
 

    

Abstract— In this paper, we develop a sixteenth-order iterative 

scheme to compute the zero of the nonlinear equation in four 

steps, using five functional evaluations, and achieve optimality 

with an efficiency index of 1.741. We also discuss the 

theoretical convergence analysis of the approach and compare 

the proposed technique with recent methods of equal order 

regarding successive errors, number of iterations, and 

functional evaluations by taking several algebraical, and 

transcendental test functions. The developed method is put into 

practice in applications in the fields of medical sciences, 

physics, and chemical engineering. Various approaches are 

analyzed using basins of attraction to show taking polynomials 

as test functions in a complex plane. 

 

Index Terms— Nonlinear Equation, Optimal order, 

Efficiency Index, Order of Convergence, Iterative Method, 

Functional Evaluations, Basins of Attraction. 

 

I. INTRODUCTION 

OLVING nonlinear equations are among the most 

critical challenges in scientific and technical 

applications. Nonlinear equations can be used to solve 

several optimization challenges in various applications. 

Computing their roots in a finite number of arithmetic 

operations is generally tricky. A subfield of computer 

science and mathematics known as numerical analysis 

creates evaluates and applies algorithms to resolve 

numerical issues. This work is about iterative approaches for 

finding a simple root x , i.e., ( ) 0h x = . The most well-

known and frequently applied methodology for resolving 

nonlinear equations is Newton Rahson's method (NR) [2] 

and its efficiency index is 2 1.414= . It is given by,    

( )

( )
, 0,1,2,. . .

1

h xn
x x nnn h xn

= − =
+ 

                           (1) 

This employs a one-step iterative procedure. Newton's 

method has a quadratic order of convergence to get a simple 

zero. 
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This work aims to build an effective derivative-free 

technique for solving nonlinear equations. We developed a 

new optimal iterative approach to bolster the hypothesis. 

Based on N  functional assessments, Kung-Traub 

hypothesized that multipoint iteration techniques may attain 

an optimal convergence order 2 1N − . 

 

This study uses the weight function methodology to build 

a sixteenth-order iterative method. To improve the iterative 

method presented, we consider the finite difference 

approximation and use the approximants of the higher 

derivatives to avoid computing the high-order derivatives of 

the function. To evaluate the performance of the new 

strategy against the current equal-order methods considering 

a few test functions and real-world application problems. 

We also studied the dynamic performance of our developed 

method. The basins of attraction are also shown and 

contrasted with the other methods of the same order at the 

study's conclusion. 

 

Some of the existing methods developed recently for 

solving nonlinear equations are given below: 

 

In the year 2020, an optimal sixteenth-order iterative 

method (DM) is presented by Dejan Cebic [1] with five 

functional evaluations and is given as 

( )
( )

 
( )

( )
( )

( )

( )
( )    

   

( )      ( )
( )    ( ) 2 2 2

2
3

2

2 2

1

h xn
y = xn n h xn

h y , x h yn n n
z   = yn n h xnh xn

h x h y , x h z , yh z n n n n nnw znn h xn h z , y h z , xn n n n

h w h z , x h w , x h w , zn n n n n n n
x wn
n h x h w , y h z , y h z ,x h w ,x h w ,zn n n n n nn n n nn      

     

−


− −


 − +
= −

 −

− +
= −

+  − + − +

 
 
 

  (2)            

In the year 2017, A new sixteenth-order optimal iterative 

method (RM) developed by Rafiullah et al. [4] with six 

functional evaluations is as follows: 

( )
( )

( )
( )

( )( ) ( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( )( )( )
( )( )( ) ( )( ) ( )( )

( )
( )

2

2
2

2 22

1

h xn
y = xn n h xn

h y h x h yh y nn nn
z   = yn n h yn h x h y h xnn n

h z x y x z y zn n n n n n n
w znn

h z x y x z y h y x z h x y zn n n n n n n n n n nn

h wnx wn h wn n

 
 
 
 

−


 −
− −


−

− − −
= −

− − − + + − − −

= −
+

(3)  
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where  

( )
( ) ( ) ( ) ( )( )( )

( )( )( )

( )( )( )
( )( )( )

( )( )( )
( )( )( )

h x w y w znh w h w h w n n n nn n n
h wn w x w y w z x w x y x zn n n n n n n n n n n n

h y w x w z h z x w y wn nn n n n n n n n

w y x y y z z w z x z yn n n n n n n n n n n n

− −
 = + + +− − − − − −

− − − −
+ +

− − − − − −

 In the year 2019, Young Hee Geum et al. [9] proposed a 

new method (YM) with optimal sixteenth-order 

convergence using five functional evolutions as follows: 

( )
( )

( )
( )

( )
( )
( )

( )

( )
( )

