∞∑
n=1

E(m∗
n−1)x

n

which implies that

M̃(x)− E(m̃0) = 8(M(x)− E(m0)) + 13k1xM
′
(x)

+13k2xM̃(x) + 13k3xM̂(x) + 13k4xM
∗(x).

Note that E(m̃0) is the number of matches of path of 7
vertices, Em̃0) = 21. E(m0) is the number of matches of
size 0,the empty set of the empty graph. Thus, E(m0) = 1.
Therefore,

M̃(x) =13 + 8M(x) + 13k1xM
′
(x) + 13k2xM̃(x)

+13k3xM̂(x) + 13k4xM
∗(x).

Equation (3) can be proved from the above.

D. Proof of Equation (4).

The graph R̂n(k1, k2, k3, k4) is a combination of
Rn(k1, k2, k3, k4) and a path P7 = x1x2x3x4x5x6x7.

At the same time, x3 is a vertex of the nth oc-
tagon of Rn(k1, k2, k3, k4). For the nth octagon On) of
R̂n(k1, k2, k3, k4), we recall that the vertices of it in clock-
wise by p1, p2, ..., p8, and the p1 is the cut vertex of the On

and the On−1. It is clear that x3 ̸= p1. Due to the different
distances between x3 and p1, it can be classified into four
cases.

1) Case 1: The distance between x3 and p1 is one.
Therefore, x3 = p2 or x3 = p8. Without prejudice to

generality, assume that x3 = p2. The probability that this
occurs is k1. So there are three subcases. Subcase 1.1: When
x2x3 is included in the matches. In this subcase, it cannot
contain x1x2, x3x4, p1p2 and p2p3. Therefore, this subcase
is equivalent to the combination of the R

′

n−1(k1, k2, k3, k4)
and the path P4 = x4x5x6x7. Since P4 has 5 matches, there’s
5E(m

′

n−1).
Subcase 1.2: When x3x4 is included in the matches. In
this subcase, it cannot contain x2x3, x4x5, p1p2 and p2p3.
Therefore, this subcase is equivalent to the combination
of the R

′

n−1(k1, k2, k3, k4), the paths P2 = x1x2 and
P3 = x5x6x7. Since P2 and P3 have 5 matches, there’s
5E(m

′

n−1).
Subcase 1.3: When neither x2x3 nor x3x4 is included in
the matches. Therefore, this subcase is equivalent to the
combination of the Rn(k1, k2, k3, k4), the paths P2 = x1x2

and P4 = x4x5x6x7. Since P2 and P4 have 7 matches,
there’s 7E(mn).

Thus, there’s 10k1E(m
′

n−1)+7k1E(mn). from the above
subcases.

2) Case 2: The distance between x3 and p1 is two.
Therefore, x3 = p3 or x3 = p7. Without prejudice to

generality, assume that x3 = p3. The probability that this
occurs is k2. So there are three subcases.
Subcase 2.1: When x2x3 is included in the matches. In
this subcase, x1x2, x3x4, p2p3 and p3p4 are not included.
Therefore, this subcase is equivalent to the combination
of the R̃n−1(k1, k2, k3, k4), the vertex x1 and the path
P4 = x4x5x6x7. Since P4 has 5 matches, there’s 5E(m̃n−1).
Subcase 2.2: When x3x4 is included in the matches. In
this subcase, x2x3, x4x5, p2p3 and p3p4 are not included.
Therefore, this subcase is equivalent to the combination
of the R̃n−1(k1, k2, k3, k4), the paths P2 = x1x2 and
P3 = x5x6x7. Since P2 and P3 have 5 matches, there’s
5E(m̃n−1).
Subcase 2.3: When neither x2x3 nor x3x4 is included in
the matches. Therefore, this subcase is equivalent to the
combination of the Rn(k1, k2, k3, k4) , the paths P2 = x1x2

and P4 = x4x5x6x7 . Since P2 and P4 have 7 matches,
there’s 7E(mn).

Thus, there’s 10k2E(m̃n−1)+7k2E(mn) from the above
subcases.

