The Dynamics and Applications of an Optimal Iterative Method

Mani Sandeep Kumar Mylapalli, *Member, IAENG*, Navya Kakarlapudi, Virath Singh, Chaganti Pragathi, Perumali Sundarayya

Abstract— In this paper, we develop a sixteenth-order iterative scheme to compute the zero of the nonlinear equation in four steps, using five functional evaluations, and achieve optimality with an efficiency index of 1.741. We also discuss the theoretical convergence analysis of the approach and compare the proposed technique with recent methods of equal order regarding successive errors, number of iterations, and functional evaluations by taking several algebraical, and transcendental test functions. The developed method is put into practice in applications in the fields of medical sciences, physics, and chemical engineering. Various approaches are analyzed using basins of attraction to show taking polynomials as test functions in a complex plane.

Index Terms— Nonlinear Equation, Optimal order, Efficiency Index, Order of Convergence, Iterative Method, Functional Evaluations, Basins of Attraction.

I. INTRODUCTION

SOLVING nonlinear equations are among the most critical challenges in scientific and technical applications. Nonlinear equations can be used to solve several optimization challenges in various applications. Computing their roots in a finite number of arithmetic operations is generally tricky. A subfield of computer science and mathematics known as numerical analysis creates evaluates and applies algorithms to resolve numerical issues. This work is about iterative approaches for finding a simple root x, i.e., h(x)=0. The most well-known and frequently applied methodology for resolving nonlinear equations is Newton Rahson's method (NR) [2] and its efficiency index is $\sqrt{2} = 1.414$. It is given by,

$$x_{n+1} = x_n - \frac{h(x_n)}{h'(x_n)}, \qquad n = 0, 1, 2, \dots$$
 (1)

This employs a one-step iterative procedure. Newton's method has a quadratic order of convergence to get a simple zero.

Manuscript received July 23, 2024, revised April 4, 2025.

Mani Sandeep Kumar Mylapalli is an Assistant Professor of Mathematics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530040, INDIA (corresponding author phone: +91 6303106197; e-mail: mmylapal@gitam.edu).

Navya Kakarlapudi is an Assistant Professor of Mathematics, Centurion University of Technology and Management, Vizianagaram 535003, INDIA (e-mail: kakarlapudinavya@gmail.com).

Virath Sewnath Singh is a Senior Lecturer of Mathematics, University of KwaZulu Natal, Durban 4000, South Africa (e-mail: singhv@ukzn.ac.za).

Pragathi Chaganti is an Associate Professor of Mathematics, Gitam Institute of Science, GITAM (Deemed to be University), Visakhapatnam 530040, INDIA (e-mail: pchagant@gitam.edu).

Perumali Sundarayya is an Associate Professor of Mathematics, Gitam Institute of Science, GITAM (Deemed to be University), Visakhapatnam 530040, INDIA (e-mail: sperumal@gitam.edu). This work aims to build an effective derivative-free technique for solving nonlinear equations. We developed a new optimal iterative approach to bolster the hypothesis. Based on N functional assessments, Kung-Traub hypothesized that multipoint iteration techniques may attain an optimal convergence order 2N-1.

This study uses the weight function methodology to build a sixteenth-order iterative method. To improve the iterative method presented, we consider the finite difference approximation and use the approximants of the higher derivatives to avoid computing the high-order derivatives of the function. To evaluate the performance of the new strategy against the current equal-order methods considering a few test functions and real-world application problems. We also studied the dynamic performance of our developed method. The basins of attraction are also shown and contrasted with the other methods of the same order at the study's conclusion.

Some of the existing methods developed recently for solving nonlinear equations are given below:

In the year 2020, an optimal sixteenth-order iterative method (DM) is presented by Dejan Cebic [1] with five functional evaluations and is given as

$$y_{n} = x_{n} - \frac{h(x_{n})}{h'(x_{n})}$$

$$z_{n} = y_{n} - \left(3 - \frac{2h[y_{n}, x_{n}]}{h'(x_{n})}\right) \frac{h(y_{n})}{h'(x_{n})}$$

$$w_{n} = z_{n} - \frac{h(z_{n})}{h'(x_{n})} \frac{h'(x_{n}) - h[y_{n}, x_{n}] + h[z_{n}, y_{n}]}{2h[z_{n}, y_{n}] - h[z_{n}, x_{n}]}$$

$$x_{n+1} = w_{n} - \frac{h(w_{n})(2h[z_{n}, x_{n}] - 2h[w_{n}, x_{n}] + h[w_{n}, z_{n}])}{h'(x_{n})(h[w_{n}, y_{n}] - h[z_{n}, y_{n}]) + h^{2}[z_{n}, x_{n}] - h^{2}[w_{n}, x_{n}] + h^{2}[w_{n}, z_{n}]}$$
(2)

In the year 2017, A new sixteenth-order optimal iterative method (RM) developed by Rafiullah et al. [4] with six functional evaluations is as follows:

$$y_{n} = x_{n} - \frac{h(x_{n})}{h'(x_{n})}$$

$$z_{n} = y_{n} - \frac{h(y_{n})}{h'(y_{n})} - \frac{(h(y_{n}))^{2}(h'(x_{n}) - h'(y_{n}))}{2(h(x_{n}) - h(y_{n}))(h'(x_{n}))^{2}}$$

$$w_{n} = z_{n} - \frac{h(z_{n})((x_{n} - y_{n})(x_{n} - z_{n})(y_{n} - z_{n}))}{(-h(z_{n})(x_{n} - y_{n})(x_{n} - 2z_{n} + y_{n}) + h(y_{n})(x_{n} - z_{n})^{2} - h(x_{n})(y_{n} - z_{n})^{2})}$$

$$x_{n+1} = w_{n} - \frac{h(w_{n})}{h'(w_{n})}$$
(3)

where

$$h'(w_n) = \frac{h(w_n)}{w_n - x_n} + \frac{h(w_n)}{w_n - y_n} + \frac{h(w_n)}{w_n - z_n} + \frac{h(x_n)(w_n - y_n)(w_n - z_n)}{(x_n - w_n)(x_n - y_n)(x_n - z_n)} + \frac{h(y_n)(w_n - x_n)(w_n - z_n)}{(w_n - y_n)(x_n - y_n)(y_n - z_n)} + \frac{h(z_n)(x_n - w_n)(y_n - w_n)}{(z_n - w_n)(z_n - x_n)(z_n - y_n)}$$

In the year 2019, Young Hee Geum et al. [9] proposed a new method (YM) with optimal sixteenth-order convergence using five functional evolutions as follows:

$$y_{n} = x_{n} - \frac{h(x_{n})}{h'(x_{n})}$$

$$z_{n} = y_{n} - \frac{h(y_{n})}{h'(x_{n})}G(s), s = \frac{h(y_{n})}{h(x_{n})}$$

$$w_{n} = z_{n} - \frac{h(z_{n})}{h'(x_{n})}H(s,u), u = \frac{h(z_{n})}{h(y_{n})}$$

$$x_{n+1} = w_{n} - \frac{h(w_{n})}{h'(x_{n})}I(s,u,v), v = \frac{h(w_{n})}{h(z_{n})}$$
(4)

where

$$G(s) = \frac{1}{1-2s}, H(s,u) = G(s)\frac{(s-1)^{2}}{1-2s-u+2s^{2}u}$$
$$I(s,u,v) = H(s,u)\left(\frac{1-s-s^{2}-2s^{3}+u(s^{2}-s-1)+2su^{2}}{1-s-s^{2}-2s^{3}-u(1+s+s^{3}+s^{4})-v(1-s-s^{2}-2s^{3})}\right)$$

