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Abstract—This paper explores the benefits of integrating
numerical iterative methods with the Sawi transform (SWT)
to effectively address ordinary and delay differential equations.
We focus specifically on the Sawi iterative method (SIM),
showcasing how its integration with the SWT simplifies complex
differential equations and improves solution accuracy and
computational efficiency. Initially, we present fundamental the-
oretical insights into SWT, emphasizing its key properties, such
as linearity, convolution, and scaling, that facilitate converting
complicated differential equations into simpler algebraic forms.
Through illustrative examples and detailed case studies, we
validate the proposed approach by highlighting its effectiveness
in producing both analytical and approximate solutions. Our
results illustrate the robustness, versatility, and practicality of
the combined methods across a variety of complex differential
equations. Ultimately, this study emphasizes the significance and
effectiveness of the proposed techniques, opening avenues for
their broader application in various scientific and engineering
contexts.

Index Terms—Sawi transform, iterative methods, delay dif-
ferential equations, Sawi iterative method.

I. INTRODUCTION

IN applied mathematics, efficiently and accurately solving
differential equations continues to be a central challenge

due to their critical role in modeling phenomena across vari-
ous scientific and engineering disciplines, including physics,
biology, finance, and engineering [1], [2], [3]. Classical
approaches, such as Laplace and Fourier transforms [4], [5],
have traditionally been employed to address these equations,
yet their limitations become evident when handling complex,
nonlinear, or more intricate problems [6], [7].

The introduction of the SWT by Mahgoub and Mohand in
2019 has demonstrated significant potential, offering greater
flexibility and effectiveness for addressing a wide range of
differential equations [8], [9], [10]. The SWT has several
advantageous properties, such as linearity, scaling, shifting,
and convolution. These properties collectively enable the
transformation of complicated differential equations into sim-
pler algebraic representations, thus significantly streamlining
the analytical solution process [11], [12], [21].

The unique properties of SWT—including linearity, scal-
ing, shifting, and convolution—facilitate the transformation
of complex differential problems into simpler algebraic
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forms, thereby simplifying the analytical process [15], [16],
[17]. Iterative methods, recognized for their effectiveness in
achieving convergence and precision, are extensively utilized
within computational mathematics and numerical analysis
[18], [19], [20]. By integrating these iterative approaches
with the SWT, this research aims to address nonlinear and
complex differential equations more effectively and accu-
rately [21], [22].

Iterative methods are recognized in numerical analysis
and computational mathematics for their ability to efficiently
refine solutions and achieve reliable convergence [23], [24],
[25].

Recently, the Sawi iterative method (SIM) have shown
great promise in solving nonlinear and complex differential
equations. The integration of iterative methods with the SWT
can further enhance their effectiveness, allowing for the
iterative refinement of solutions and the handling of more
intricate problems [26], [8], [9]. This paper will demonstrate
the application of these techniques through detailed examples
and case studies, highlighting their practical utility and
advantages [17], [27], [28].

This research contributes to the growing body of knowl-
edge on integral transforms and iterative methods, providing
a comprehensive analysis of their combined application in
solving differential equations. By presenting detailed the-
oretical insights and practical implementations, we aim to
establish a solid foundation for future research and advance-
ments in this field. The results presented in this study can
substantially influence multiple scientific and engineering
fields, creating opportunities for broader utilization of the
SWT and iterative techniques in addressing practical, real-
world challenges.

This paper is organized as follows: In Section 2, we
introduce SWT and some basic properties. The application
of SWT on DDEs with the iterative method is presented in
Section 3. Finally, some illustrative examples are presented
in Section 4.

II. BASIC DEFINITIONS AND PROPERTIES

Definition 2.1: The Sawi transform (SWT) of a given
function w(t), defined on the interval [0,∞), is denoted by
S[w(t)] and defined as follows:

S[w(t)] = R(v) =
1

v2

∫ ∞

0

w(t)e−
t
v dt. (1)

The inverse of the Sawi transform is expressed by:

S−1[R(v)] =
−1

2πi

∫ c+i∞

c−i∞
R(v)e

t
v , dv, c ∈ R. (2)

It is important to note that if S[w1(t)] = R1(v) and
S[w2(t)] = R2(v), then the SWT is linear, and the following
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relation holds for arbitrary constants a and b:

S[aw1(t) + bw2(t)] = aS[w1(t)] + bS[w2(t)]

= aR1(v) + bR2(v).