3) Case 3: The distance between x3 and p1 is three.
Therefore, x3 = p4 or x3 = p6. Without prejudice to

generality, assume that x3 = p4. The probability that this
occurs is k3. So there are three subcases.
Subcase 3.1: When x2x3 is included in the matches. In
this subcase, it cannot contain x1x2, x3x4, p3p4 and p4p5.
Therefore, this subcase is equivalent to the combination of
the path P4 = x4x5x6x7 and the R̂n−1(k1, k2, k3, k4). Since
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P4 has 5 matches, there’s 5E(m̂n−1).
Subcase 3.2: When x3x4 is included in the matches. In
this subcase, it cannot contain x2x3, x4x5, p3p4 and p4p5.
Therefore, this subcase is equivalent to the combination
of the R̂n−1(k1, k2, k3, k4), the paths P2 = x1x2 and
P3 = x5x6x7. Since P2 and P3 have 5 matches, there’s
5E(m̂n−1).
Subcase 3.3: When neither x2x3 nor x3x4 is included in
the matches. Therefore, this subcase is equivalent to the
combination of the Rn(k1, k2, k3, k4) , the paths P2 = x1x2

and P4 = x4x5x6x7 . Since P2 and P4 have 7 matches,
there’s 7E(mn).

Thus, there’s 10k3E(m̂n−1)+7k3E(mn) from the above
subcases.

4) Case 4: The distance between x3 and p1 is four.
Therefore, x3 = p5. The probability that this occurs is k4.

So there are three subcases.
Subcase 4.1: When x2x3 is included in the matches. In
this subcase, it cannot contain x1x2, x3x4, p4p5 and p5p6.
Therefore, this subcase is equivalent to the combination of
the path P4 = x4x5x6x7 and the R∗

n−1(k1, k2, k3, k4). Since
P4 has 5 matches, there’s 5E(m∗

n−1).
Subcase 4.2: When x3x4 is included in the matches. In
this subcase, it cannot contain x2x3, x4x5, p4p5 and p5p6.
Therefore, this subcase is equivalent to the combination
of the R∗

n−1(k1, k2, k3, k4), the paths P2 = x1x2 and
P3 = x5x6x7. Since P2 and P3 have 5 matches, there’s
5E(m∗

n−1).
Subcase 4.3: When neither x2x3 nor x3x4 is included in
the matches. Therefore, this subcase is equivalent to the
combination of the Rn(k1, k2, k3, k4) , the paths P2 = x1x2

and P4 = x4x5x6x7 . Since P2 and P4 have 7 matches,
there’s 7E(mn).

Thus, there’s 10k4E(m∗
n−1)+7k4E(mn). from the above

subcases.

Thus, the following results can be derived from Cases 1,
2, 3 and 4.

E(m̂n) =10k1E(m
′

n−1) + 7k1E(mn) + 10k2E(m̃n−1)

+7k2E(mn) + 10k3E(m̂n−1) + 7k3E(mn)

+10k4E(m∗
n−1) + 7k4E(mn)

=7(k1 + k2 + k3 + k4)E(mn) + 10k1E(m
′

n−1)

+10k2E(m̃n−1) + 10k3E(m̂n−1) + 10k4E(m∗
n−1)

=7E(mn) + 10k1E(m
′

n−1) + 10k2E(m̃n−1)

+10k3E(m̂n−1) + 10k4E(m∗
n−1).

When n ≥ 1, we can obtain that

∞∑
n=1

E(m̂n)x
n =

∞∑
n=1

7E(mn)x
n + 10k1

∞∑
n=1

E(m
′

n−1)x
n

+10k2

∞∑
n=1

E(m̃n−1)x
n + 10k3

∞∑
n=1

E(m̂n−1)x
n

+10k4

∞∑
n=1

E(m∗
n−1)x

n

which implies that

M̂(x)− E(m̂0) =7(M(x)− E(m0))

+10k1xM
′
(x) + 10k2xM̃(x)

+10k3xM̂(x) + 10k4xM
∗(x).

Note that E(m̂0) is the number of matches of path of 7
vertices, so E(m̂0) = 21. While E(m0) is the number of
matching of size 0,the empty set of the empty graph, thus,
E(m0) = 1. Therefore,

M̂(x) =14 + 7M(x) + 10k1xM
′
(x) + 10k2xM̃(x)

+10k3xM̂(x) + 10k4xM
∗(x).

Equation (4) can be proved from the above.

E. Proof of Equation (5).

The graph R∗
n(k1, k2, k3, k4) is a combination of

Rn(k1, k2, k3, k4) and a path P7 = x1x2x3x4x5x6x7.
At the same time, x4 is a vertex of the nth oc-
tagon of Rn(k1, k2, k3, k4). For the nth octagon On of
R∗

n(k1, k2, k3, k4), we recall that the vertices of it in clock-
wise by p1, p2, ..., p8, and the p1 is the cut vertex of the
Onand the On−1. It is clear that x4 ̸= p1. Due to the different
distances between x4 and p1, it can be classified into four
cases.