( )
( )

( )

( ) ( ) ( )
( )1

h xn
y = xn n h xn

h y h yn n
z   = y G s , sn n

h x h xn n

h zh z nn
w z H s,u , unn h xn h yn

h w h wn nx w I s,u,v , vn h zh xn nn

−


− =


= − =


= − =
+

          (4) 

where  

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )

2

2

2 3 2 2

2 3 3 4 2 3

11
1 2 1 2 2

1 2 1 2

1 2 1 1 2

s
G s , H s,u G s

s s u s u

s s s u s s su
I s,u,v H s,u

s s s u s s s v s s s

−
= =

− − − +

− − − + − − +
=

− − − − + + + − − − −

 
 
 
 

    

In the year 2018, a four-step optimal sixteenth-order 

iterative method (JM) was presented by Janakraj Sharma et 

al. [3] 

( )
( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

2

1

2
1 2 3

1

1 2
1 2 3 4

h xn
y = xn n h xn

h x h yn n
z    = yn n

h y ,xn n

h x h zn n
w   = zn n

u u u h z ,xn n

h x h wn n
x =wnn v v v v h w ,xn n

 
 

 
 

 
 

−



−


−

− +


−

+ − + −

        (5) 

where  

( ) ( )

( )( ) ( )( )  

( )( ) ( )  ( )

( )( ) ( )( )

( )( ) ( ) ( )( )( )  

( )( ) ( ) ( )( )( )  ( )

( )( )( ) ( )( )

1

2

2

3

1

2

2

2

4

3

2

u y z y xn n n n

u h x z x y z y x h y , xn n n n n n n n n

u h x z x y z h z , xn n n n n n n

v y w z w y x z xn n n n n n n n

v h x w x w z y x y z y w h y , xn n n n n n n n n n n n n

v h x w x y w z x z y z w h z , xn n n n n n n n n n n n n

v h x w x w y z y w z w h wn n n n n n n n n n n

= − −

= − − −

= − −

= − − − −

= − − − − −

= − − − − −

= − − − − −  ( ), xn

 

 

The article's remaining section is organized as follows: 

Section II discusses the approach's development. An 

analysis of the proposed scheme's convergence is presented 

in Section III. Section IV assesses the suggested approach 

on several test functions, and the outcomes are compared 

with those of other existing same-order approaches in the 

Numerical Examples section. A few notions from chemical 

engineering, medical science, and physics have also been 

tested in this way. Through complex dynamics, Section V 

examines the stability of the established techniques. The 

rational function is reviewed using these methodologies on 

various nonlinear complex polynomial functions, and their 

basins of attraction are illustrated. The study conclusions are 

finally covered in Section VI. 

II. DEVELOPMENT OF METHOD 

This section covers the study's primary contribution. A 

novel iterative algorithm of an optimal sixteenth order based 

on a finite interpolation approach will be provided.  

 

Consider the optimal eighth-order convergent method [6] 

( )

( )

( )
( )

( )

( )
( )

2 1
  .

1 1 2

h xn
y xn n h xn

h yn
z y Hn n h yn n

h znw zn n h zn




= −


 
= −  

 + −  

= −


           (6) 

where

 

( ) ( )

( )
( )   ( )

( )
( )

( )

, 2 , ,

1

h x h yn n
h y h y x h xn n n n n

h xn

h yn
H

h xn



  

 −
 = = −



 
= − = 

  

 

and                         

( ) ( )    ( )( )

   ( )( )

, , , , -

2 , , , , -

h z h x h x y z h x x y z xn n n n n n n n n n

h x y z h x x y z yn n n n n n n n

 = + +

+ +
 

Consider Newton’s method in the fourth step of (6) to get 

the optimality and better efficiency. Thus, we have 

( )

( )1

h wn
x wnn h wn

= −
+ 

                                      (7) 

For reducing functional values, we consider the 

interpolation approximation of ( )h wn  as follows: 

( )
( )

( )( )

, , ,

, , ,

h w z w z h w z yn nn n n n n
h w

n w z w y h w z y xn n n n n n n n

   
      

 
  

 + − +
 = 

− −

        (8) 

Thus, we developed the new four-step algorithm, as 

shown below. 

 

Algorithm: The iterative scheme is 

( )

( )

( )
( )

( )

( ) ( )
( )

( ) ( )

( )
( )
( )

1.

2 1
2.   .

1 1 2

   where, , 2 , ,

1

h xn
y xn n h xn

h yn
z y Hn n h yn n

h x h yn n h y h y x h xn n n n nh xn

h yn
H and

h xn






  

= −


 
= −  

 + −  

 −
  = = −

 

= − =
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( )

( )

( ) ( )    ( )( )

   ( )( )

3.

where, , , , , -

2 , , , , -

h zn
w zn n h zn

h z h x h x y z h x x y z xn n n n n n n n n n

h x y z h x x y z yn n n n n n n n

= −


 = + +

+ +

  

( )

( )
4.