Additionally, the inverse Sawi transform also exhibits
linearity. If S−1[R1(v)] = w1(t) and S−1[R2(v)] = w2(t),
then:

S−1[aR1(v) + bR2(v)] = aS−1[R1(v)] + bS−1[R2(v)]

= aw1(t) + bw2(t).
(3)

Theorem 2.1: Let w(t) be a continuous function defined
on t > 0 and satisfying the exponential growth condition
|w(t)| ≤ µeαt, where µ > 0 and α ∈ R are constants. Then
the SWT S[w(t)] exists and is well-defined for all v such
that:

Re

(
1

v

)
> α

The Sawi transform satisfies several useful properties,
including:

• If S[w(t)] = R(v), then S[w(at)] = aR(av).
• For an exponential multiplier, we have:

S
[
eatw(t)

]
= 1

(1−av)2R
(

v
1−av

)
.

• For convolution, the SWT is given by: S[w1(t) ×
w2(t)] = v2R1(v)R2(v).

Theorem 2.2: If R(v) denotes the SWT of w(t), the trans-
forms of derivatives of w(t) satisfy the following relations:

1) First derivative:

S[w′(t)] =
R(v)

v
− w(0)

v2
. (4)

2) Second derivative:

S[w′′(t)] =
R(v)

v2
− w(0)

v3
− w′(0)

v2
. (5)

3) Higher-order derivative (general form):

S[w(n)(t)] =
R(v)

vn
−

n−1∑
k=0

w(k)(0)

vn−k+1
. (6)

The following Table I provides examples of the SWT for
several fundamental functions.

TABLE I
SWT OF SOME ELEMENTARY FUNCTIONS.

Sr.No. w(t) S[w(t)]

1 1 1
v

2 t 1
3 tn, n ∈ N n!vn−1

4 tα, α ∈ R+ Γ (α+ 1) vα−1

5 eat 1
v(1−av)

6 sin at a
1+a2v2

7 cos at 1
v(1+a2v2)

8 sinh at a
1−a2v2

9 cosh at 1
v(1−a2v2)

III. SWT ITERATIVE METHOD

In this section, we introduce and discuss an iterative
technique, specifically focusing on the newly proposed Sawi
Iterative Method (SIM), which is particularly suited for
solving delay differential equations (DDEs).

A. Iterative Method

We start by considering the general functional equation of
the form:

w(t) = N(w) + g(t). (7)

Here, N represents a nonlinear operator defined on a Banach
space S, mapping the space back into itself (N : S → S),
and g(t) denotes a given, known function. The solution w(t)
to Eq. (7) is assumed to have a series expansion of the form:

w(t) =
∞∑
i=0

wi(t). (8)

The nonlinear operator N can be represented through a
telescopic decomposition as follows:

N

[ ∞∑
i=0

wi(t)

]
= N(w0)

+
∞∑
i=1

(
N

[
i∑

k=0

wk(t)

]
−N

[
i−1∑
k=0

wk(t)

])
.

(9)

By substituting Eq. (8) and Eq. (9) into the original
equation (7), we obtain:

∞∑
i=0

wi(t) =g(t) +N(w0(t))

+
∞∑
i=1

(
N

[
i∑

k=0

wk(t)

]
−N

[
i−1∑
k=0

wk(t)

])
.

(10)

From this formulation, we derive the following iterative
recurrence relations:

w0(t) = g(t),

w1(t) = N [w0(t)],

w2(t) = N [w0(t) + w1(t)]−N [w0(t)],

w3(t) = N [w0(t) + w1(t) + w2(t)]−N [w0(t) + w1(t)],

w4(t) = N [w0(t) + w1(t) + w2(t) + w3(t)]

−N [w0(t) + w1(t) + w2(t)],

...

wm+1(t) = N

[
m∑
i=0

wi(t)

]
−N

[
m−1∑
i=0

wi(t)

]
,

m = 1, 2, 3, . . .