...2

In the year 2018, a four-step optimal sixteenth-order iterative method (JM) was presented by Janakraj Sharma et al. [3]

$$y_{n} = x_{n} - \frac{h(x_{n})}{h'(x_{n})}$$

$$z_{n} = y_{n} - \frac{h'(x_{n})h(y_{n})}{(h[y_{n},x_{n}])^{2}}$$

$$w_{n} = z_{n} - \frac{1}{u_{1} - u_{2} + u_{3}} \frac{h'(x_{n})h(z_{n})}{(h[z_{n},x_{n}])^{2}}$$

$$x_{n+1} = w_{n} - \frac{1}{v_{1} - v_{2} + v_{3} - v_{4}} \frac{h'(x_{n})h(w_{n})}{(h[w_{n},x_{n}])^{2}}$$
(5)

where

$$u_{1} = (y_{n} - z_{n})/(y_{n} - x_{n})$$

$$u_{2} = h'(x_{n})(z_{n} - x_{n})^{2}/(y_{n} - z_{n})(y_{n} - x_{n})h[y_{n}, x_{n}]$$

$$u_{3} = h'(x_{n})(z_{n} - x_{n})/(y_{n} - z_{n})(h[z_{n}, x_{n}])$$

$$v_{1} = (y_{n} - w_{n})(z_{n} - w_{n})/(y_{n} - x_{n})(z_{n} - x_{n})$$

$$v_{2} = h'(x_{n})(w_{n} - x_{n})^{2}(w_{n} - z_{n})/(y_{n} - x_{n})(y_{n} - z_{n})(y_{n} - w_{n})h[y_{n}, x_{n}]$$

$$v_{3} = h'(x_{n})(w_{n} - x_{n})^{2}(y_{n} - w_{n})/(z_{n} - x_{n})(z_{n} - y_{n})(z_{n} - w_{n})(h[z_{n}, x_{n}])$$

$$v_{4} = h'(x_{n})(w_{n} - x_{n})(2w_{n} - y_{n} - z_{n})/(y_{n} - w_{n})(z_{n} - w_{n})(h[w_{n}, x_{n}])$$

The article's remaining section is organized as follows: Section II discusses the approach's development. An analysis of the proposed scheme's convergence is presented in Section III. Section IV assesses the suggested approach on several test functions, and the outcomes are compared with those of other existing same-order approaches in the Numerical Examples section. A few notions from chemical engineering, medical science, and physics have also been tested in this way. Through complex dynamics, Section V examines the stability of the established techniques. The rational function is reviewed using these methodologies on various nonlinear complex polynomial functions, and their basins of attraction are illustrated. The study conclusions are finally covered in Section VI.

II. DEVELOPMENT OF METHOD

This section covers the study's primary contribution. A novel iterative algorithm of an optimal sixteenth order based on a finite interpolation approach will be provided.

Consider the optimal eighth-order convergent method [6]

$$y_{n} = x_{n} - \frac{h(x_{n})}{h'(x_{n})}$$

$$z_{n} = y_{n} - H(\tau) \left[\frac{2h(y_{n})}{h'(y_{n})} \cdot \frac{1}{1 + \sqrt{1 - 2\rho_{n}}} \right]$$

$$w_{n} = z_{n} - \frac{h(z_{n})}{h'(z_{n})}$$
(6)

where

$$\rho_n = \frac{h'(x_n) - h'(y_n)}{h'(x_n)}, \ h'(y_n) = 2h[y_n, x_n] - h'(x_n),$$
$$H(\tau) = 1 - \tau \left[\because \tau = \frac{h(y_n)}{h(x_n)} \right]$$

and

$$h'(z_n) = h'(x_n) + (h[x_n, y_n, z_n] + h[x_n, x_n, y_n])(z_n - x_n) + 2(h[x_n, y_n, z_n] + h[x_n, x_n, y_n])(z_n - y_n)$$

Consider Newton's method in the fourth step of (6) to get the optimality and better efficiency. Thus, we have

$$x_{n+1} = w_n - \frac{h(w_n)}{h'(w_n)}$$
(7)

For reducing functional values, we consider the interpolation approximation of $h'(w_n)$ as follows:

$$h'(w_{n}) = \begin{cases} h[w_{n}, z_{n}] + (w_{n} - z_{n})h[w_{n}, z_{n}, y_{n}] + \\ (w_{n} - z_{n})(w_{n} - y_{n})h[w_{n}, z_{n}, y_{n}, x_{n}] \end{cases}$$
(8)

Thus, we developed the new four-step algorithm, as shown below.

Algorithm: The iterative scheme is

1.
$$y_n = x_n - \frac{h(x_n)}{h'(x_n)}$$

2. $z_n = y_n - H(\tau) \left[\frac{2h(y_n)}{h'(y_n)} \cdot \frac{1}{1 + \sqrt{1 - 2\rho_n}} \right]$
where, $\rho_n = \frac{h'(x_n) - h'(y_n)}{h'(x_n)}, h'(y_n) = 2h \left[y_n, x_n \right] - h'(x_n),$
 $H(\tau) = 1 - \tau \text{ and } \tau = \frac{h(y_n)}{h(x_n)}$

Volume 55, Issue 6, June 2025, Pages 1519-1530

3.
$$w_n = z_n - \frac{h(z_n)}{h'(z_n)}$$

where, $h'(z_n) = h'(x_n) + (h[x_n, y_n, z_n] + h[x_n, x_n, y_n])(z_n - x_n)$
 $+ 2(h[x_n, y_n, z_n] + h[x_n, x_n, y_n])(z_n - y_n)$
 $h(w_n)$

4.
$$x_{n+1} = w_n - \frac{(w_n)}{h'(w_n)}$$
 (9)
where, $h'(w_n) = h[w_n, z_n] + (w_n - z_n)h[w_n, z_n, y_n] + (w_n - z_n)(w_n - y_n)h[w_n, z_n, y_n, x_n]$

Consequently, the sixteenth-order technique (9) with five functional assessments is the best one.

III. CONVERGENCE CRITERIA

Theorem [5, 6]: For an open interval I, let $x_0 \in I$ be the simple root of a suitably differentiable function. If x_0 is the neighborhood of x^* . Then, the algorithm (9) has an optimal sixteenth-order convergence with an error equation,

$$\varepsilon_{n+1} = \left(c_2^7 c_3^4 + c_2^5 c_3^2 c_4^2 - 2c_2^6 c_3^3 c_4\right) e^{16} + O\left(e^{17}\right).$$

Proof: Let the simple root of h(x) = 0 be x^* and $x^* = x_n + \varepsilon_n$. Thus,

 $h(x^*) = 0$

Using Taylor's series expansion, expand $h(x_n)$ about x^* , we obtain

$$h(x_n) = h'(x^*) \left(\varepsilon_n + c_2 \varepsilon_n^2 + c_3 \varepsilon_n^3 + c_4 \varepsilon_n^4 + \dots\right) \quad (10)$$

$$h'(x_n) = h'(x^*) \left(1 + 2c_2\varepsilon_n + 3c_3\varepsilon_n^2 + 4c_4\varepsilon_n^3 + \dots \right) \quad (11)$$

Dividing (10) by (11), we get

$$\frac{h(x_n)}{h'(x_n)} = \varepsilon_n - c_2 \varepsilon_n^2 - \left(2c_3 - 2c_2^2\right) \varepsilon_n^3 - \left(3c_4 - 7c_2 c_3 + 4c_2^3\right) \varepsilon_n^4 + \dots$$
(12)

Replacing (12) in the first step of (9), we get

$$y_n = x^* + Y \tag{13}$$

where

$$Y = c_2 \varepsilon_n^2 + \left(2c_3 - 2c_2^2\right) \varepsilon_n^3 + \left(3c_4 - 7c_2c_3 + 4c_2^3\right) \varepsilon_n^4 + \dots$$

Again expanding $h(y_n)$ about x^* through the Taylor series, we obtain

$$h(y_n) = h'(x^*) \Big(c_2 \varepsilon_n^2 + (2c_3 - 2c_2^2) \varepsilon_n^3 + (3c_4 - 7c_2 c_3 + 5c_2^3) \varepsilon_n^4 + \dots \Big)$$
(14)

$$h'(y_n) = h'(x^*) \left(1 + \left(2c_2^2 - c_3 \right) \varepsilon_n^2 + \left(6c_2c_3 - 4c_2^3 - 2c_4 \right) \varepsilon_n^3 + \dots \right)$$
(15)

Dividing (14) by (15), we get

$$\frac{h(y_n)}{h'(y_n)} = c_2 \varepsilon_n^2 + \left(2c_3 - 2c_2^2\right) \varepsilon_n^3 + \left(3c_2^3 - 6c_2c_3 + 3c_4\right) \varepsilon_n^4 + \dots$$
(16)