1

h wn
x wnn h wn

= −
+ 

                                                       (9) 

where, ( )   ( )  , , ,h w h w z w z h w z yn n n n n n nn = + −                      

                   ( )( )  , , ,w z w y h w z y xn n n n n n n n+ − −  

Consequently, the sixteenth-order technique (9) with five 

functional assessments is the best one. 

III. CONVERGENCE CRITERIA 

Theorem [5, 6]: For an open interval I , let 
0x I  be the 

simple root of a suitably differentiable function. If 
0x  is the 

neighborhood of x . Then, the algorithm (9) has an optimal 

sixteenth-order convergence with an error equation, 

    ( ) ( )7 4 5 2 2 6 3 16 17
2

1 2 3 2 3 4 2 3 4
c c c c c c c c e O e

n
 = + − +

+
. 

Proof: Let the simple root of ( ) 0h x = be x  and 

x xn n = + . Thus, 

 ( ) 0h x =  

Using Taylor’s series expansion, expand ( )h xn  about x , 

we obtain 

( ) ( )( )2 3 4 ...
2 3 4

h x h x c c cn n n n n   = + + + +     (10) 

( ) ( )( )2 31 2 3 4 ...
2 3 4

h x h x c c cn n n n   = + + + +    (11) 

Dividing (10) by (11), we get 

( )
( )

2 3 42 32 2 3 7 4 . . .
2 3 2 4 2 3 2

h xn
c c c c c c cn n n n

h xn

   
   
   
   

= − − − − − + +


 (12) 

Replacing (12) in the first step of (9), we get 

    
*

y x Yn = +                  (13)   

where 

( ) ( )2 2 3 3 42 2 3 7 4 . .
2 3 2 4 2 3 2

Y c c c c c c cn n n  = + − + − + +   

Again expanding ( )h yn  about x  through the Taylor 

series, we obtain
                                                 

 

( ) ( ) ( ) ( )( )2 2 3 3 42 2 3 7 5 . . .
2 3 2 4 2 3 2

h y h x c c c c c c cn n n n  = + − + − + +    (14) 

( ) ( ) ( ) ( )( )2 2 3 31 2 6 4 2 ...
2 3 2 3 2 4

h y h x c c c c c cn n n  = + − + − − +  (15)  

Dividing (14) by (15), we get 

( )
( ) ( ) ( )2 2 3 3 42 2 3 6 3 . . .

2 3 2 2 2 3 4

h yn
c c c c c c cn n nh yn

  = + − + − + +


  (16) 

From (11) and (15), we obtain 

( ) ( )2 2 3 32 4 6 6 16 20 ...
2 3 2 4 2 2 3

c c c c c c cn n n n   = + − + + − +         (17) 

and ( )
( )
( )

2 21 2 3
2 3 21

3 33 10 8 ...
4 2 3 2 2

c c ch y n nn
H

h xn c c c c

 




 
  
   
  

  
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  
  

− − − −
= − =

− + +
      (18) 

From the second step of (9), we get 

*
z x Zn = +                                    (19) 

where  

( ) ( )

( )

4 2 4 5

2 3 2 4 3 2

2 2 3 5 6

2 5 2 4 2 3 2 3 2 3 4 2 3 4

c c

6c 4 c 5c c 13 ...

n n

n

Z c c c c

c c c c c c c c c c

 



= − + − + +

+ + + − − − +
 

Expanding ( )h zn about x  through the Taylor expansion 

as follows:  

( ) ( )( )2 3

2 3 ...h z h x Z c Z c Zn


= + + +           (20)
 
  

and  

    ( ) ( )
2 2

1 2 3
2 3 4

2 2
4 2 ...

4 4 4

c Z c Z c Z n
h z h xn

c Y Z c Y c ZYn n



 

+ + − +


 =

+ + +

 
 
 
 

 (21) 

Substituting (19), (20), and (21) are in the third step of (9), 

we get                          

*
w x Wn = +                                              (22) 

where   ( ) ( )3 2 2 8 9c
2 3 2 3 4

W c c c c on n = − +  

Expanding ( )h wn  about x  by using the Taylor series, we 

get
                                                 

 

( ) ( )( )2 3
...

2 3
h w h x W c W c Wn


= + + +        (23) 

On simplification 

 
( ) ( )

( )

( ) ( )

, 1
2

2 2 3 2 2 3
...

3 4

h w h zn n
h w z c W Zn n

w zn n

c W WZ Z c W W Z WZ Z

−
= = + + +

−

+ + + + + + +

  (24)
 

 
( ) ( )

( )

( ) ( )

, 1
2

2 2 3 2 2 3
...

