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Abstract—The consistency of leader-following networks is
an important research branch in nonlinear science, and the
design better and more effective controllers is currently an
open problem. A new event-triggered control (ETC) protocol is
investigated for the leader-following network, where the follow-
ers can communicate with leaders in real-time. A sufficient
criterion in matrix form is derived for the synchronization
of the leader-following network under this control protocol,
and it is proved that the event-triggered mechanism does not
exhibit the Zeno phenomenon. Meanwhile, the convergence
speed and triggering times of the error systems are compared
with the other two control protocols, and the effectiveness
and advantages are verified for the proposed control method
through two numerical examples. The proposed ETC protocol
can reduce the triggering frequency of the controller and the
cost of leader-following network. This method avoids the need
for continuously monitoring the status of neighboring followers,
and it reduces the cost of network communication and the
resource consumption in the control process.

Index Terms—leader-following network, event-triggered con-
trol, network synchronization, control cost.

I. INTRODUCTION

W ITH the development of technology, the network is
very important in many fields, such as biological

engineering [1], automation technology [2] and information
technology [3]. Network synchronization has become one of
the hot topics in network research as its potential applications
in power systems [4], multi-agent systems [5], and secure
communication [6]. The goal of network synchronization
is to achieve the expected trajectory of nodes in the en-
tire network through internal coupling and external control.
Usually, a leader-following network refers to a network with
leaders. The synchronization of the leader-following network
is achieved by applying control to the followers, so that the
final trajectory of all followers is consistent with that of the
leader. After decades of research on network synchroniza-
tion, many control methods of synchronization have been
proposed, such as intermittent control [7], impulsive control
[8], pinning control [9], event-triggered control (ETC) [10],
etc. The ETC has attracted much attention as the low cost
of network synchronization.
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The ETC needs to design a suitable control protocol
and triggering condition. If the system meets the triggering
condition at a certain moment, then the event is triggered at
that moment, and the control protocol updates the state. The
early research on ETC is usually to design a discontinuous
control protocol and uses static event-triggered conditions
to update the control protocol according to the continuous
monitoring of neighboring nodes state [11]. In reference [12],
the event-triggered input is designed for a switched system
by an observer, and the signals of controlled system can be
bounded. For uncertain nonlinear systems with unmodeled
dynamics, the ETC is designed to keep the convergence of
tracking error and bounded signals of the close-loop control
system [13]. An adaptive tracking method is proposed for
the system with unknown disturbances by the ETC [14].
The synchronization is investigated by disturbance observer-
based control and switched-gain ETC for Lur’e systems,
and the effectiveness is shown based on the master-slave
Chua’s circuits [15]. For the switched nonlinear systems, the
ETC is designed to save the communication resource and
maintain good signal tracking performance [16]. In reference
[17], the consensus of multi-agent systems is investigated by
an adaptive event-triggered mechanism, and a novel model-
free deep reinforcement learning is used to for an approx-
imated linearized control protocol. A sufficient condition is
proposed for the synchronization of complex networks by
using ETC [18]. The ETC scheme is investigated for the
switched nonlinear systems with unmeasurable states, and
the communication costs are significantly reduced [19].

In order to improve utilization of resource during network
synchronization and effectively reduce the number of updates
to the control protocol, some improved static and dynamic
event-triggered conditions are proposed [20], [21]. Although
the improved triggering conditions have greater advantages
in saving resource, these triggering conditions still require
continuous monitoring of the state of neighboring nodes,
which makes it difficult to effectively reduce the cost of
network communication. An ETC by state prediction is
proposed to overcome the limitations of aforementioned ETC
[22]. This ETC is different from most control protocols, as
the follower state is predicted by the system model, and the
triggering conditions do not include the state of neighboring
nodes. Therefore, the ETC by state prediction does not
require continuous monitoring of the state of neighboring
nodes. Furthermore, Zhang et al. proposes a control method
that the states of some followers are directly connected to the
leader in real-time [23]. However, the states among followers
are still predicted, so it is difficult to effectively reduce the
cost of ETC. Therefore, a good control protocol is necessary
to ensure the advantages of ETC by state prediction and
reduce the control cost.

In order to reduce the cost of communication and compu-
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tational resource during network synchronization, the ETC
protocol is studied for the leader-following network. In this
paper, the main contributions are given as follows: (1) In the
proposed control protocol, the states of followers commu-
nicate with the leader in real-time, and it is applied to the
synchronization research of leader-following networks. (2) A
sufficient criterion is proposed for achieving synchronization
in the leader-following network, and it is proved that there
is no Zeno phenomenon within a finite time in the ETC. (3)
Based on the numerical examples of gyroscope systems, the
new control method can obtain good results and reduce the
cost of ETC.