Thus, we can succinctly express the above iterative rela-
tions as:

w1(t) + w2(t) + · · ·+ wm+1(t)

= N [w0(t) + w1(t) + · · ·+ wm(t)],

m = 1, 2, 3, . . . ,

with the solution given by the infinite series:

w(t) =
∞∑
i=0

wi(t).

To ensure the convergence of the proposed iterative
method, we introduce and discuss two essential theorems:
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Theorem 3.1: Let N be a continuously differentiable non-
linear operator in a neighborhood around w0. Assume that
there exists a constant L > 0 satisfying:

∥N (n)(w0)∥ = sup
{ ∣∣∣N (n)(w0)(h1, h2, . . . , hn)

∣∣∣
: ∥hi∥ ≤ 1, 1 ≤ i ≤ n

}
≤ L,

for each n ≥ 1. If the terms satisfy wi ≤ M < 1
e for all i =

1, 2, 3, . . ., then the series
∑∞

i=0 wi+1 converges absolutely.
Moreover, the following bound holds:

∥wi+1∥ ≤ LMnen−1(e− 1), n = 1, 2, . . .

Theorem 3.2: Suppose that N is continuously differen-
tiable in a neighborhood of w0 and satisfies the condition:

∥N (n)(w0)∥ ≤ M ≤ 1

e
,

for all n ≥ 1. Then the infinite series
∑∞

i=0 wi+1 is
absolutely convergent.

B. Sawi iterative method for Solving Ordinary DDEs

To understand the procedure of the presented SIM, let us
consider the following DDE in the general form of nth−
order DDE

dnw (t)

dtn
+ P (w (t)) +N (w (λt)) = f (t) , n = 1, 2, · · · ,

n ∈ N, λ ̸= 0,
(11)

subject to the initial conditions

w(k)(0) = w0 k, k = 0, 1, 2, · · · . (12)

In this context, dnw(t)
dtn denotes the nth derivative of the un-

known function w(t). Furthermore, P represents a bounded
linear operator, N is a bounded nonlinear operator, and f(t)
is a known continuous function.

To perform the SIM to solve the initial value problem (11)
and, (12) we follow the steps.
Step (1): Applying the SWT to both sides of equation (11),

S

[
dnw

dtn

]
+S [P (w (t))]+S [N (w (λt))] = S [f (t)] . (13)

Running SWT on Eq (13), we have

R(v)

vn
−

n−1∑
k=0

w(k) (0)

vn−k+1
+ S [P (w (t))] + S [N (w (λt))]

= S [f (t)] ,

R(v)

vn
=

n−1∑
k=0

w(k) (0)

vn−k+1
+ S [f (t)]− S [P (w (t))]

− S [N (w (λt))] ,

which implies

R (v) =

(
n−1∑
k=0

w(k) (0)

v−k+1

)
+ vnS [f (t)]− vnS [P (w (t))]

− vnS [N (w (λt))] .
(14)

Step (2): Applying the inverse SWT to both sides of Eq (14),
we obtain

w (t) =S−1

[
n−1∑
k=0

w(k) (0)

v−k+1

]
+ S−1 [vnS [f (t)]]

− S−1 [vnS [P (w (t))]]− S−1 [vnS [N (w (λt))]] ,
(15)

which implies,

w (t) =S−1

[
n−1∑
k=0

w(k) (0)

v−k+1
+ vnS [f (t)]− vnS [P (w (t))]

]
− S−1 [vnS [N (w (λt))]] .

(16)

Step (3): We consider the series solution of Eq (16), of the
form

w (t) =
∞∑

n=0

wn(t).

Substituting it in the Eq (16), to obtain

∞∑
n=0

wn (t) = S−1

[
n−1∑
k=0

w(k) (0)

v−k+1
+ vnS [f (t)]

− vnS [P (w (t))]

]

− S−1

[
vnS

[
N

( ∞∑
n=0

wn (λt)

)]
.

(17)

Step (4): The term of the nonlinear operator N , can be
decomposed as follows:

∞∑
n=0

N (wn (λt)) = N (w0)

+
n∑

i=1

(
N

[
k∑

n=0

wn(λt)

]
−N

[
k−1∑
n=0

wn(λt)

])
.