3 4

h z h yn n
h z y c Y Zn n

z yn n

c Y YZ Z c Y Y Z YZ Z

−
= = + +

−

+ + + + + + + +

   (25) 

 
( ) ( )

( )

( ) ( )

, 1
2

2 2 3 2 2 3
...

3 4

h y h xn n
h y x c Yn n n

y xn n

c Y Y c Y Y Yn n n n n



    

−
= = + +

−

+ + + + + + + +

(26) 

From (24) and (25) 

 
   

( )

, ,
, ,

2 2 2
...

2 3 4

h w z h z yn n n n
h w z yn n n

w yn n

W Z Y
c c W Z Y c

WZ ZY YW

−
=

−

+ +
= + + + + +

+ + +

 
 
 

  (27) 

and  ( )  
2 2 3

2 2 ...3 4

, ,
c W c Z c YZ

c Z c Y Z
w z h w z yn n n n n

 − −
 
 − − + 

− =    (28) 

Similarly, from (25) and (26) 

 
   

( )

, ,
, ,

2 2 2

...
2 3 4

h z y h y xn n n n
h z y xn n n

z xn n

Z Y n
c c Z Y cn

Z Y ZYn n




 

−
=

−

+ + +
= + + + + +

+ +

 
  
 

 (29) 

Finding the dividing difference of (27) and (29), we get  
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 
   , , , ,

, , ,

...
3 4 4 4 4

h w z y h z y xn n n n n n
h w z y xn n n n

w xn n

c c c Y c Z c Wn

−
=

−

= + + + + +

 (30) 

and 

( )( )  
3 4

, , ,
2

...
4

c YZ c YZ n
w z w y h w z y xn n n n n n n n

c Y Z

+

− − =
+ +

 
 
 
 

(31) 

Substituting the above terms in ( )h wn  of (9), we get  

( ) ( )( )1 2 ...
2 4

h w h x c W c YZn n


 = + + +      (32) 

Substituting (22), (23), and (32), in the fourth step of (9) 

( ) ( )7 4 5 2 2 6 3 16 17
2

1 2 3 2 3 4 2 3 4
c c c c c c c c e O e

n
 = + − +

+
 

Therefore, the proposed algorithm's convergence order is 

sixteen and denoted with (KM). Hence, the efficiency index 

is 
1 5

. 16 1.7411E I = = .  

  

IV. NUMERICAL COMPUTATIONS 

This section is entirely devoted to evaluating the 

applicability and reliability of the suggested optimal 

sixteenth-order iterative method. For this reason, we take 

into four standard test problems and six real-world 

application-oriented problems from the fields of physics, 

chemical engineering, and medicine, such as the depth of 

embedment, vertical stress, the volume of van der Waals, 

stirred tank reactor, blood rheology, the law of blood flow 

problem. To compare our suggested approach (KM) to 

existing iterative methods, namely, DM, RM, YM, and SM, 

regarding several iterations, associated subsequent errors, 

the number of functional assessments, and computational 

time. All computations are conducted using mp math-

PYTHON with the halting condition ( )f xn  , where 

199
10

−
=  tolerance and 690 decimal place accuracy. 

Table I shows an analogy of different algorithms; Table II 

shows the roots of the test functions; and Table III shows all 

(including test functions and application problems) of the 

numerical results and it includes starting estimates
0x , the 

number of iterations ( n ), successive error values of each 

iteration, the number of function evaluations ( )1nh x +  and 

the computational time. 

 
TABLE I 

COMPARISON OF EFFICIENCY INTEX 

                    

                         

 

                  

 
 

 

Where P is the order of convergence, N is the number of functional 

evaluations per iteration and E.I is the efficiency- index. 

 

 
 

 
 

TABLE II 

ROOTS OF THE TEST FUNCTIONS 
 

 

 
 

 

 
 

 

 
 

 

Some real-life applications: 

In this section, we give some practical application 

problems from different fields, such as Physics, Chemical 

Engineering and Medicine, etc. and the results are discussed 

in Table III [ ( ) ( )5 10h x h x− ]. 

 

Application 1. ((Depth of Embedment Model, [6,7]) 

The embedment depth of a sheet-pile wall is determined 

using the following nonlinear equation: 

( ) ( )1 3 22.87 10.28
5 4.62

h x x x x= + − −  

The approximated root is 2.00211877895382. 

 

Application 2. (The vertical stress, [7]) 

One of the primary stresses that finite surface structures 

experience is vertical stress, which is represented by  

( )
1

6 4

x CosxSinx
h x



+
= −  

The root of ( ) 0
6

h x = is 0.4160444988100767043. 