By implementing threshold-based triggering conditions,
the ETC inherently reduces operational costs associated
with continuous control. This approach not only conserves
network bandwidth and computational resources but also
minimizes energy consumption in sensor nodes and control
units. However, the ETC must simultaneously ensure stability
and performance of the controlled system, and a suboptimal
configuration of the controller may potentially induce system
oscillations or trigger excessively frequent activations. To
address this challenge, this study presents a comparative
analysis of control efficacy and operational costs under
different ETC methods. Furthermore, we propose a novel
time-decaying exponential triggering mechanism, in which
the threshold parameter asymptotically decreases over time.
Under the identical triggering thresholds, the proposed ETC
method achieves consensus of leader-following network by
partially predicting methods, while dramatically curtailing
control costs and reducing the frequency of event-triggering
instances. Consequently, the proposed ETC strategy not
only effectively reduces network bandwidth consumption and
computational resource utilization but also enhances system
efficiency, as empirically validated in Section IV.

The remaining research is given as follows. In Section
II, the mathematical model of leader-following network is
given. A sufficient condition is proposed for the leader-
following network by the ETC in Section III. In Section
IV, two numerical examples of leader-following networks
are investigated based on the gyroscope systems, and the
simulation results verify the effectiveness and feasibility of
the ETC. Finally, there is the conclusion in Section V.

II. MODEL OF LEADER-FOLLOWING NETWORK

The nonlinear dynamic systems of a leader-following
network are given as follows:

ẋ0(t) = f(t,x0(t)), (1)

ẋi(t) = f(t,xi(t)) + ui(t), i = 1, 2, · · · , N, (2)

where x0(t) ∈ Rn denotes the leader’s state, f(t,x0(t)) is
a continuous nonlinear function of the leader. xi(t) ∈ Rn is
the ith follower’s state, f(t,xi(t)) is a continuous nonlinear
function of the ith follower, and ui(t) ∈ Rn is the control
protocol of the ith follower.

Assumption 2.1: There exists a region U , and the dy-
namic equation satisfies ∥f(t,x0(t))− f(t,xi(t))∥ ⩽ r1
∥x0(t)− xi(t)∥ when x0(0),xi(0) ∈ U , where r1 is a
positive constant.

Similarly, according to the Lemma 1 in reference [24], one
yields the following Lemma.

Lemma 2.1: If the constant s = min{l0, λ0}, l0 > 0, µ0 >
0, l0 ̸= λ0, and the scalar function satisfies

u̇ ⩽ −l0u+ µ0e
−λ0t, u(t0) = u0 ⩾ 0,

then there is u ⩽ (u0 +
µ0

|l0−λ0| )e
−st, and the u(t) → 0 as

t → +∞.
Definition 2.1: If the initial values x0(0) and xi(0) are

all within a region U , then the lim
t→+∞

∥x0(t)− xi(t)∥ = 0,
it is said that the leader-following networks (1) and (2) can
achieve synchronization in the region U .

Note that

qi(t) = c
N∑
j=1

aij(xj(t)−xi(t)) + bi(x0(t)− xi(t)), (3)

where A = (aij)N×N is the adjacency matrix, and it denotes
the topological connection relationship between followers. If
the ith follower can directly receive information from the
jth follower (i ̸= j), then the jth follower is the neighbor
of the ith follower, i.e., aij = 1; otherwise, aij = 0, and
aii = 0. One lets Ni be a set of the neighbors of the ith
follower. The Laplace matrix L = (lij)N×N , where lij =

−aij when i ̸= j, and lii =
N∑

j=1,j ̸=i

aij when i = j. One lets

B = diag{b1, b2, · · · , bN}, where bi > 0 means that the ith
follower can communicate with the leader; otherwise, bi = 0.

III. MAIN RESULTS

In order to reduce continuous communication between
network nodes, a new controller is designed by

ui(t) = c
N∑
j=1

aij(x̂j(t)− xi(t)) + bi(x̂0(t)− xi(t)), (4)

where c is the control gain. This controller is continuously
updated, but the communication with neighbors is discontin-
uous. The definition of continuous function x̂j(t) is given as
follows {

x̂j(t) = x̂j(t), t = tjk,

˙̂xj(t) = f(t, x̂j(t)), t ∈ (tjk, t
j
k+1),

(5)

where j ∈ {0}
⋃
Ni, k = 0, 1, 2, 3, · · · . tjk is the kth event-

triggering moment of the jth follower. At this moment, the
jth follower sends its state to surrounding neighbors through
the network. In control protocol (5), all followers will update
the state of the jth follower if they can directly receive the
information of the jth follower. Due to the leader’s trajectory
is only depended on its dynamic equations, then x̂0(t) =
x0(t).