(18)

Step (5): By substituting Eq (18), in Eq (17), we get

∞∑
n=0

wn(t) =S−1

[
n−1∑
k=0

w(k) (0)

v−k+1
+ vnS [f(t)]

− vnS [P (w (t))]

]
− S−1

[
vnS

[
N (w0(λt))

+
∞∑
i=1

{
N

[
k∑

n=0

wn(λt)

]

−N

[
k−1∑
n=0

wn(λt)

]}]]
.

(19)

Step (6): We can get the recurrence relation from Eq (19),
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in the previous step

w0 (t) =S−1

[
n−1∑
k=0

w(k) (0)

v−k+1
+ vnS [f (t)]

− vnS [P (w (t))]

]
w1(t) =−S−1 [vnS[N [w0(λt)]] ,

...

w (t) =− S−1

[
vnS

[ ∞∑
i=1

{
N

[
k∑

n=0

wn (λt)

]

−N

[
k−1∑
n=0

wn (λt)

]}]]
,

(20)

for n = 1, 2, · · · . Consequently, the analytical solution to
the DDE described by Eq. (20) can be represented using the
following infinite series form:

w(t) = lim
N→∞

N∑
m=0

wm(t) = w0(t) + w1(t) + w2(t) + · · · .

(21)

IV. ILLUSTRATIVE EXAMPLES

In this part of the study, we introduce some examples, and
solve them by SIM, to show the simplicity and efficiency of
the method.
Example 4.1. Consider the following nonlinear first - order
DDE

w′ (t)− 2tw4

(
t

2

)
= 0, t ≤ 0, (22)

with the initial condition

w (0) = 1. (23)

Solution. Applying the Sawi transform (SWT) to both sides
of equation (22), we have:

S [w′(t)]− S

[
2t, w4

(
t

2

)]
= 0. (24)

Evaluating the SWT of equation (24)

R(v)

v
− w(0)

v2
− S

[
2t, w4

(
t

2

)]
= 0. (25)

Inserting the initial condition from equation (23) into
equation (25), yields:

R(v) =
1

v
+ vS

[
2t, w4

(
t

2

)]
. (26)

Next, taking the inverse Sawi transform of Eq. (26) pro-
vides:

S−1[R(v)] = S−1

[
1

v
+ vS

[
2t, w4

(
t

2

)]]
.

Employing the inverse Sawi transform properties, the
equation becomes:

S−1[R(v)] = S−1

[
1

v

]
+ S−1

[
vS

[
2t, w4

(
t

2

)]]
. (27)

Performing the inverse SWT operation explicitly, we ob-
tain:

w(t) = 1 + S−1

[
vS

[
2t, w4

(
t

2

)]]
. (28)

Now, implementing the iterative procedure to solve Eq.
(28), we start with the initial approximation:

w0(t) = 1, w0(t/2) = 1.

Then, the first iteration component w1(t) is calculated by
applying the nonlinear operator N to w0(t/2):

w1(t) = N

[
w0

(
t

2

)]
= S−1

[
vS

[
2t,

(
w0

(
t

2

))4
]]

.

Evaluating this expression explicitly, we find:

w1(t) = S−1[vS[2t]] = t2.

Hence,

w1

(
t

2

)
=

t2

4
.

To determine the expression for w2(t), we proceed with the
following calculation:

w2 (t) = N

[
w0

(
t

2

)
+ w1

(
t

2

)]
−N

[
w0

(
t

2

)]
= S−1

[
12v3 + 90v5 + 630v7 + 2835v9

]
.

Thus,

w2

(
t

2

)
=

t4

32
+

t6

512
+

t8

16384
+

t10

1310720
,

w(t) =S−1

[
vS

[ ∞∑
n=1

(
N

(
k∑

n=0

wn
2

(
t

2

))

−N

(
k−1∑
n=0

wn
2

(
t

2

)))]]
.

Thus,

w (t) = w0 (t) + w1 (t) + w2 (t) + · · · .

Now, the approximate solution of this example is,

w (t) = 1 + t2 +
t4

2
+

t6

8
+

t8

64
+

t10

1280
+ · · · . (29)

Here, we state that the exact analytical solution of Eq (22),
is given by

w (t) = et
2

.