 

Application 3. (Volume from van der Waals equation, [7])  

Van der Waals' equation of a non-ideal gas is given by  

( )( )
2

2
anp V nb nRT

V
+ − =   

where n  is the number of moles, V  is the volume of the 

gas, T  is the temperature in Kelvin, p  is the pressure, and 

R  is the gas constant, which is equal to 0.0820578 L-

atm/mol-K. It is given by 

( ) ( )3 2 2 3
h V pV n RT bp V n aV n ab= − + + −  

Put V x= , by giving particular values to the parameters, 

the above equation is the nonlinear polynomial function. 

( ) 95.26535116 35.28
3 2

4 5.699830 687 x xh x x= − + −  

The root of the equation is 1.9707842194070294x  . 

 

Application 4.     (Stirred Tank Reactor, [6]) 

Consider a stirred-tank reactor. The reactor receives 

materials at rates of   and q − , respectively. The 

equipment improves mixed reactions, as shown below: 

; ;
1 2 3 3 2 4

; .54 2 4 2 6

H H H H H H

H H H H H H

+ → + →

+ → + →
 

During their preliminary analysis of this intricate control 

system, Douglas found the nonlinear polynomial equation:  

Methods P N       E. I 

DM 16 5 1.7411 

RM 16 6 1.5874 

YM 16 5 1.7411 
SM 16 5 1.7411 

KM 16 5 1.7411 

       Test Function       Root 

( ) 2

1 sin 1h x x x= − +  1.4096240040  

( ) ( )
3

2

2

sin
2 cos 1

x
h x sin x x e= − − +  

0.7848959876−

 

( )3 sin cosh x x x x= + +  0.4566247045−

 

( )4

sin
1

x
h x e x= − +  

2.6306641479  
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( )

( ) ( ) ( )

2.98 2.25 1

2
1.45 2.85 4.35

x

Gcx x x

 +
=

+  +  +

      

By taking 0Gc = , we have                               

( ) 4 3 2
11.50 47.49 83.06325 51.23266875 0

8
h x x x x x= + + + − =

The real root of the equation is -1.45. 

 

Application 5. (Blood rheology model, [6, 8]) 

    In medicine, the study of blood flow and structure is 

referred to as blood rheology. We take into consideration the 

following nonlinear equation for analyzing the plug flow of 

a Caisson fluid flow: 

( )
1 8 168 5 4 20.0571428571 3.624489796 0.3

9 441 63 9
h x x x x x x= − − + − +  

Where x is the plug flow of Caisson fluid, and the 

approximated root is 0.0864335580522467. 

 

Application 6.     (Law of Blood Flow, [8]) 

This legislation was proposed in 1840 by French 

physician Jean Poiseuille. Where   is the blood viscosity, 

R  is the radius, l  is the length, P  is the pressure and h  is 

a function of x  with the domain  0, R , blood flows via the 

vein or artery. This law is stated as the nonlinear model 

shown below by 

( ) ( )2 2
10

P
h x R x

l
= −  

Where, 4000P = , 0.008R = , 0.027v = , and  2l =  are 

taken for the simulations. 

 
TABLE III 

COMPARISON OF EFFICIENCY

Method n 
1 0x x−  2 1x x−   3 2x x−  4 3x x−  ( )1

h x
n+  

Comp. Time 

h1(x) x0     1.1      

DM 

RM 
YM 

SM 

KM 

4 

4 
4 

 

3 

0.309623 

0.309624 
0.309624 

Divergent 

0.309624 

2.51E-07 

3.06E-10 
7.72E-11 

 

1.09E-16 

2.80E-107 

1.01E-157 
2.41E-166 

 

1.34E-248 

5.19E-690 

5.68E-315 
1.36E-690 

 

--- 

2.10E-689 

1.51E-314 
5.74E-690 

 

3.58E-248 

0.030047 

0.030144 
0.030021 

 

0.022759 

h1(x) x0      1.7      

DM 

RM 

YM 
SM 

KM 

4 

3 

3 
 

3 

0.290375 

0.290375 

0.290375 
Divergent 

0.290376 

5.10E-12 

1.28E-15 

2.30E-14 
 

3.58E-19 

2.29E-182 

9.19E-244 

9.58E-223 
 

6.65E-286 

4.18E-689 

--- 

--- 
--- 

5.74E-690 

2.44E-243 

2.54E-222 
 

1.76E-285 

0.010013 

0.008378 

0.008496 
 

0.008129 

h2(x) x0     -0.2      

DM 
RM 

YM 

SM 
KM 

29 
27 

5 

 
4 

30501082 
7.166868 

1.301102 

Divergent 
0.757895 

1525054 
46.81753 

0.828709 

 
0.003354 

7625267 
2322198 

0.112502 

 
4.32E-36 

3812636 
1.84E+10 

8.93E-16 

 
4.54E-559 

1.09E-690 
8.13E-487 

7.51E-242 

 
7.13E-558 

0.057922 
0.056854 

0.028127 

 
0.027746 

h2(x) x0     -0.6      

DM 

RM 
YM 

SM 

KM 

4 

4 
4 

 