From (11) and (15), we obtain

$$\rho_n = 2c_2 \varepsilon_n + \left(4c_3 - 6c_2^2\right)\varepsilon_n^2 + \left(6c_4 + 16c_2^3 - 20c_2c_3\right)\varepsilon_n^3 + \dots$$
(17)

and
$$H(\tau) = 1 - \frac{h(y_n)}{h(x_n)} = \begin{pmatrix} 1 - c_2 \varepsilon_n - (2c_3 - 3c_2^2) \varepsilon_n^2 - \\ (3c_4 - 10c_2 c_3 + 8c_2^3) \varepsilon_2^3 + \dots \end{pmatrix}$$
 (18)

From the second step of (9), we get

$$z_n = x^* + Z \tag{19}$$
 where

$$Z = (-c_2c_3)\varepsilon_n^4 + (c_2c_4 - c_3^2 + c_2^4)\varepsilon_n^5 + (c_2c_5 + 6c_2^2c_4 + 4c_2c_3^2 + 5c_2^3c_3 - c_2^5 - c_3c_4 - 13c_2c_3c_4)\varepsilon_n^6 + \dots$$

Expanding $h(z_n)$ about x^* through the Taylor expansion as follows:

$$h(z_n) = h'(x^*)(Z + c_2 Z^2 + c_3 Z^3 + ...)$$
(20)

and

$$h'(z_n) = h'(x^*) \begin{pmatrix} 1 + 2c_2 Z + 3c_3 Z^2 - c_4 Z \varepsilon_n^2 + \\ 4c_4 Y^2 Z + c_4 Y \varepsilon_n^2 + 2c_4 Z Y \varepsilon_n + \dots \end{pmatrix}$$
(21)

Substituting (19), (20), and (21) are in the third step of (9), we get

$$w_n = x^* + W \tag{22}$$

where $W = \left(c_2^3 c_3^2 - c_2^2 c_3 c_4\right) \varepsilon_n^8 + o\left(\varepsilon_n^9\right)$

Expanding $h(w_n)$ about x^* by using the Taylor series, we get

$$h(w_n) = h'(x^*) \Big(W + c_2 W^2 + c_3 W^3 + \dots \Big)$$
(23)

On simplification

$$h[w_{n}, z_{n}] = \frac{h(w_{n}) - h(z_{n})}{w_{n} - z_{n}} = 1 + c_{2}(W + Z) +$$

$$c_{3}(W^{2} + WZ + Z^{2}) + c_{4}(W^{3} + W^{2}Z + WZ^{2} + Z^{3}) + \dots$$

$$h[z_{n}, y_{n}] = \frac{h(z_{n}) - h(y_{n})}{z_{n} - y_{n}} = 1 + c_{2}(Y + Z)$$

$$+c_{3}(Y^{2} + YZ + Z^{2}) + c_{4}(Y^{3} + Y^{2}Z + YZ^{2} + Z^{3}) + \dots$$

$$h[y_{n}, x_{n}] = \frac{h(y_{n}) - h(x_{n})}{y_{n} - x_{n}} = 1 + c_{2}(Y + \varepsilon_{n})$$

$$+c_{3}(Y^{2} + Y\varepsilon_{n} + \varepsilon_{n}^{2}) + c_{4}(Y^{3} + Y^{2}\varepsilon_{n} + Y\varepsilon_{n}^{2} + \varepsilon_{n}^{3}) + \dots$$
(26)

From (24) and (25)

$$h[w_{n}, z_{n}, y_{n}] = \frac{h[w_{n}, z_{n}] - h[z_{n}, y_{n}]}{w_{n} - y_{n}}$$

$$= c_{2} + c_{3}(W + Z + Y) + c_{4}\begin{pmatrix}W^{2} + Z^{2} + Y^{2} \\ +WZ + ZY + YW\end{pmatrix} + \dots$$
and
$$(w_{n} - z_{n})h[w_{n}, z_{n}, y_{n}] = \begin{pmatrix}c_{2}W - c_{2}Z - c_{3}YZ \\ -c_{3}Z^{2} - c_{4}Y^{2}Z + \dots\end{pmatrix}$$
(28)

Similarly, from (25) and (26)

$$h[z_n, y_n, x_n] = \frac{h[z_n, y_n] - h[y_n, x_n]}{z_n - x_n}$$

$$= c_2 + c_3 (Z + Y + \varepsilon_n) + c_4 \begin{pmatrix} Z^2 + Y^2 + \varepsilon_n^2 + \\ Z\varepsilon_n + Y\varepsilon_n + ZY \end{pmatrix} + \dots$$
(29)

Finding the dividing difference of (27) and (29), we get

Volume 55, Issue 6, June 2025, Pages 1519-1530

$$h[w_{n}, z_{n}, y_{n}, x_{n}] = \frac{h[w_{n}, z_{n}, y_{n}] - h[z_{n}, y_{n}, x_{n}]}{w_{n} - x_{n}}$$
(30)
= $c_{3} + c_{4}\varepsilon_{n} + c_{4}Y + c_{4}Z + c_{4}W + ...$

and

$$(w_n - z_n)(w_n - y_n)h[w_n, z_n, y_n, x_n] = \begin{pmatrix} c_3YZ + c_4YZ\varepsilon_n \\ +c_4Y^2Z + \dots \end{pmatrix} (31)$$

Substituting the above terms in $h'(w_n)$ of (9), we get

$$h'(w_n) = h'(x^*) (1 + 2c_2 W + c_4 Y Z \varepsilon_n + ...)$$
(32)

Substituting (22), (23), and (32), in the fourth step of (9) $\begin{pmatrix} 7 & 4 & 5 & 2 & 2 & 6 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ 16 (17)

$$\varepsilon_{n+1} = \left(c_2'c_3^4 + c_2^5c_3^2c_4^2 - 2c_2^6c_3^3c_4\right)e^{16} + O\left(e^{17}\right)$$

Therefore, the proposed algorithm's convergence order is sixteen and denoted with (KM). Hence, the efficiency index is $E.I = 16^{1/5} = 1.7411$.

IV. NUMERICAL COMPUTATIONS

This section is entirely devoted to evaluating the applicability and reliability of the suggested optimal sixteenth-order iterative method. For this reason, we take into four standard test problems and six real-world application-oriented problems from the fields of physics, chemical engineering, and medicine, such as the depth of embedment, vertical stress, the volume of van der Waals, stirred tank reactor, blood rheology, the law of blood flow problem. To compare our suggested approach (KM) to existing iterative methods, namely, DM, RM, YM, and SM, regarding several iterations, associated subsequent errors, the number of functional assessments, and computational time. All computations are conducted using mp math-PYTHON with the halting condition $|f(x_n)| < \varepsilon$, where $\varepsilon = 10^{-199}$ tolerance and 690 decimal place accuracy. Table I shows an analogy of different algorithms; Table II shows the roots of the test functions; and Table III shows all (including test functions and application problems) of the numerical results and it includes starting estimates X_0 , the number of iterations (n), successive error values of each iteration, the number of function evaluations $|h(x_{n+1})|$ and

the computational time.

TABLE I COMPARISON OF EFFICIENCY INTEX

Methods	Р	Ν	E. I
DM	16	5	1.7411
RM	16	6	1.5874
YM	16	5	1.7411
SM	16	5	1.7411
KM	16	5	1.7411

Where P is the order of convergence, N is the number of functional evaluations per iteration and E.I is the efficiency- index.

TABLE II ROOTS OF THE TEST FUNCTIONS

Test Function	Root
$h_1(x) = \sin x - x^2 + 1$	1.4096240040
$h_2(x) = sin(2\cos x) - 1 - x^2 + e^{\sin x^3}$	-0.7848959876
$h_3(x) = \sin x + \cos x + x$	-0.4566247045
$h_4\left(x\right) = e^{\sin x} - x + 1$	2.6306641479

Some real-life applications:

In this section, we give some practical application problems from different fields, such as Physics, Chemical Engineering and Medicine, etc. and the results are discussed in Table III [$h_5(x) - h_{10}(x)$].

Application 1. ((Depth of Embedment Model, [6,7])

The embedment depth of a sheet-pile wall is determined using the following nonlinear equation:

$$h_5(x) = \frac{1}{4.62} \left(x^3 + 2.87x^2 - 10.28 \right) - x$$

The approximated root is 2.00211877895382.