1) Case 1: The distance between x4 and p1 is one.
Therefore, x4 = p2 or x4 = p8. Without prejudice to

generality, assume that x4 = p2. The probability that this
occurs is k1. So there are three subcases.
Subcase 1.1: When x3x4 is included in the matches.
In this subcase, it cannot contain x2x3, x4x5, p1p2 and
p2p3.Therefore, this subcase is equivalent to the combination
of the R

′

n−1(k1, k2, k3, k4), the paths P2 = x1x2 and
P3 = x5x6x7. Since P2 and P3 have 5 matches, there’s
5E(m

′

n−1).
Subcase 1.2: When x4x5 is included in the matches. In
this subcase, it cannot contain x3x4, x5x6, p1p2 and p2p3.
Therefore, this subcase is equivalent to the combination
of the R

′

n−1(k1, k2, k3, k4), the paths P3 = x1x2x3 and
P2 = x6x7. Since P3 and P2 have 5 matches, there’s
5E(m

′

n−1).
Subcase 1.3: When neither x3x4 nor x4x5 is included in the
matches. Therefore, this subcase is equivalent to the com-
bination of the Rn(k1, k2, k3, k4) , the paths P3 = x1x2x3

and P3 = x5x6x7 . Since P3 and P3 have 6 matches, there’s
6E(mn).

Thus, there’s 10k1E(m
′

n−1)+6k1E(mn). from the above
subcases.

2) Case 2: The distance between x4 and p1 is two.
Therefore, x4 = p3 or x4 = p7. Without prejudice to

generality, assume that x4 = p3. The probability that this
occurs is k2. So there are three subcases.
Subcase 2.1: When x3x4 is included in the matches. In
this subcase, it cannot contain x2x3, x4x5, p2p3 and p3p4.
Therefore, this subcase is equivalent to the combination
of the R̃n−1(k1, k2, k3, k4), the paths P2 = x1x2 and
P3 = x5x6x7. Since P2 and P3 have 5 matches, there’s
5E(m̃n−1).
Subcase 2.2: When x4x5 is included in the matches. In
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this subcase, it cannot contain x2x3, x4x5, p2p3 and p3p4.
Therefore, this subcase is equivalent to the combination
of the R̃n−1(k1, k2, k3, k4), the paths P3 = x1x2x3 and
P2 = x6x7. Since P3 and P2 have 5 matches, there’s
5E(m̃n−1).
Subcase 2.3: When neither x3x4 nor x4x5 is included in the
matches. Therefore, this subcase is equivalent to the com-
bination of the Rn(k1, k2, k3, k4) , the paths P3 = x1x2x3

and P3 = x5x6x7 . Since P3 and P3 have 6 matches, there’s
6E(mn).

Thus, there’s 10k2E(m̃n−1)+6k2E(mn) from the above
subcases.

3) Case 3: The distance between x4 and p1 is three.
Therefore, x4 = p4 or x4 = p6. Without prejudice to

generality, assume that x4 = p4. The probability that this
occurs is k3. So there are three subcases.
Subcase 3.1: When x3x4 is included in the matches. In
this subcase, it cannot contain x2x3, x4x5, p3p4 and p4p5.
Therefore, this subcase is equivalent to the combination
of the R̂n−1(k1, k2, k3, k4), the paths P2 = x1x2 and
P3 = x5x6x7. Since P2 and P3 have 5 matches, there’s
5E(m̂n−1).
Subcase 3.2: When x4x5 is included in the matches. In
this subcase, it cannot contain x3x4, x5x6, p3p4 and p4p5.
Therefore, this subcase is equivalent to the combination
of the R̂n−1(k1, k2, k3, k4), the paths P3 = x1x2x3 and
P2 = x6x7. Since P3 and P2 have 5 matches, there’s
5E(m̂n−1).
Subcase 3.3: When neither x3x4 nor x4x5 is included in the
matches. Therefore, this subcase is equivalent to the com-
bination of the Rn(k1, k2, k3, k4) ,the paths P3 = x1x2x3

and P3 = x5x6x7 . Since P3 and P3 have 6 matches, there’s
6E(mn).

Thus, there’s 10k3E(m̂n−1)+6k3E(mn) from the above
subcases.

4) Case 4: The distance between x4 and p1 is four.
Therefore, x4 = p5. The probability that this occurs is k4.