3 

0.184895 

0.184895 
0.184895 

Divergent 

0.184896 

1.22E-08 

1.61E-11 
1.24E-11 

 

2.34E-15 

2.66E-126 

2.19E-174 
5.16E-176 

 

2.38E-213 

1.36E-691 

3.35E-348 
1.36E-691 

 

--- 

1.09E-690 

9.44E-348 
1.09E-690 

 

7.53E-212 

0.028556 

0.028963 
0.028543 

 

0.024888 

h3(x) x0     -2.9      

DM 

RM 

YM 
SM 

KM 

6 

9 

6 
5 

4 

5.268071 

7.209406 

13.01157 
4.274281 

2.348731 

1.587129 

12.39890 

11.52001 
1.837365 

0.094644 

1.662635 

1.251174 

26.97380 
0.006459 

2.61E-27 

0.425068 

6.842315 

0.001152 
1.77E-45 

1.42E-410 

4.70E-280 

4.22E-280 

1.09E-690 
1.09E-690 

3.32E-410 

0.049482 

0.055217 

0.052076 
0.047585 

0.041489 

h3(x) x0     -5      

DM 
RM 

YM 

SM 
KM 

6 
5 

5 

 
4 

6.776853 
11.67100 

2.941615 

Divergent 
4.544188 

7.009183 
6.890387 

1.601759 

 
0.000812 

4.609346 
0.237241 

1.03E-06 

 
3.51E-58 

0.166358 
4.87E-22 

4.73E-107 

 
6.84E-691 

6.76E-361 
8.34E-353 

1.09E-690 

 
1.09E-690 

0.024375 
0.020124 

0.020057 

 
0.017536 

h4(x) x0     1.4      

DM 

RM 
YM 

SM 

KM 

 

5 
4 

4 

4 

Divergent 

7.409405 
0.859028 

1.344396 

1.220339 

 

8.791936 
0.371636 

0.113732 

0.010325 

 

0.151867 
2.36E-15 

4.44E-25 

2.22E-38 

 

7.45E-22 
2.30E-242 

1.05E-399 

2.06E-573 

 

1.54E-347 
5.59E-242 

2.57E-399 

5.95E-573 

 

0.050035 
0.045499 

0.045476 

0.045234 

h4(x) x0     3.1      

DM 

RM 

YM 
SM 

KM 

4 

3 

3 
 

3 

0.469335 

0.469335 

0.469335 
Divergent 

0.469336 

1.52E-11 

8.93E-13 

4.86E-13 
 

1.34E-16 

1.68E-180 

1.14E-202 

2.28E-203 
 

1.31E-273 

6.56E-690 

--- 

--- 
--- 

--- 

4.65E-690 

2.77E-202 

5.52E-203 
 

3.32E-273 

0.021657 

0.019365 

0.019356 
 

0.019169 
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Where 
0x  represents the starting approximation, n  represents the number of iterations, , 0,1,2,...

1
x x nnn

− =
+

represents error and ( )1
h x

n +
 represents 

a number of functional evaluations. 

        

h5(x) x0     1.9      

DM 

RM 
YM 

SM 

KM 

3 

3 
3 

3 

3 

0.102118 

0.102118 
0.102118 

0.102118 

0.102118 

2.75E-18 

4.13E-21 
1.13E-21 

6.60E-20 

1.09E-23 

6.53E-284 

1.06E-331 
2.52E-341 

2.87E-311 

1.34E-348 

--- 

--- 
--- 

--- 

--- 

2.67E-283 

4.34E-331 
1.03E-340 

1.17E-310 

4.48E-348 

0.011001 

0.010568 
0.010276 

0.010679 

0.010191 

h5(x) x0     2.2      

DM 

RM 

YM 
SM 

KM 

3 

3 

3 
3 

3 

0.197881 

0.197881 

0.197881 
0.197881 

0.290376 

4.45E-15 

1.59E-17 

5.01E-18 
3.01E-16 

3.58E-19 

1.44E-232 

2.41E-274 

5.75E-283 
1.01E-252 

6.65E-286 

--- 

--- 

--- 
--- 

--- 

5.90E-232 

9.88E-274 

2.35E-282 
4.13E-252 

1.76E-285 

0.022114 

0.022003 

0.021988 
0.022048 

0.021927 

h6(x) x0    1.5      

DM 
RM 

YM 

SM 
KM 

5 
7 

7 

6 
4 

0.751666 
0.500948 

20.29210 

22.44969 
0.761422 

0.332288 
1.978125 

176.6148 

22.21975 
0.117886 

8.41E-07 
13.03318 

196.4308 

0.732831 
6.18E-16 

6.60E-100 
15.423815 

0.6070711 

0.1211757 
8.92E-271 

1.36E-691 
1.93E-242 

1.36E-691 

2.23E-267 
1.75E-271 

0.057561 
0.061101 

0.061017 

0.059076 
0.055171 

h6(x) x0     -0.8      

DM 

RM 

YM 

SM 

KM 

 