Application 2. (The vertical stress, [7])

One of the primary stresses that finite surface structures experience is vertical stress, which is represented by

$$h_6(x) = \frac{x + CosxSinx}{\pi} - \frac{1}{4}$$

The root of $h_6(x) = 0$ is 0.4160444988100767043.

Application 3. (Volume from van der Waals equation, [7]) Van der Waals' equation of a non-ideal gas is given by

$$\left(\frac{p+an^2}{V^2}\right)(V-nb) = nRT$$

where n is the number of moles, V is the volume of the gas, T is the temperature in Kelvin, p is the pressure, and R is the gas constant, which is equal to 0.0820578 L-atm/mol-K. It is given by

$$h(V) = pV^{3} - n(RT + bp)V^{2} + n^{2}aV - n^{3}ab$$

Put V = x, by giving particular values to the parameters, the above equation is the nonlinear polynomial function.

$$h_7(x) = 40x^3 - 95.26535116x^2 + 35.28x - 5.6998368$$

The root of the equation is $x^* \approx 1.9707842194070294$.

Application 4. (Stirred Tank Reactor, [6])

Consider a stirred-tank reactor. The reactor receives materials at rates of β and $q - \beta$, respectively. The equipment improves mixed reactions, as shown below:

$$H_1 + H_2 \rightarrow H_3; H_3 + H_2 \rightarrow H_4;$$

$$H_4 + H_2 \rightarrow H_5; H_4 + H_2 \rightarrow H_6$$

During their preliminary analysis of this intricate control system, Douglas found the nonlinear polynomial equation:

$$\frac{2.98 \times (x+2.25)}{(x+1.45) \times (x+2.85)^2 \times (x+4.35)} = \frac{1}{G_c}$$

By taking $G_{\mathcal{C}} = 0$, we have

$$h_8(x) = x^4 + 11.50x^3 + 47.49x^2 + 83.06325x - 51.23266875 = 0$$

The real root of the equation is -1.45.

Application 5. (Blood rheology model, [6, 8])

In medicine, the study of blood flow and structure is referred to as blood rheology. We take into consideration the following nonlinear equation for analyzing the plug flow of a Caisson fluid flow:

$$h_9(x) = \frac{1}{441}x^8 - \frac{8}{63}x^5 - 0.0571428571x^4 + \frac{16}{9}x^2 - 3.624489796x + 0.3$$

Where x is the plug flow of Caisson fluid, and the approximated root is 0.0864335580522467.

Application 6. (Law of Blood Flow, [8])

This legislation was proposed in 1840 by French physician Jean Poiseuille. Where v is the blood viscosity, R is the radius, l is the length, P is the pressure and h is a function of x with the domain [0, R], blood flows via the vein or artery. This law is stated as the nonlinear model shown below by