So there are three subcases.
Subcase 4.1: When x3x4 is included in the matches. In this
subcase, it cannot contain x2x3, x4x5, p4p5 and p5p6. There-
fore, this subcase is equivalent to the combination of the
R∗

n−1(k1, k2, k3, k4),the paths P2 = x1x2 and P3 = x5x6x7.
Since P2 and P3 have 5 matches, there’s 5E(m∗

n−1).
Subcase 4.2: When x4x5 is included in the matches. In
this subcase, it cannot contain x3x4, x5x6, p4p5 and p5p6.
Therefore, this subcase is equivalent to the combination
of the R∗

n−1(k1, k2, k3, k4), the paths P3 = x1x2x3 and
P2 = x6x7. Since P3 and P2 have 5 matches, there’s
5E(m∗

n−1).
Subcase 4.3: When neither x3x4 nor x4x5 is included in the
matches. Therefore, this subcase is equivalent to the com-
bination of the Rn(k1, k2, k3, k4) , the paths P3 = x1x2x3

and P3 = x5x6x7 . Since P3 and P3 have 6 matches, there’s
6E(mn).

Thus, there’s 10k4E(m∗
n−1)+6k4E(mn) from the above

subcases.
Thus, the following results can be derived from Cases 1,

2, 3 and 4.

E(m∗
n) =10k1E(m

′

n−1) + 6k1E(mn) + 10k2E(m̃n−1)

+6k2E(mn) + 10k3E(m̂n−1) + 6k3E(mn)

+10k4E(m∗
n−1) + 6k4E(mn)

=6(k1 + k2 + k3 + k4)E(mn) + 10k1E(m
′

n−1)

+10k2E(m̃n−1) + 10k3E(m̂n−1)

+10k4E(m∗
n−1)

=6E(mn) + 10k1E(m
′

n−1) + 10k2E(m̃n−1)

+10k3E(m̂n−1) + 10k4E(m∗
n−1).

When n ≥ 1, we can obtain that
∞∑

n=1

E(m∗
n)x

n =
∞∑

n=1

6E(mn)x
n + 10k1

∞∑
n=1

E(m
′

n−1)x
n

+10k2

∞∑
n=1

E(m̃n−1)x
n + 10k3

∞∑
n=1

E(m̂n−1)x
n

+10k4

∞∑
n=1

E(m∗
n−1)x

n

which implies that

M∗(x)− E(m∗
0) =6(M(x)− E(m0))

+10k1xM
′
(x) + 10k2xM̃(x)

+10k3xM̂(x) + 10k4xM
∗(x).

Note that E(m∗
0) is the number of matches of path of

7 vertices while E(m0) is the number of matching of size
0,the empty set of the empty graph.Thus, E(m0) = 1 and
E(m∗

0) = 21. Therefore,

M∗(x) =15 + 6M(x) + 10k1xM
′
(x) + 10k2xM̃(x)

+10k3xM̂(x) + 10k4xM
∗(x).

Equation (5) can be proved from the above.
According to Equations (1), (2), (3), (4) and (5), the final

result of random octagonal chains of the expected values for
Hosoya index is about to be obtained.

IV. THE EXPECTED VALUES FOR MERRIFIELD-SIMMONS
INDEX OF RANDOM OCTAGONAL CHAINS

In this subsection, to obtain the expected values of random
octagonal chains for Merrifield-Simmons index, the follow-
ing preparations have to be done.

The expected value of Rn(k1, k2, k3, k4) of the number
of independent sets is denoted as E(in(k1, k2, k3, k4)).And
the generating function of E(in(k1, k2, k3, k4) is denoted as
Ik1,k2,k3,k4(x). Normally, E(in) and I(x) can be used to
denote E(in(k1, k2, k3, k4)) and Ik1,k2,k3,k4

(x). Therefore,

I(x) =
∞∑

n=0

E(in)x
n

For the expected values of the number of indepen-
dent sets of the R

′

n(k1, k2, k3, k4), the R̃n(k1, k2, k3, k4),
the R̂n(k1, k2, k3, k4) and the R∗

n(k1, k2, k3, k4), the
E(i

′

n),E(̃in),E(̂in) and E(i∗n) are used to denote, respec-
tively. Meanwhile, the generating functions can be denoted
by I

′
(x), Ĩ(x), Î(x) and I∗(x), respectively. Thus,

I
′
(x) =

∞∑
n=0

E(i
′

n)x
n
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Ĩ(x) =
∞∑

n=0

E(̃in)x
n

Î(x) =
∞∑

n=0

E(̂in)x
n

I∗(x) =
∞∑

n=0

E(i∗n)x
n

Now, for a random octagonal chain, the following equation
must be proved in order to obtain the expected value for
Merrifield-Simmons index.