The expressions are simplified using Mathematica version
13.0. In the following Figure 1, we sketch the approximate
and exact solutions of Example 4.1.

Fig. 1. Exact and approximate solutions of Example 4.1
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Example 4.2. Consider the nonlinear proportional DDE

w′′ (t) = 1− 2w2

(
t

2

)
, 0 < t < 1, (30)

with the initial conditions

w (0) = 1, w′ (0) = 0. (31)

Solution. Here, we state that the exact solution of Eq (30),
is given by

w (t) = cos t. (32)

Applying the Sawi transform (SWT) to equation (30), we
obtain:

S [w′′(t)] = S

[
1− 2w2

(
t

2

)]
. (33)

Expanding equation (33) using properties of the SWT, we
have:

R(v)

v2
− w′(0)

v2
− w(0)

v3
= S[1]− S

[
2w2

(
t

2

)]
. (34)

Next, we substitute the initial conditions given by equation
(31) into equation (34), simplifying to obtain:

R(v)

v2
− 1

v3
=

1

v
− S

[
2w2

(
t

2

)]
.

Consequently, this leads to:

R(v) =
1

v
+ v − v2S

[
2w2

(
t

2

)]
. (35)

Finally, by applying the inverse Sawi transform to Eq. (35),
the solution can be expressed as:

S−1[R(v)] = S−1

[
1

v
+ v − v2S

[
2w2

(
t

2

)]]
.

By using the properties of SWT, we have

w (t) = 1 +
t2

2
− S−1

[
v2S

[
2w2

(
t

2

)]]
. (36)

Applying the iterative technique to equation (36), we obtain
the initial approximation components of the solution:

w0(t) = 1 +
t2

2
,

w0

(
t

2

)
= 1 +

t2

8
.

To determine the expression for w1(t), we proceed with
the following calculation:

w1 (t) = N

[
w0

(
t

2

)]
= −S−1

[
v2S

[
2w0

(
t

2

)2
]]

= −S−1

[
2 v2S

[(
1 +

t2

8

)2
]]

.

Thus,

w1 (t) = −t2 − t4

24
− t6

960
,

w1

(
t

2

)
= N

[
w0

(
t

2

)]
=

−t2

4
− t4

384
− t6

23040
.

Now, we compute w2(t)

w2 (t) = N

[
w0

(
t

2

)
+ w1

(
t

2

)]
−N

[
w0

(
t

2

)]
= −S−1

[
2v2S

[(
1 +

t2

8
− t2

4
− t4

384
− t6

23040

)2

−
(
1 +

t2

8

)2
]]

Hence,

w2(t) =
t4

12
+

t6

2880
− 6.5t8

645120
− 1.3t10

6635520

+
t12

583925760
− t14

96613171200
+ · · · .

(37)

Continuing this iterative process, we can determine subse-
quent components w3 (t) , w4 (t) , · · · , systematically. The
complete solution is then represented as the infinite sum of
these iterative terms:

w (t) = w0 (t) + w1 (t) + w2 (t) + · · · .

For n = 2, we have

w (t) =1− t2

2
+

t4

24
− t6

960
− 0.000010075644841269841t8

− 1.959153163580247× 10−7t10 +
t12

583925760

− t14

96613171200
+ · · · .

The expressions are simplified using Mathematica version
13.0. Then, the exact solution is

w (t) = cos t.

Now, we present the following Figure 2, in which we sketch
the approximate and exact solutions

Fig. 2. Exact and approximate solutions of Example 4.2

Example 4.3. Consider the nonlinear 3rd order DDE

w′′′(t) = 2w2

(
t

2

)
− 1, (38)

with the initial conditions

w (0) = 0, w′ (0) = 1, w′′ (0) = 0. (39)
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Here we state that the exact analytical solution of Eq (38)
and Eq (39), is given by

w (t) = sin t.

Solution. Applying the SWT to each side of Eq. (38) yields
the following:

S [w′′(t)] = S

[
2w2

(
t

2

)
− 1

]
. (40)

Applying the Sawi transform (SWT) to equation (40), we
have:

R(v)

v3
− w(0)

v4
− w′(0)

v3
− w′′(0)

v2
= S

[
2w2

(
t

2

)]
− S[1].