$$h_{10}\left(x\right) = \frac{P}{\nu l} \left(R^2 - x^2\right)$$

Where, P = 4000, R = 0.008, v = 0.027, and l = 2 are taken for the simulations.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TABLE III COMPARISON OF EFFICIENCY								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Method	n	$ x_1 - x_0 $	$ x_2 - x_1 $	$ x_3 - x_2 $	$ x_4 - x_3 $	$h(x_{n+1})$	Comp. Time	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	h1(x)	x_{θ}	1.1						
RM 4 0.309624 3.06E-10 1.01E-157 5.68E-315 1.51E-314 0.03014 YM 4 0.309624 7.72E-11 2.41E-166 1.36E-690 5.74E-690 0.030021 KM 3 0.309624 1.09E-16 1.34E-248 3.58E-248 0.022759 IN(x) x0 1.7 2.44E-243 0.008378 0.0008378 YM 3 0.290375 2.30E-14 9.58E-223 2.54E-222 0.008378 SM Divergent 2.44E-243 0.0008378 0.008378 SM 0.290375 2.30E-14 9.58E-223 2.54E-222 0.008378 SM 0.290376 3.58E-19 6.65E-286 1.76E-285 0.008129 b2(x) x0 -0.2 0.0257922 RM 27 7.166868 4.681753 2322198 1.84E+10 8.13E-487 0.0056854 M 0.1044895 <	DM	4	0.309623	2.51E-07	2.80E-107	5.19E-690	2.10E-689	0.030047	
YM 4 0.309624 7.72E-11 2.41E-166 1.36E-690 5.74E-690 0.030021 SM 3 0.309624 1.09E-16 1.34E-248 3.58E-248 0.022759 In(x) xe 1.7 3.58E-248 0.022759 DM 4 0.290375 1.28E-15 9.19E-244 2.44E-243 0.000819 SM 3 0.290375 1.28E-15 9.19E-244 2.44E-243 0.0008496 SM 3 0.290376 3.58E-19 2.44E-243 0.008496 SM 3 0.290376 3.58E-19 2.44E-243 0.008129 b2(x) xe -0.2 3.812636 1.09E-690 0.057922 DM 29 30501082 1525054 7625267 3812636 1.09E-690 0.028756 SM 5 1.301102 0.828709 0.112502 8.93E-16 7.51E-242 0.0228756	RM	4	0.309624	3.06E-10	1.01E-157	5.68E-315	1.51E-314	0.030144	
SM Divergent Divergent Divergent Divergent In(x) xv 1.7	YM	4	0.309624	7.72E-11	2.41E-166	1.36E-690	5.74E-690	0.030021	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SM		Divergent						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	KM	3	0.309624	1.09E-16	1.34E-248		3.58E-248	0.022759	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	h1(x)	x_{θ}	1.7						
RM 3 0.290375 1.28E-15 9.19E-244 2.44E-243 0.008378 SM Divergent 2.54E-222 0.008496 SM 3 0.290376 3.58E-19 6.65E-286 1.76E-285 0.008129 DM 29 30501082 1525054 7625267 3812636 1.09E-690 0.057922 RM 27 7.166868 46.81753 2322198 1.84E+10 8.13E-487 0.056854 YM 5 1.301102 0.828709 0.112502 8.93E-16 7.51E-242 0.028127 SM Divergent DM 4 0.184895 1.02E-08 2.66E-126 1.36E-691 1.09E-690 0.028556 SM Divergent	DM	4	0.290375 5.10E-12 2		2.29E-182	2.29E-182 4.18E-689		0.010013	
YM 3 0.290375 2.30E-14 9.58E-223 2.54E-222 0.008496 KM 3 0.290376 3.58E-19 6.65E-286 1.76E-285 0.008129 h2(x) xo 0.2 1.76E-285 0.008129 DM 29 30501082 1525054 7625267 3812636 1.09E-690 0.057922 RM 27 7.166868 46.81753 2332198 1.84E+10 8.13E-487 0.056854 SM Divergent 0.028127 SM Divergent DM 4 0.184895 1.21E-08 2.66E-126 1.36E-691 1.09E-690 0.028543 SM Divergent 7.53E-212 0.024888 B3(x) xo -2.9 DM 6 5.268071 1.587129 1.662635 0.425	RM	3	0.290375	1.28E-15	9.19E-244		2.44E-243	0.008378	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	YM	3	0.290375	2.30E-14	9.58E-223		2.54E-222	0.008496	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SM		Divergent						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	KM	3	0.290376	3.58E-19	6.65E-286		1.76E-285	0.008129	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h2(x)	x_{θ}	-0.2						
RM 27 7.166868 46.81753 2322198 1.84E+10 8.13E-487 0.056854 YM 5 1.301102 0.828709 0.112502 8.93E-16 7.51E-242 0.028127 KM 4 0.757895 0.003354 4.32E-36 4.54E-559 7.13E-558 0.027746 h2(x) x_0 -0.6 - - - - - - - 0.028556 DM 4 0.184895 1.22E-08 2.66E-126 1.36E-691 1.09E-690 0.028556 RM 4 0.184895 1.24E-11 5.16E-176 1.36E-691 1.09E-690 0.028543 SM Divergent - - 7.53E-212 0.024888 I3(x) x_0 -2.9 - - - - DM 6 5.268071 1.587129 1.662635 0.425068 4.70E-280 0.049482 RM 9 7.209406 12.39890 1.251174 6.342315 4.22E-280	DM	29	30501082	1525054	7625267	3812636	1.09E-690	0.057922	
YM 5 1.301102 0.828709 0.112502 8.93E-16 7.51E-242 0.028127 SM Divergent Divergent Divergent Divergent Divergent KM 4 0.757895 0.003354 4.32E-36 4.54E-559 7.13E-558 0.027746 DM 4 0.184895 1.61E-11 2.19E-174 3.35E-348 9.44E-348 0.028963 YM 4 0.184895 1.24E-11 5.16E-176 1.36E-691 1.09E-690 0.028543 SM Divergent Divergent Concept Concept Concept Concept Divergent Concept Concept	RM	27	7.166868	46.81753	2322198	1.84E+10	8.13E-487	0.056854	
SM Divergent KM 4 0.757895 0.003354 4.32E-36 4.54E-559 7.13E-558 0.027746 DM 4 0.184895 1.22E-08 2.66E-126 1.36E-691 1.09E-690 0.028556 RM 4 0.184895 1.61E-11 2.19E-174 3.35E-348 9.44E-348 0.028963 YM 4 0.184895 1.24E-11 5.16E-176 1.36E-691 1.09E-690 0.028543 SM Divergent KM 3 0.184896 2.34E-15 2.38E-213 7.53E-212 0.024888 h3(x) x_0 -2.9 7.53E-212 0.024888 RM 9 7.209406 12.39890 1.25117 6.842315 4.27E-280 0.052076 SM 5 4.274281 1.837365 0.006459 1.77E-45 1.09E-690 0.024755 DM 6 6.776853 7.009183 4.609346 0.166358 6.76E-361 0.024375 RM 5	YM	5	1.301102	0.828709	0.112502	8.93E-16	7.51E-242	0.028127	
KM 4 0.757895 0.003354 4.32E-36 4.54E-559 7.13E-558 0.027746 h2(x) x_0 -0.6	SM		Divergent						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	KM	4	0.757895	0.003354	4.32E-36	4.54E-559	7.13E-558	0.027746	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h2(x)	x_{0}	-0.6						
RM 4 0.184895 1.61E-11 2.19E-174 3.35E-348 9.44E-348 0.028963 YM 4 0.184895 1.24E-11 5.16E-176 1.36E-691 1.09E-690 0.028543 SM Divergent 7.53E-212 0.024888 h3(x) x_{θ} -2.9 DM 6 5.268071 1.587129 1.662635 0.425068 4.70E-280 0.049482 RM 9 7.209406 12.39890 1.251174 6.842315 4.22E-280 0.055217 YM 6 13.01157 11.52001 26.97380 0.001152 1.09E-690 0.052076 SM 5 4.274281 1.837365 0.006459 1.77E-45 1.09E-690 0.047585 KM 4 2.348731 0.094644 2.61E-27 1.42E-410 3.32E-410 0.024375 RM 5 11.67100 6.890387 0.237241 4.87E-22 8.34E-353 0.0201245 RM 5 7.409405 8.791936 0.151867 7.45E-22 1.54E	DM	4	0.184895	1.22E-08	2.66E-126	1.36E-691	1.09E-690	0.028556	
YM40.1848951.24E-115.16E-1761.36E-6911.09E-6900.028543SMDivergent7.53E-2120.024888h3(x) x_{θ} -2.97.53E-2120.024888DM65.2680711.5871291.6626350.4250684.70E-2800.049482RM97.20940612.398901.2511746.8423154.22E-2800.055217SM54.2742811.8373650.0064591.77E-451.09E-6900.047585KM42.3487310.0946442.61E-271.42E-4103.32E-4100.041489h3(x) x_{θ} -5DM66.7768537.0091834.6093460.1663586.76E-3610.024375RM511.671006.8903870.2372414.87E-228.34E-3530.020124YM52.9416151.6017591.03E-064.73E-1071.09E-6900.017536MDivergentKM44.5441880.0008123.51E-586.84E-6911.09E-6900.017536h4(x) x_{θ} 1.4DMDivergentKM57.4094058.7919360.1518677.45E-221.54E-3470.050035SM41.3443960.1137324.44E-251.05E-3992.57	RM	4	0.184895	1.61E-11	2.19E-174	3.35E-348	9.44E-348	0.028963	
SM Divergent KM 3 0.184896 2.34E-15 2.38E-213 7.53E-212 0.024888 h3(x) x_o -2.9 7.53E-212 0.024888 RM 9 7.209406 12.39890 1.251174 6.842315 4.22E-280 0.055217 YM 6 13.01157 11.52001 26.97380 0.001152 1.09E-690 0.047585 KM 4 2.348731 0.094644 2.61E-27 1.42E-410 3.32E-410 0.041489 h3(x) x_o -5 DM 6 6.776853 7.009183 4.609346 0.166358 6.76E-361 0.024375 RM 5 11.67100 6.890387 0.237241 4.87E-22 8.34E-353 0.020124 YM 5 2.941615 1.601759 1.03E-06 4.73E-107 1.09E-690 0.017536 M4(x) x_o 1.4	YM	4	0.184895	1.24E-11	5.16E-176	1.36E-691	1.09E-690	0.028543	