Note 3.1: The control protocol in reference [22] is given
by

ui1(t) = c
N∑
j=1

aij(x̂j(t)− x̂i(t)) + bi(x̂0(t)− x̂i(t)). (6)

This control protocol can ensure that communication be-
tween leader-following network is discontinuous, but the
ith follower can obtain its state xi(t) without the need
for external network. As the state of the ith follower is
predicted by the control protocol (5), it not only increases the
computational complexity of the controller, but also degrades
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the state estimation accuracy of the ith follower. Therefore,
the control protocol is changed by [23]

ui2(t) = c
N∑
j=1

aij(x̂j(t)−x̂i(t)) + bi(x0(t)− xi(t)). (7)

The control protocol requires the predicted state of neighbors
and the real-time state of the ith follower and leader.

The proposed control protocol (4) only requires the ith
follower’s state in real-time and the predicted states of neigh-
bors and leader. Compared with other control protocols, the
control protocol (4) reduces dependency on predicted states
of neighboring followers and the leader while maintaining
the estimation accuracy of the ith follower’s state.

The event-triggering time series
{
tik
}

of the ith follower
is determined by the triggering conditions, i.e.,{

ti0 = 0

tik+1 = inf
{
t > tik | ∥εi(t)∥

2 − gi(t) ⩾ 0
}
,

(8)

where εi(t) = xi(t)− x̂i(t), gi(t) = βi exp(−λt), and i =
1, 2, · · · , N, k = 0, 1, 2, 3, · · · .

Note 3.2: According to the triggering conditions (8), the
event-triggered mechanism for the ith follower is exclusively
dependent on its own current state and predicted state,
thus obviating the necessity for persistent monitoring of
neighboring agents’ states.

According to Eqs. (1) and (2), if the error between the ith
follower and leader is denoted as ei(t) = x0(t)−xi(t), then
the dynamic equation of the error system can be obtained as
follows:

ėi(t) =f(t,x0)− f(t,xi)−

c
N∑
j=1

aij(x̂j(t)−xi(t))− bi(x̂0(t)− xi(t)).

According to Eq. (3), the error equation is rewritten as

ėi(t) = f(t,x0)− f(t,xi)− qi(t) + · · ·

c
N∑
j=1

aij(xj(t)−x̂j(t)).
(9)

If one denotes

e(t) = (e1(t)
T, e2(t)

T, · · · , eN (t)T)T,

q(t) = (q1(t)
T, q2(t)

T, · · · , qN (t)T)T,

ε(t) = (ε1(t)
T, ε2(t)

T, · · · , εN (t)T)T,

F (t) = ((f(t,x0)− f(t,x1))
T, (f(t,x0)− f(t,x2))

T ,

· · · , (f(t,x0)− f(t,xN ))T )T,

then the error system of the leader-following network is given
by

ė(t) = F (t)− ((cL+B)⊗In)e(t)− (cP ⊗In)ε(t), (10)

where P = (L− diag{|N1| , |N2| , · · · , |NN |}), |Ni| repre-
sents the number of elements in Ni.

Theorem 3.1: Under the condition that Assumption 2.1 is
satisfied, if there is an appropriate control gain c, positive
scalar l and matrices L,B, the following inequality holds

(r1 + l)IN − 1

2
((cL+B)T + (cL+B)) ⩽ 0,

where l ̸= λ
2 , λ is determined by the triggering function (8),

then the leader-following networks (1) and (2) can achieve
synchronization in the region U by the control protocol (4).

Proof: If Lyapunov function V (t) = 1
2e(t)

τ
e(t), then the

derivative of V (t) is given as follows

V̇ (t) = e(t)T(F (t)− 1

2
(((cL+B)T+

(cL+B))⊗ In)e(t)− (cP ⊗ In)ε(t))

⩽ e(t)T(((r1 + l)IN − 1

2
((cL+B)T+

(cL+B)))⊗ In)e(t)− e(t)T(cP ⊗ In)ε(t)−
le(t)Te(t)

⩽ −2lV (t) + ∥e(t)∥ ∥(cP ⊗ In)∥ ∥ε(t)∥ .