6 

4 

4 

4 

Divergent 

1.428674 

1.194142 

1.195349 

1.219948 

 

7.349666 

0.021901 

0.020695 

0.003903 

 

4.674464 

1.91E-31 

1.82E-30 

9.16E-42 

 

7.29E-452 

3.13E-496 

3.31E-479 

3.15E-621 

 

4.10E-452 

1.66E-496 

1.77E-479 

1.67E-621 

 

0.042107 

0.042008 

0.042032 

0.041789 

h7(x) x0     2.2      

DM 

RM 
YM 

SM 

KM 

4 

4 
5 

5 

4 

0.229216 

0.229216 
0.229215 

0.229216 

0.229216 

1.08E-09 

4.32E-12 
3.28E-12 

1.54E-10 

1.33E-14 

1.23E-83 

4.80E-122 
3.45E-90 

8.28E-86 

1.85E-124 

2.22E-306 

6.91E-262 
1.16E-260 

7.08E-238 

3.54E-314 

2.78E-304 

8.70E-260 
1.45E-258 

8.91E-236 

4.46E-312 

0.020877 

0.020986 
0.021154 

0.021306 

0.020310 

h7(x) x0      1.8      

DM 

RM 

YM 
SM 

KM 

4 

4 

5 
5 

4 

0.170784 

0.170784 

0.170784 
0.170784 

0.170784 

2.72E-07 

1.64E-10 

2.99E-11 
1.12E-09 

1.29E-12 

2.24E-71 

4.3E-115 

2.11E-88 
6.49E-83 

1.75E-120 

1.33E-269 

4.59E-334 

7.10E-259 
5.55E-235 

3.19E-376 

1.67E-267 

5.78E-332 

8.93E-257 
6.98E-233 

4.02E-374 

0.017932 

0.017854 

0.020126 
0.020145 

0.017746 

h8(x) x0     -1.4      

DM 
RM 

YM 

SM 
KM 

3 
3 

3 

3 
3 

0.05 
0.049999 

0.05 

0.049999 
0.05 

6.47E-16 
3.82E-18 

4.45E-19 

3.28E-17 
9.85E-21 

2.44E-237 
2.09E-275 

2.26E-291 

1.31E-259 
2.20E-300 

--- 
--- 

--- 

--- 
--- 

1.38E-236 
1.18E-274 

1.28E-290 

7.47E-259 
1.26E-299 

0.016034 
0.015983 

0.015907 

0.016005 
0.015856 

h8(x) x0     -1.6      

DM 

RM 
YM 

SM 

KM 

4 

4 
4 

4 

4 

0.14 

Divergent 
0.15 

0.15 

0.15 

0.000286 

 
6.56E-09 

2.25E-07 

1.07E-09 

5.40E-51 

 
1.11E-128 

3.00E-102 

7.63E-135 

1.72E-689 

 
1.91E-690 

5.47E-691 

7.38E-691 

2.62E-689 

 
2.62E-689 

2.62E-689 

2.62E-689 

0.021710 

 
0.021603 

0.021587 

0.021516 

h9(x) x0     -0.6      

DM 

RM 

YM 
SM 

KM 

4 

4 

4 
 

4 

0.686434 

0.686433 

0.686433 
Divergent 

0.686434 

2.48E-08 

2.75E-10 

1.56E-09 
 

1.71E-12 

1.02E-123 

1.70E-158 

1.24E-145 
 

2.58E-185 

3.42E-692 

3.42E-692 

3.55E-692 
 

4.30E-692 

1.36E-691 

1.36E-691 

2.05E-691 
 

1.42E-691 

0.026226 

0.026216 

0.026218 
 

0.022628 

h9(x) x0      0.2      

DM 
RM 

YM 

SM 

KM 

3 
3 

3 

3 

3 

0.113566 
0.113566 

0.113566 

0.113566 

0.113566 

2.65E-20 
2.05E-19 

5.33E-18 

5.33E-18 

3.02E-21 

9.30E-319 
9.41E-304 

1.01E-279 

1.01E-279 

1.33E-322 

--- 
--- 

--- 

--- 

--- 

3.08E-318 
3.12E-303 

3.34E-279 

3.34E-279 

4.41E-322 

0.020502 
0.020526 

0.020614 

0.020613 

0.020439 

Method n 
1 0x x−  2 1x x−   3 2x x−  4 3x x−      5 4x x−   6 5x x−            ( )1