KM 3 0.184896 2.34E-15 2.38E-213 7.53E-212 0.024888 h3(x) x_{θ} -2.9 - - - 7.53E-212 0.024888 DM 6 5.268071 1.587129 1.662635 0.425068 4.70E-280 0.049482 RM 9 7.209406 12.39890 1.251174 6.842315 4.22E-280 0.052076 SM 5 4.274281 1.837365 0.006459 1.77E-45 1.09E-690 0.047585 KM 4 2.348731 0.094644 2.61E-27 1.42E-410 3.32E-410 0.041489 h3(x) x_{θ} -5 DM 6 6.776853 7.009183 4.609346 0.166358 6.76E-361 0.024375 RM 5 11.67100 6.890387 0.237241 4.87E-22 8.34E-353 0.020057 SM Divergent	SM		Divergent						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KM	3	0.184896	2.34E-15	2.38E-213		7.53E-212	0.024888	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h3(x)	x_{0}	-2.9						
RM97.20940612.398901.2511746.8423154.22E-2800.055217YM613.0115711.5200126.973800.0011521.09E-6900.052076SM54.2742811.8373650.0064591.77E-451.09E-6900.047585KM42.3487310.0946442.61E-271.42E-4103.32E-4100.041489h3(x) x_{θ} -5-5DM66.7768537.0091834.6093460.1663586.76E-3610.024375RM511.671006.8903870.2372414.87E-228.34E-3530.020124YM52.9416151.6017591.03E-064.73E-1071.09E-6900.020057SMDivergentKM44.5441880.0008123.51E-586.84E-6911.09E-6900.017536h4(x) x_{θ} 1.4	DM	6	5.268071	1.587129	1.662635	0.425068	4.70E-280	0.049482	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RM	9	7.209406	12.39890	1.251174	6.842315	4.22E-280	0.055217	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	YM	6	13.01157	11.52001	26.97380	0.001152	1.09E-690	0.052076	
KM4 2.348731 0.094644 $2.61E-27$ $1.42E-410$ $3.32E-410$ 0.041489 h3(x) x_{θ} -5DM6 6.776853 7.009183 4.609346 0.166358 $6.76E-361$ 0.024375 RM5 11.67100 6.890387 0.237241 $4.87E-22$ $8.34E-353$ 0.020124 YM5 2.941615 1.601759 $1.03E-06$ $4.73E-107$ $1.09E-690$ 0.020057 SMDivergent 4 4.544188 0.000812 $3.51E-58$ $6.84E-691$ $1.09E-690$ 0.017536 h4(x) x_{θ} 1.4 1 1 1 1 1 DMDivergent 1 1 1 1 1 1 RM5 7.409405 8.791936 0.151867 $7.45E-22$ $1.54E-347$ 0.050035 YM4 0.859028 0.371636 $2.36E-15$ $2.30E-242$ $5.59E-242$ 0.045499 SM4 1.344396 0.113732 $4.44E-25$ $1.05E-399$ $2.57E-399$ 0.045234 h4(x) x_{θ} 3.1 1 1 $1.68E-180$ $6.56E-690$ $4.65E-690$ 0.021657 RM3 0.469335 $1.52E-11$ $1.68E-180$ $6.56E-690$ $4.65E-690$ 0.021657 RM3 0.469335 $8.93E-13$ $1.14E-202$ $$ $2.77E-202$ 0.019365 YM3 0.469335 $4.86E-13$ $2.28E-203$ $$ $5.52E-203$ <	SM	5	4.274281	1.83/365	0.006459	1.77E-45	1.09E-690	0.04/585	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>KM</u>	4	2.348731	0.094644	2.61E-27	1.42E-410	3.32E-410	0.041489	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	h3(x)	xo	-5	5 00010 2	1 500015	0.4.6.0.50		0.004055	
RM511.6/100 6.890387 0.237241 $4.87E-22$ $8.34E-353$ 0.020124 YM5 2.941615 1.601759 $1.03E-06$ $4.73E-107$ $1.09E-690$ 0.020057 SMDivergent KM 4 4.544188 0.000812 $3.51E-58$ $6.84E-691$ $1.09E-690$ 0.017536 h4(x) x_{θ} 1.4 DM Divergent RM 5 7.409405 8.791936 0.151867 $7.45E-22$ $1.54E-347$ 0.050035 YM4 0.859028 0.371636 $2.36E-15$ $2.30E-242$ $5.59E-242$ 0.045499 SM4 1.344396 0.113732 $4.44E-25$ $1.05E-399$ $2.57E-399$ 0.045476 KM4 0.20339 0.010325 $2.22E-38$ $2.06E-573$ $5.95E-573$ 0.045234 h4(x) x_{θ} 3.1 $$ $2.77E-202$ 0.019365 RM3 0.469335 $4.86E-13$ $2.28E-203$ $$ $5.52E-203$ 0.019356 SMDivergent $$ $$ $5.32E-273$ 0.019169	DM	6	6.776853	7.009183	4.609346	0.166358	6.76E-361	0.024375	
YM52.9416151.6017591.03E-064.73E-1071.09E-6900.020057SMDivergent3.51E-586.84E-6911.09E-6900.017536 $h4(x)$ x_{θ} 1.4 x_{θ} 1.4DMDivergent x_{θ} 1.4 x_{θ} 0.050035YM40.8590280.3716362.36E-152.30E-2425.59E-2420.045499SM41.3443960.1137324.44E-251.05E-3992.57E-3990.045476KM40.4693351.52E-111.68E-1806.56E-6904.65E-6900.021657RM30.4693354.86E-132.28E-2035.52E-2030.019365SMDivergent5.52E-2030.019366KM30.4693361.34E-161.31E-2733.32E-2730.019169	KM	2	11.6/100	6.890387	0.237241	4.8/E-22	8.34E-353	0.020124	
SMDivergentKM44.544188 0.000812 $3.51E-58$ $6.84E-691$ $1.09E-690$ 0.017536 h4(x) x_{θ} 1.4 DMDivergentRM5 7.409405 8.791936 0.151867 $7.45E-22$ $1.54E-347$ 0.050035 YM4 0.859028 0.371636 $2.36E-15$ $2.30E-242$ $5.59E-242$ 0.045499 SM4 1.344396 0.113732 $4.44E-25$ $1.05E-399$ $2.57E-399$ 0.045476 KM4 1.220339 0.010325 $2.22E-38$ $2.06E-573$ $5.95E-573$ 0.045234 h4(x) x_{θ} 3.1 $$ $$ $2.77E-202$ 0.019365 RM3 0.469335 $4.86E-13$ $2.28E-203$ $$ $5.52E-203$ 0.019356 SMDivergent $$ $$ $$ $$ $$ $$ KM3 0.469336 $1.34E-16$ $1.31E-273$ $$ $3.32E-273$ 0.019169	YM	5	2.941615 1.601759		1.03E-06	4./3E-10/	1.09E-690	0.020057	
KM44.3441880.000812 $3.51E-38$ $0.84E-691$ $1.09E-690$ 0.017336 h4(x) x_{θ} 1.4DMDivergentRM5 7.409405 8.791936 0.151867 $7.45E-22$ $1.54E-347$ 0.050035 YM4 0.859028 0.371636 $2.36E-15$ $2.30E-242$ $5.59E-242$ 0.045499 SM4 1.344396 0.113732 $4.44E-25$ $1.05E-399$ $2.57E-399$ 0.045476 KM4 1.220339 0.010325 $2.22E-38$ $2.06E-573$ $5.95E-573$ 0.045234 h4(x) x_{θ} 3.1 $$ $$ $2.77E-202$ 0.019365 PM4 0.469335 $1.52E-11$ $1.68E-180$ $6.56E-690$ $4.65E-690$ 0.021657 RM3 0.469335 $4.86E-13$ $2.28E-203$ $$ $5.52E-203$ 0.019365 SMDivergent $$ $$ $$ $$ $3.32E-273$ 0.019169	SM	4	Divergent	0.000912	2 51E 59	6 94E 601	1.00E 600	0.017526	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\mathbf{K}\mathbf{N}\mathbf{I}}{\mathbf{h}A(\mathbf{x})}$	4 r o	4.544100	0.000812	5.51E-56	0.64E-091	1.09E-090	0.017550	
DMDivergent0.1518677.45E-221.54E-3470.050035YM40.8590280.3716362.36E-152.30E-2425.59E-2420.045499SM41.3443960.1137324.44E-251.05E-3992.57E-3990.045476KM41.2203390.0103252.22E-382.06E-5735.95E-5730.045234h4(x) x_{θ} 3.12.77E-2020.019365PM40.4693351.52E-111.68E-1806.56E-6904.65E-6900.021657RM30.4693354.86E-132.28E-2032.77E-2020.019365SMDivergentKM30.4693361.34E-161.31E-2733.32E-2730.019169	$\frac{\Pi 4(x)}{DM}$	X0	1.4 Divergent						
KM5 1.40405 0.17150 0.17150 0.17150 1.40122 $1.542-347$ 0.05050 YM4 0.859028 0.371636 $2.36E-15$ $2.30E-242$ $5.59E-242$ 0.045499 SM4 1.344396 0.113732 $4.44E-25$ $1.05E-399$ $2.57E-399$ 0.045234 KM4 1.220339 0.010325 $2.22E-38$ $2.06E-573$ $5.95E-573$ 0.045234 h4(x) x_{θ} 3.1 $$ $$ $2.77E-202$ 0.019365 RM3 0.469335 $4.86E-13$ $2.28E-203$ $$ $5.52E-203$ 0.019356 SMDivergent $$ $$ $$ $$ $3.32E-273$ 0.019169	RM	5	7 409405	8 791936	0 151867	7 45E-22	$1.54E_{-}347$	0.050035	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VM	1	0.850028	0.371636	0.151807 2.36E 15	7.45E-22 2.30E-242	5 50E 242	0.030033	
KM 4 1.220339 0.010325 2.22E-38 2.06E-573 5.95E-573 0.045470 h4(x) x_{θ} 3.1	SM	4	1 344396	0.113732	2.30E-15 4 44E-25	1.05E-242	2 57E-242	0.045476	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	KM	4	1 220339	0.010325	2.22F-38	2.06E-573	5.95E-573	0.045234	
DM 4 0.469335 1.52E-11 1.68E-180 6.56E-690 4.65E-690 0.021657 RM 3 0.469335 8.93E-13 1.14E-202 2.77E-202 0.019365 YM 3 0.469335 4.86E-13 2.28E-203 5.52E-203 0.019356 SM Divergent 3.32E-273 0.019169	h4(x)	r	3.1	0.010323	2.220-30	2.001-313	5.751-313	0.043234	
RM 3 0.469335 8.93E-13 1.14E-202 2.77E-202 0.019365 YM 3 0.469335 4.86E-13 2.28E-203 5.52E-203 0.019356 SM Divergent 5.52E-203 0.019356 KM 3 0.469336 1.34E-16 1.31E-273 3.32E-273 0.019169	DM	4	0.469335	1 52E-11	1.68E-180	6 56F-690	4 65E-690	0.021657	
YM 3 0.469335 4.86E-13 2.28E-203 5.52E-203 0.019356 SM Divergent 3.32E-273 0.019169	RM	3	0.469335	8 93F-13	1 14F-202	0.50L-070	2 77F_202	0.019365	
SM Divergent 3.32E-203 0.019550 KM 3 0.469336 1.34E-16 1.31E-273 3.32E-273 0.019169	YM	3	0.469335	4 86F-13	2 28F-202		5 52E-202	0.019356	
KM 3 0.469336 1.34E-16 1.31E-273 3.32E-273 0.019169	SM	5	Divergent	7.001 15	2.201 203		5.521 205	0.01/550	
	KM	3	0.469336	1.34E-16	1.31E-273		3.32E-273	0.019169	