(41)
Incorporating the initial conditions given by Eq. (39) into

Eq. (41), we obtain:

R(v)

v3
− 1

v3
= S

[
2w2

(
t

2

)]
− 1

v
, (42)

leading to:

R(v) = 1− v2 + v3S

[
2w2

(
t

2

)]
. (43)

Finally, taking the inverse Sawi transform of Eq. (43), we
express the solution as:

S−1[R(v)] = S−1

[
1− v2 + v3S

[
2w2

(
t

2

)]]
. (44)

By using the properties of inverse SWT, we obtain

S−1 [R (v)] = S−1 [1]−S−1
[
v2
]
+S−1

[
v3S

[
2w2

(
t

2

)]]
.

(45)
Running inverse SWT on Eq (45), we get

w (t) = t− t3

3!
+ S−1

[
v3S

[
2w2

(
t

2

)]]
. (46)

Now, to apply the iterative approach to Eq. (28), we first
identify the initial component of the solution as:

w0(t) = t− t3

3!
.

Evaluating this initial approximation at t/2, we obtain:

w0

(
t

2

)
=

t

2
− t3

48
.

To calculate w1(t), we apply the nonlinear operator N on
the initial approximation w0(t/2). This procedure involves
utilizing the inverse Sawi transform combined with the Sawi
transform of the squared initial approximation, as shown
below:

w1 (t) = N

[
w0

(
t

2

)]
= S−1

[
v3S

[
2w2

0

(
t

2

)]]
= S−1

[
v3S

[
2

(
t

2
− t3

48

)2
]]

=
t5

5!
+

t7

7!
+

t9

580608
.

Next, we compute w2(t) by applying the operator N to the
sum of the previous approximations, subtracting the result

obtained using only the initial approximation. Explicitly, this
calculation is given by:

w2 (t) = N

[
w0

(
t

2

)
+ w1

(
t

2

)]
−N

[
w0

(
t

2

)]
=

31t5

3840
− 43t7

215040
+

4091t9

1486356480

− t11

53222400
+

7t13

910924185600

+
17t15

34780741632000
+

83t17

570532583964672000

+
t19

278745919594168320

+
t21

352597191467823267840
.

Thus
w (t) = w0 (t) + w1 (t) + w2 (t) + · · ·

= t− t3

6
+

t5

120
− t7

645120
+

4091t9

1486356480

− t11

53222400
+

7t13

910924185600
+

31t14

2229534720

+
17t15

34780741632000
+

83t17

570532583964672000

+
t19

278745919594168320

+
t21

352597191467823267840
+ · · · .

The expressions are simplified using Mathematica version
13.0. Now, we present the following Figure 3, in which we
sketch the approximate and exact solutions of Example 4.3

Fig. 3. Exact and approximate solutions of Example 4.3

V. CONCLUSION

In summary, this study highlights the advantages achieved
by combining the SWT with numerical iterative approaches,
especially the SIM, when addressing ordinary and delay
differential equations. Leveraging the distinctive character-
istics of SWT—namely linearity, scaling, shifting, and con-
volution—allowed us to effectively convert complex differ-
ential equations into simpler algebraic forms. Additionally,
incorporating iterative numerical methods, specifically SIM,
significantly improved solution accuracy, ensured rapid con-
vergence, and increased the practical utility of the solutions.

These approaches not only streamlined the analytical
procedures but also extended their applicability to a wider
array of differential equations encountered in scientific and
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engineering contexts. By presenting a robust framework for
addressing nonlinear and delay differential equations, this re-
search provides essential methodologies that can be adopted
and further developed in various practical and theoretical
disciplines.

Overall, this research contributes valuable insights and
practical tools to the existing literature on integral transforms
and iterative techniques. Future research directions include
exploring further applications of the SWT and refining iter-
ative methodologies to optimize their efficiency, accuracy,
and convergence for broader real-world scenarios. These
advancements promise substantial impacts across various sci-
entific and engineering fields, driving continued innovation
and progress in applied mathematics [29], [30], [31].
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