If the Lyapunov function W (t) =
√
V (t), then one has

V̇ (t) = 2W (t)Ẇ (t)

⩽ −2lW (t)W (t) +
√
2W (t) ∥(cP ⊗ In)∥ ∥ε(t)∥ ,

and

Ẇ (t) ⩽ −lW (t) +

√
2

2
∥(cP ⊗ In)∥ ∥ε(t)∥ . (11)

According to the triggering condition (8), one has

∥ε(t)∥ ⩽

√√√√ N∑
i=1

βi exp(−
λ

2
t),

then Eq. (11) is given by

Ẇ (t) ⩽ −lW (t) +

√
2

2
∥(cP ⊗ In)∥

√√√√ N∑
i=1

βi exp(−
λ

2
t).

By Lemma 1, it can be obtained that

W (t) ⩽ (W (0) +

√
2 ∥(cP ⊗ In)∥

√
N∑
i=1

βi∣∣l − λ
2

∣∣ )·

exp(−min{λ
2
, l}t).

If lim
t→+∞

W (t) = 0, then the error system (10) of the
leader-following networks (1) and (2) is stable at the origin,
i.e., the leader-following networks (1) and (2) can finally
synchronize.

To ensure the feasibility of the triggering mechanism, it is
necessary to prove that there is no Zeno phenomenon (event-
triggering happen infinitely within a finite time). The theorem
about the Zeno phenomenon is given in Theorem 3.2.

Theorem 3.2: According to the control protocol (4) and
event-triggering conditions (8), there is no Zeno phenomenon
for all followers within a finite time.

Proof: Assume that the ith follower experiences Zeno
phenomenon at time t = T0, i.e. lim

k→+∞
tik = T0. From the

properties of the limit, it can be inferred that there must be
N(ε0) > 0 and tik ∈ (T0 − ε0, T0 + ε0) for any ε0 > 0 when
k ⩾ N(ε0). Hence, one has

tiN(ε0)+1 − tiN(ε0)
< 2ε0, (12)
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and

∥ei(t)∥ ⩽ ∥e(t)∥ ⩽
√
2W (t)

⩽
√
2W (0) + 4 ∥(cP ⊗ In)∥

√√√√ N∑
i=1

βi

/
|2l − λ|.

For simplicity, one lets

M0 =
√
2W (0) + 4 ∥(cP ⊗ In)∥

√√√√ N∑
i=1

βi

/
|2l − λ|.

As ∥εi(t)∥ is continuous and differentiable when t ∈ [tik,
tik+1), and its Dini derivative satisfies

D+ ∥ εi(t) ∥⩽∥ ε̇i ∥
⩽∥ f(t,xi(t))− f(t, x̂i(t))+

c
N∑
j=1

aij(xj(t)− xi(t)) + bi(x0(t)− xi(t))−

c
N∑
j=1

aij(xj(t)− x̂j(t)) ∥

(13)

⩽ r1 ∥εi(t)∥+ ∥qi(t)∥+ c ∥
N∑
j=1

aijεj(t) ∥

⩽ r1βi + (c+ c |Ni|+ bi) ∥e(t)∥+ c(

N∑
j=1

aijβj)

⩽ r1βi + (c+ c |Ni|+ bi)M0 + c(
N∑
j=1

aijβj).

If one lets M = r1βi+(c+c |Ni|+bi)M0+c(
N∑
j=1

aijβj),

based on the triggering condition (8), then it can be obtained
at the moment ti−k ,∥∥εi(ti−k )

∥∥ ⩾
√
βi exp(−

λ

2
ti−k ). (14)

According to Eqs. (III) and (14), one has

tiN(ε0)+1 − tiN(ε0)
⩾

1

M

√
βi exp(−

λ

2
tiN(ε0)+1).

If ε0 > 0 is a solution to the following equation

1

M

√
βie

−λ
2 T0 = 2ε0 exp(

λ

2
ε0),

then one has

tiN(ε0)+1 − tiN(ε0)
⩾

1

M

√
βi exp(−

λ

2
(T0 + ε0)) = 2ε0,

it contradicts the condition (12), so all followers do not
exhibit Zeno phenomenon within a finite time.

IV. NUMERICAL EXAMPLES

Two examples of gyroscope systems are simulated to
verify the effectiveness of the new ETC. Based on Matlab
R2020b, the numerical simulation is given by the fourth-
order Runge-Kutta method, and the step size is h = 0.001.