h5(x)	x_{θ}	1.9)						
DM	3	0.102	2118	2.75E-18	6.53E-	-284		2.67E-283	0.011001
RM	3	0.102	2118	4.13E-21	1.06E-			4.34E-331	0.010568
YM	3	0.102	2118	1.13E-21	2.52E-	341		1.03E-340	0.010276
SM	3	0.102	2118	6.60E-20	2.87E-	311		1.17E-310	0.010679
KM	3	0.102	2118	1.09E-23	1 3/E	3/18		1.17E 310	0.010101
$h5(\mathbf{x})$	<i>r</i> .	0.102)	1.07E 25	1.546	540		4.40L 540	0.010171
	2	0.10	7001	4.45E-15	1.44E	222		5 OOE 222	0.022114
	2	0.19	7001	4.43E-13	1.44E-	-252		3.90E-232	0.022114
RM	3	0.19	/881	1.59E-17	2.41E-	-2/4		9.88E-274	0.022003
YM	3	0.19	/881	5.01E-18	5.75E-	-283		2.35E-282	0.021988
SM	3	0.197	/881	3.01E-16	1.01E-	-252		4.13E-252	0.022048
KM	3	0.290)376	3.58E-19	6.65E-	-286		1.76E-285	0.021927
h6(x)	x_{θ}	1.5							
DM	5	0.751	1666	0.332288	8.41E-	-07 6.0	50E-100	1.36E-691	0.057561
RM	7	0.500)948	1.978125	13.033	18 15	.423815	1.93E-242	0.061101
YM	7	20.29	9210	176.6148	196.43	0.0 808	5070711	1.36E-691	0.061017
SM	6	22.44	1969	22.21975	0.7328	331 0.1	1211757	2.23E-267	0.059076
KM	4	0.761	1422	0.117886	6.18E-	16 8.9	92E-271	1.75E-271	0.055171
h6(x)	Xa	-0.	.8						
DM		Dive	rgent						
RM	6	1 429	2674	7 3/19666	4 6744	64 7	20F-452	4 10E-452	0.042107
VM	4	1.420	1142	0.021001	1.01F	31 3	13E 406	4.10L-452	0.042107
SM	4	1.19-	+1+2 5240	0.021901	1.91E	20 2	21E 470	1.00E-490	0.042008
SIVI	4	1.19.	0.49	0.020093	1.02E-	· 50 5	15E-4/9	1.//E-4/9	0.042052
	4	1.219	9948	0.003903	9.16E-	42 3.	15E-621	1.6/E-621	0.041789
n/(x)	<i>x</i> ₀	2.2	2016	1.005.00				2 705 201	0.000077
DM	4	0.229	9216	1.08E-09	1.23E-	83 2.2	22E-306	2.78E-304	0.020877
RM	4	0.229	9216	4.32E-12	4.80E-	-122 6.9	91E-262	8.70E-260	0.020986
YM	5	0.229	9215	3.28E-12	3.45E-	90 1.	16E-260	1.45E-258	0.021154
SM	5	0.229	9216	1.54E-10	8.28E-	86 7.0	08E-238	8.91E-236	0.021306
KM	4	0.229	9216	1.33E-14	1.85E-	124 3.5	54E-314	4.46E-312	0.020310
h7(x)	x_{θ}	1.	8						
DM	4	0.170	0784	2.72E-07	2.24E-	71 1.	33E-269	1.67E-267	0.017932
RM	4	0.170	0784	1.64E-10	4.3E-1	15 4.5	59E-334	5.78E-332	0.017854
YM	5	0.170)784	2.99E-11	2.11E-	88 7.	10E-259	8.93E-257	0.020126
SM	5	0.170	0784	1.12E-09	6 49E-	83 5	55E-235	6.98E-233	0.020145
KM	4	0.170)784	1.29E-12	1 75E-	120 3	19E-376	4 02E-374	0.017746
$h8(\mathbf{x})$	ra		<u>/////////////////////////////////////</u>	1.2)2 12	1.752	120 5.	1)1 5/0	1.022 371	0.017710
	3	0.05	-	6.47E 16	2.44E	237		1 38E 236	0.016034
	2	0.03	000	0.4/E-10 2.92E 19	2.44E- 2.00E	-257		1.36E-230	0.010034
	2	0.045	1999	3.62E-10	2.09E-	-275		1.16E-2/4	0.015985
YM	3	0.05		4.45E-19	2.26E-	-291		1.28E-290	0.015907
SM	3	0.049	9999	3.28E-17	1.31E-	-259		7.47E-259	0.016005
KM	3	0.05	_	9.85E-21	2.20E-	-300		1.26E-299	0.015856
<u>h8(x)</u>	<i>x</i> ₀	-1.	.6						
DM	4	0.14		0.000286	5.40E-	51 1.	72E-689	2.62E-689	0.021710
RM	4	Dive	rgent						
YM	4	0.15		6.56E-09	1.11E-	128 1.9	91E-690	2.62E-689	0.021603
SM	4	0.15		2.25E-07	3.00E-	-102 5.4	47E-691	2.62E-689	0.021587
KM	4	0.15		1.07E-09	7.63E-	135 7.3	38E-691	2.62E-689	0.021516
h9(x)	x_{θ}	-0.	.6						
DM	4	0.686	5434	2.48E-08	1.02E-	123 3.4	42E-692	1.36E-691	0.026226
RM	4	0.686	5433	2.75E-10	1.70E-	158 3.4	42E-692	1.36E-691	0.026216
YM	4	0.686	5433	1.56E-09	1.24E-	145 3.5	55E-692	2.05E-691	0.026218
SM		Dive	rgent						
KM	4	0.686	5434	1.71E-12	2.58E-	185 4.3	30E-692	1.42E-691	0.022628
h9(x)	x_{θ}	0.	2						
DM	3	0.113	3566	2.65E-20	9.30E	319		3.08E-318	0.020502
RM	3	0.113	3566	2.05E-19	9.41E	304		3.12E-303	0.020526
YM	3	0.113	3566	5.33E-18	1 01F.	279		3.34E-279	0.020614
SM	3	0.113	3566	5 33E-18	1.01E	.279		3 34E-279	0.020613
KM	3	0.113	3566	3.02F-21	1 33E	.322		4 41E-322	0.020013
Method	n 5	0.11		<u>5.02E 21</u>	1.55E	1 1	1 1	4.412 522	Comp Time
Method	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$ x_1 - x_0 $	$ x_2 - x_1 $	$ x_3 - x_2 $	$x_4 - x_3$	$x_5 - x_4$	$ x_6 - x_5 $	$h(x_{n+1})$	comp. Time
h10(v)	ra	1						1	
	7	0 929072	0.065856	0.004256	1 /0E 5	2 5/E 22	2 32E 45	275E 400	0.020004
RM	6	0.929072	0.003850	0.004230	0.11E 7	2.34E-33 3 18E 66	2.52E-05 7.05E 102	2.15E-477 8 25E 200	0.020004
NIVI NAM	7	0.940101	0.050252	0.002843	7.11E-/	J.10E-00	1.05E-102	0.3JE-329	0.01098/
	/	0.944482	0.052058	0.002312	0.40E-8	4.52E-62	1.05E-101	1.24E-231	0.020026
SM	8	0.923933	0.070243	0.004979	4.25E-5	2./8E-27	6.2/E-52	/.43E-255	0.024250
KM	6	0.945671	0.030842	0.006663	7.91E-16	1.45E-130	2.43E-524	4.76E-522	0.016902
h10(x)	x_{θ}	10							
DM	8	9.290750	0.658942	0.046682	0.002824	1.50E-06	1.61E-24	1.61E-623	0.025088
RM	7	9.401041	0.563078	0.033633	0.001447	5.71E-09	1.68E-32	1.99E-405	0.023592
YM	8	9.448323	0.521234	0.028638	0.001003	7.62E-11	4.94E-52	5.86E-248	0.025123
SM	9	9.239366	0.702774	0.053411	0.003636	1.30E-05	5.42E-15	6.42E-263	0.027650
KM	6	9.442156	0.572255	0.005868	3.01E-05	1.28E-40	1.72E-218	2.12E-218	0.021044