I(x) = 1+35x+ 13xI(x) + 21k1x
2I

′
(x) + 21k2x

2Ĩ(x)

+21k3x
2Î(x) + 21k4x

2I∗(x).
(6)

I
′
(x) =21 + 13I(x) + 8k1xI

′
(x) + 8k2xĨ(x)

+8k3xÎ(x) + 8k4xI
∗(x).

(7)

Ĩ(x) =26 + 8I(x) + 18k1xI
′
(x) + 18k2xĨ(x)

+18k3xÎ(x) + 18k4xI
∗(x).

(8)

Î(x) =26 + 10I(x) + 14k1xI
′
(x) + 14k2xĨ(x)

+14k3xÎ(x) + 14k4xI
∗(x).

(9)

I∗(x) =25 + 9I(x) + 16k1xI
′
(x) + 16k2xĨ(x)

+16k3xÎ(x) + 16k4xI
∗(x).

(10)

Because we can prove Equations (6) - (10) by similar
arguments as Equations (1) - (5), we omit the proofs of
these equations. By Equations (6),(7),(8),(9)and (10), the
final result of random octagonal chains of the expected values
for Merrifield-Simmons index is about to be obtained.

V. NUMERICAL RESULTS

The specific conclusions drawn in this paper are as fol-
lows:
Theorems 1. For a non-negative integer n ,when there exist
four non-negative real numbers k1,k2,k3 and k4 satisfying
k1 + k2 + k3 + k4 = 1, let Rn(k1, k2, k3, k4) be a random
octagonal chain with n octagons. The expected value of the
number of matches of Rn(k1, k2, k3, k4) can be denoted by
E(mn(k1, k2, k3, k4)). And Mk1,k2,k3,k4

(x) is the generating
function of E(mn(k1, k2, k3, k4)).Then

M(x) =1 + 26x+ 21xM(x) + 26ax2M
′
(x)

+26bx2M̃(x) + 26cx2M̂(x) + 26dx2M∗(x).

M
′
(x) =8 + 13M(x) + 8axM

′
(x) + 8bxM̃(x)

+ 8cxM̂(x) + 8dxM∗(x).

M̃(x) =13 + 8M(x) + 13axM
′
(x) + 13bxM̃(x)

+ 13cxM̂(x) + 13dxM∗(x).

M̂(x) =14 + 7M(x) + 10axM
′
(x) + 10bxM̃(x)

+ 10cxM̂(x) + 10dxM∗(x).

M∗(x) =15 + 6M(x) + 10axM
′
(x) + 10bxM̃(x)

+ 10cxM̂(x) + 10dxM∗(x).

Theorems 2. For a non-negative integer n, when there exist
four non-negative real numbers k1,k2,k3 and k4 satisfying

k1 + k2 + k3 + k4 = 1, Rn(k1, k2, k3, k4) is a random
octagonal chain with n octagons. The expected value of the
number of matches of Rn(k1, k2, k3, k4) can be denoted by
E(in(k1, k2, k3, k4)). And Ik1,k2,k3,k4

(x) is the generating
function of E(in(k1, k2, k3, k4)). Then

I(x) = 1+35x+ 13xI(x) + 21ax2I
′
(x) + 21bx2Ĩ(x)

+21cx2Î(x) + 21dx2I∗(x).

I
′
(x) =21 + 13I(x) + 8axI

′
(x) + 8bxĨ(x)

+8cxÎ(x) + 8dxI∗(x).

Ĩ(x) =26 + 8I(x) + 18axI
′
(x) + 18bxĨ(x)

+18cxÎ(x) + 18dxI∗(x).

Î(x) =26 + 10I(x) + 14axI
′
(x) + 14bxĨ(x)

+14cxÎ(x) + 14dxI∗(x).

I∗(x) =25 + 9I(x) + 16axI
′
(x) + 16bxĨ(x)

+16cxÎ(x) + 16dxI∗(x).

VI. CONCLUSIONS

In this paper, in order to obtain the expressions of the
expected values of the Hosoya index and the Merrifield-
Simmons index for random octagonal chains, we solve
the problem by classification and discussion. The precise
formulas established in this paper will undoubtedly help in
the study of their corresponding chemical properties.
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