Example 4.1: The dynamic equation of gyroscope system

is given by [25]

ẋ1 =− x2x3 − 0.5(1 + 6.5 cos t)x2 + 0.4x3−
0.002(x1 + x3

1),

ẋ2 = x1x3 − 0.4x3 + 0.5(1 + 6.5 cos t)x1−
0.002(x2 + x3

2),

ẋ3 =− 0.2x1 + 0.2x2 − 0.2x3−
0.001(x3 + x2

3) + 1.625 sin t.

(15)

A leader-following consensus protocol is designed for a
network topology consisting of one leader and five followers,
and the communication diagram is given in Fig. 1.

0

1 2

3

5

4

Fig. 1. The communication diagram of leader-following network.

The matrices L and B are given by

L =


0 0 0 0 0
−1 1 0 0 0
0 0 0 0 0
0 0 −1 1 0
0 0 −1 0 1

 ,B = diag{5, 0, 5, 0, 0},

the coupling strength c = 5, positive scalar l = 1. The initial
conditions are x0(0) = (−0.5, 1,−0.01)T for the leader and
(x1(0), x2(0), · · · , x5(0))

T = (−0.2,−1, 1.5, 3, 2.1,−2,
0.5, −0.3,−0.01,−0.6,−0.4, −0.25, −0.2, 0.25, 1)T for the
followers.

According to reference [26], r = 0.2 can be taken
within the attractor range of (15), it is easy to verify
that it satisfies Assumption 2.1, and Theorem 3.1 holds if
gi(t) = exp(−0.5t). According to the control protocol (4),
the event-triggering time of the followers is shown in Fig.
2. Based on the control protocol (4), (6) and (7) [22], [23],
the comparison of errors ∥e(t)∥ and the number of event-
triggering are shown in Fig. 3 and Table I, respectively.

0 5 10 15 20

0

2.5

5

7.5

10

0 5 10 15 20

0

2.5

5

Fig. 2. The event-triggering of followers 1 and 3 by control protocol (4).
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Fig. 3. The errors ∥e(t)∥ under different control protocols.

In Fig. 3, the errors under the control protocol (4) is
basically equivalent to the errors in references [22] and
[23], so the control protocol (4) ensures the system control
performance. According to Fig. 2 and Table I, only the 1th
and 3th followers exist event-triggering control, while the
other followers do not use event-triggering under the control
protocol (4). Because the 2th, 4th and 5th followers do not
need to predict their own states in the control protocol (4),
so it can save computational resource to some extent. In
addition, the control protocol (4) has a greater advantage in
reducing the number of event-triggering compared to other
control protocols, and its ability to reduce communication
pressure is very significant, which has important application
in large-scale networks.

In Table II, the costs of consistency control for leader-
following network by different control protocols are given
based on Example 4.1. Obviously, the costs of five followers
are relatively low compared to other control methods, and
the total cost is only 20540.

Note 4.1: In order to show the effects of different ETC
methods, the triggering conditions of references [22] and [23]
are the same, and the initial conditions are also the same.

Note 4.2: Due to the absence of state information trans-
mission to other followers, the 4th and 5th followers do not
use ETC. However, they receive state information updates
from the 3th follower through continuous communication.
So, the continuous state feedback control may lead to in-
creased control costs, which are influenced by the initial
relative positions between agents and the number of active
communication links among intelligent agents in the net-
work.

TABLE I
THE NUMBER OF EVENT-TRIGGERING FOR FIVE FOLLOWERS UNDER

DIFFERENT CONTROL PROTOCOLS

Follower i 1 2 3 4 5 Total

Proposed control
protocol (4) 5 0 2 0 0 7

Control
protocol (6) 36 37 51 51 52 227

Control
protocol (7) 5 57 5 46 49 163

TABLE II
THE COST OF CONSISTENCY CONTROL FOR LEADER-FOLLOWING

NETWORK BY DIFFERENT CONTROL PROTOCOLS

Follower i 1 2 3 4 5 Total

Proposed control
protocol (4) 3914 9077 2193 2644 2712 20540

Control
protocol (6) 14587 20770 14924 16182 16182 72645

Control
protocol (7) 5492 21329 2212 12646 14549 56228

0

1

23

54 8

76

Fig. 4. The communication diagram of leader-following network.

Example 4.2: The gyroscope system in Eq. (15) is still
taken as the dynamical system of an isolated node, a leader-
following network with one leader and eight followers is
given in Fig. 2.