Where x_0 represents the starting approximation, n represents the number of iterations, $|x_{n+1} - x_n|, n = 0, 1, 2, ...$ represents error and $|h(x_{n+1})|$ represents

a number of functional evaluations.

The residual error graphs presented below illustrate a comparative analysis between the proposed algorithm and several well-established methods, namely, the DM, RM, YM, and SM methods for solving nonlinear equations. Each graph visually captures the convergence behavior of the iterative methods by plotting the residual error (i.e., the absolute difference between the computed and actual root) against the number of iterations. A steeper decline in the residual error curve indicates faster convergence and higher accuracy of the method.

The proposed algorithm consistently demonstrates superior performance, with more rapid error reduction and fewer iterations required to reach a specified tolerance level. This enhanced convergence behavior confirms the algorithm's efficiency, robustness, and reliability in both controlled test conditions and complex practical problems. By providing a side-by-side comparison through these residual error graphs, the analysis not only highlights the improvements introduced by the new method but also validates its effectiveness over traditional iterative techniques.

Fig. 3. h₂(x) at x₀=1.1

KΜ

1.5

2.0

2.5

No. of Iterations

3.0

3.5

4.0

-120

Fig. 5. h₃(x) at x₀=-2.9

1.0

Volume 55, Issue 6, June 2025, Pages 1519-1530

Fig. 20. $h_{10}(x)$ at $x_0=10$

Using Origin Pro software for graphical comparisons, "Fig. 1" through "Fig. 20" display the graphical behaviour of the compared iterative methods DM, RM, YM, SM and KM. We coloured these methods black, red, blue, green, and violet, respectively.

No. of Iterations

The residual fall graph clearly illustrates the superior performance of the suggested KM in terms of convergence

speed and efficiency when compared to other wellestablished methods, including those by DM, RM, YM, and SM. This enhanced performance is highlighted by the rapid reduction in the residual values, indicating the method's ability to approximate the root with minimal computational effort.

In particular, KM demonstrates a remarkable ability to achieve stability in fewer iterations, showcasing its convergence precision. While the other methods exhibit a gradual or slower decline in residuals over multiple iterations, KM outperforms them by exhibiting a steep descent, signaling a more effective approach to solving the nonlinear system. This behavior reflects the method's robust algorithmic design, which minimizes computational cost without compromising accuracy.

Graphical comparisons further substantiate the dominance of KM. The curves for DM, RM, YM, and SM reflect their slower progression toward the root, often requiring additional iterations to achieve comparable levels of precision. In contrast, KM's curve stabilizes significantly earlier, affirming its efficiency and suitability for practical engineering and computational applications.

V. BASINS OF ATTRACTION

According to the study on basins of attraction covered below, the new method is better than the comparable methods in some crucial areas. Combined with an iterative method acting on a polynomial, this rational function trait provides critical information about the technique's numerical aspects, ensuring its stability and reliability. This is another approach to compare iterative processes without taking initial approximations. To derive the basins of attraction of the root in fractal graphs, assume a square $R \times R = [-2, 2] \times [-2, 2]$ in which we take 250×250 initial points containing all the roots $(z_i^* = 1, 2, 3, ...)$ of the relevant complex polynomial and use the KM technique starting at each initial point Z_0 in the square. We determine that Z_0 is in the basins of attraction of the root Z * i of the polynomial if the sequence produced by the iterative technique converges to it after a maximum of 100 iterations and a tolerance of $\left| f\left(z^{(j)}\right) \right| < 10^{-16}$. Consider

 Z_0 is given a dark violet colour if $\left|z^{(N)} - z_i^*\right| < 10^{-16}$ and the

iterative process begins there and reaches a root after N iterations ($N \le 100$). Should N exceed 100, we deduce that the origin has diverged and designate it with the colour yellow. The basins of attraction for the KM and sixteenth-order methods—DM, RM, YM, and SM—are as follows.

Consider the following complex polynomial functions

1. $f_1(z) = 1 - z^4$ 2. $f_2(z) = z^{11} - 1$

The developed algorithm KM and the comparison methods have the following basins.

Fig. 1. The polynomiographs for the suggested methods for $f_1(z)$.

Volume 55, Issue 6, June 2025, Pages 1519-1530

Fig. 2. The polynomiographs for the suggested methods KM, DM, RM, YM and SM for $f_2(z)$.

In Fig. 1, the proposed method KM takes five to twenty iterations for strong convergence, twenty to twenty-five for moderate convergence, and more than twenty-five iterations for weak convergent or divergent to another root. The other methods, DM, RM, YM, and SM, show chaotic behavior.

In Fig. 2, the proposed method KM takes five to twenty iterations for strong convergence, twenty to thirty for moderate convergence, and thirty to thirty-five for weak convergence or divergence to another root. The other methods, DM, RM, YM, and SM, show chaotic behavior.

VI. CONCLUSIONS

In this research, we introduced the sixteenth-order iterative method and created a novel optimal four-step. Based on the convergence study, the suggested strategy has a convergence order of sixteen. There is a computational efficiency index of $16^{1/5} = 1.7411$. The unique approaches outperform the comparative methods regarding results in a few test and application challenges across several areas. Based on the facts gathered, our proposed solutions are superior to the existing techniques and significantly more effective. To explore their areas of interest, we have also looked at the complex field of cyclical techniques. The numerical results of the proposed techniques and related fractal graphs demonstrate that the unique approaches are a valuable alternative to solving the scalar nonlinear equation. The proposed method is compatible with other existing approaches of the same order. The suggested scheme is the most effective approach for each example. Table 3 makes it abundantly evident that, when considering the number of iterations, successive errors, and computational time, the created KM scheme outperforms the other four methods: DM, RM, YM, and SM.

The rapid convergence and reduced iteration count of KM not only highlights its theoretical advantages but also its practical utility in real-world scenarios where time and resource efficiency are critical. This analysis underscores the effectiveness of KM in providing quicker, more reliable solutions compared to the existing methodologies, establishing it as a highly competitive and superior option for solving nonlinear equations.

ACKNOWLEDGMENT

The authors are highly thankful to GITAM (Deemed to be University) for providing the resources and would like to thank Centurion University (AP Campus) for their continuous support.

References

- D. Cebic, N. Ralevic, and M. Marceta, "An Optimal Sixteenth Order Family of Methods for Solving Nonlinear Equations and Their Basins of Attraction," Mathematical Communications, vol. 25, pp. 269-288, 2020.
- [2] J. F. Traub, "Iterative Methods for the Solution of Equations," Chelsea Publishing Company, New York, 1977.
- [3] J. R. Sharma, and Sunil Kumar, "Efficient Methods of Optimal Eighth and Sixteenth Order Convergence for Solving Nonlinear Equations," SeMA, vol. 75, pp. 229-253, 2018.
- [4] M. Rafiullah, and D. Jabeen, "New Eighth and Sixteenth Order Iterative Methods to Solve Nonlinear Equations," International Journal of Applied and Computational Mathematics, vol. 3, pp. 2467-2476, 2017.
- [5] M. Shams, N. Rafiq, and K. Nasreen. "Inverse Family of Numerical Methods for Approximating All Simple and Roots with Engineering Applications," Mathematical Problems in Engineering, pp. 1-9, 2021.
- [6] Navya Kakarlapudi, Mani Sandeep Kumar Mylapalli, and Pravin Singh, "Basins of Attraction of an Optimal Iterative Scheme for Solving Nonlinear Equations and Their Applications," IAENG International Journal of Computer Science, vol. 51, no. 1, pp55-66, 2024.
- [7] Navya Kakarlapudi, Mani Sandeep Kumar Mylapalli, and Pravin Singh, "Dynamical Analysis of an Optimal Iterative Scheme and its Real-Life Applications," Engineering Letters, vol. 31, no.3, pp1160-1170, 2023.
- [8] Q. Sania, A. Soomro, S. Asif Ali, E. Hincal, and N. Gokbulut, "A Novel Multistep Iterative Technique for Models in Medical Sciences with Complex Dynamics" Computational and Mathematical Methods in Medicine, vol. 2022, pp. 1-10, 2022.
- [9] Y. H. Geum, Y. I. Kim, and N. Beny, "Developing an Optimal Class of Generic Sixteenth-Order Simple-Root Finders and Investigating Their Dynamics," Mathematics, vol. 7, no. 8, pp. 1-32, 2019.