The matrices L and B are given by

L =



0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 0 1 0 0 0 −1
−1 0 0 0 1 0 0 0
−1 −1 0 0 0 2 0 0
−1 0 0 0 −1 −1 3 0
−1 −1 −1 −1 0 0 0 4


,

B = diag{10, 10, 0, 0, 0, 0, 0, 10},

the coupling strength c = 5, and positive scalar l = 1. In the
leader-following network model, the initial conditions are de-
fined as x0(0) = (−0.5, 1,−0.01)

T, x(0) = (−0.2,−1, 1.5,
3, 2.1,−2, 0.5,−0.3,−0.01,−0.6,−0.4,−0.25,−0.2, 0.25,
1,−0.5,−1, 2, 1.5,−1.5, 1.1,−2, 1.3, 1)T.

Similarly, assuming that r = 0.2 and Assumption 2.1
is satisfied, then Theorem 3.1 holds when the triggering
condition gi(t) = exp(−0.5t). The event-triggering of the
followers of the leader-following network under the control
protocol (4) is shown in Figs. 5-7. The comparisons of errors
∥e(t)∥ and the number of event-triggering for three different
ETC protocols are shown in Fig. 8 and Table III, respectively.

In Fig. 8, the error ∥e(t)∥ under the control protocol (4)
is not significantly different from the errors in references
[22] and [23], so the control protocol (4) has a good control
effectiveness. In Fig. 7 and Table III, there is no event-
triggering for the 7th follower under the control protocol
(4), because the 7th follower does not need to predict its
own state, so it reduces the cost of network communication.
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0

1

2

0 5 10 15 20

0
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4

0 5 10 15 20

0

2

4

Fig. 5. Event-triggering of followers 1, 2 and 3 by control protocol (4).

0 5 10 15 20

0

2

4

6

0 5 10 15 20

0

2

4

6

Fig. 6. Event-triggering of followers 4 and 5 by control protocol (4).

TABLE III
THE NUMBER OF EVENT-TRIGGERING FOR EIGHT FOLLOWERS UNDER

DIFFERENT CONTROL PROTOCOLS

Follower i 1 2 3 4 5 6 7 8 Total

Proposed
control

protocol (4)
4 11 11 8 4 8 0 8 54

Control
protocol (6) 99 135 42 43 39 105 127 260 850

Control
protocol (7) 4 9 43 41 23 80 119 74 393

0 5 10 15 20

0

2

4

6

0 5 10 15 20

0

2

4

6

Fig. 7. Event-triggering of followers 6 and 8 by control protocol (4).

Fig. 8. The errors ∥e(t)∥ under different control protocols.

TABLE IV
THE COST OF CONSISTENCY CONTROL FOR LEADER-FOLLOWING

NETWORK BY DIFFERENT CONTROL PROTOCOLS

Follower i 1 2 3 4 5 6 7 8 Total

Proposed
control

protocol (4)
4231 8184 5643 3052 3499 6967 6333 6358 44267

Control
protocol (6) 31668 42344 17860 18363 18558 37390 39611 70784 276578

Control
protocol (7) 4231 14231 17411 14004 11283 28356 37803 35131 152295

In Table IV, the control cost of each follower under the
control protocol (4) is lower than the control protocols (6)
and (7). Due to the complexity of the topology network in
Example 4.2, most followers not only communicate with the
leader but also with other followers, which increases the cost
of the controllers to some extent.

Note 4.3: The 7th follower operates without ETC, as it
does not broadcast its state to other agents in the network.
Instead, it employs a simplified feedback controller to main-
tain the consistency by the state information received from
other followers, and the corresponding control cost is given
in Table IV.

V. CONCLUSIONS

A new ETC protocol is proposed for leader-following
network, and it significantly reduces the cost of communica-
tion among multi-agent systems and the resource consump-
tion of network synchronization. A sufficient matrix-form
criterion is established to ensure leader-following network
synchronization, and there is no Zeno behavior under the
proposed ETC protocol. The synchronization of the leader-
following networks with 5 and 8 followers is shown by
the examples of gyroscope systems. Compared to existing
protocols that prioritize tracking error minimization and
triggering frequency reduction, the proposed control protocol
eliminates continuous state monitoring of neighboring agents
while simultaneously reducing event-triggering frequencies
and network communication costs. Moreover, the proposed
ETC protocol lowers computational costs without compro-
mising consensus in leader-following networks and extends
applicability to consensus control problems.
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