h x
n+

             
   Comp. Time 

h10(x) x0      1      

DM 
RM 

YM 

SM 
KM 

7 
6 

7 

8 
6 

0.929072 
0.940101 

0.944482 

0.923933 
0.945671 

0.065856      0.004256         
0.056252      0.002845 

0.052058      0.002312 

0.070243      0.004979 
0.030842      0.006663 

1.49E-5 
9.11E-7 

6.46E-8 

4.25E-5 
7.91E-16 

2.54E-33 
3.18E-66 

4.52E-62 

2.78E-27 
1.45E-130 

2.32E-65             2.75E-499 
7.05E-102           8.35E-329 

1.05E-101            1.24E-231 

6.27E-52             7.43E-255 
2.43E-524           4.76E-522 

0.020004 
0.016987 

0.020026 

0.024250 
0.016902 

h10(x) x0   10      

DM 

RM 
YM 

SM 

KM 

8 

7 
8 

9 

6 

9.290750 0.658942 

9.401041    0.563078 
9.448323 0.521234 

9.239366       0.702774 

9.442156       0.572255 

0.046682 

0.033633 
0.028638 

0.053411 

0.005868 

0.002824 

0.001447 
0.001003 

0.003636 

3.01E-05 

1.50E-06          1.61E-24 

5.71E-09          1.68E-32 
7.62E-11          4.94E-52 

1.30E-05          5.42E-15 

1.28E-40          1.72E-218 

1.61E-623 

1.99E-405 
5.86E-248 

6.42E-263 

2.12E-218 

0.025088 

0.023592 
0.025123 

0.027650 

0.021044 
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The residual error graphs presented below illustrate a 

comparative analysis between the proposed algorithm and 

several well-established methods, namely, the DM, RM, YM, 

and SM methods for solving nonlinear equations. Each graph 

visually captures the convergence behavior of the iterative 

methods by plotting the residual error (i.e., the absolute 

difference between the computed and actual root) against the 

number of iterations. A steeper decline in the residual error 

curve indicates faster convergence and higher accuracy of the 

method. 

The proposed algorithm consistently demonstrates superior 

performance, with more rapid error reduction and fewer 

iterations required to reach a specified tolerance level. This 

enhanced convergence behavior confirms the algorithm’s 

efficiency, robustness, and reliability in both controlled test 

conditions and complex practical problems. By providing a 

side-by-side comparison through these residual error graphs, 

the analysis not only highlights the improvements introduced 

by the new method but also validates its effectiveness over 

traditional iterative techniques. 

 

    
Fig. 1.  h1(x) at x0=1.1 

 

 

   
Fig. 2.  h1(x) at x0=1.7 

                                                                            

     
Fig. 3.  h2(x) at x0=1.1 

 

 

 
Fig. 4.  h2(x) at x0=-0.6 

 

 

     
Fig. 5.  h3(x) at x0=-2.9 
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Fig. 6.  h3(x) at x0=-5 

 

     
Fig. 7.  h4(x) at x0=1.4 

 

 

    
Fig. 8.  h4(x) at x0=3.1 

 

 

    
Fig. 9.  h5(x) at x0=1.9 

 

 

    
Fig. 10.  h5(x) at x0=2.2 

 

 

     
Fig. 11.  h6(x) at x0=1.5 
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Fig. 12.  h6(x) at x0=-0.8 

 

    
Fig. 13.  h7(x) at x0=2.2 

 

 

    
Fig. 14.  h7(x) at x0=1.8 

 

 

    
Fig. 15.  h8(x) at x0=-1.6 

 

    
Fig. 16.  h8(x) at x0=-1.4 

 

 

   
Fig. 17.  h9(x) at x0=-0.6 
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Fig. 18.  h9(x) at x0=0.2 

 

    
Fig. 19.  h10(x) at x0=1 

 

 

    
Fig. 20.  h10(x) at x0=10 

 

  

Using Origin Pro software for graphical comparisons, 

"Fig. 1" through "Fig. 20" display the graphical behaviour of 

the compared iterative methods DM, RM, YM, SM and KM. 

We coloured these methods black, red, blue, green, and 

violet, respectively. 

The residual fall graph clearly illustrates the superior 

performance of the suggested KM in terms of convergence 

speed and efficiency when compared to other well-

established methods, including those by DM, RM, YM, and 

SM. This enhanced performance is highlighted by the rapid 

reduction in the residual values, indicating the method's 

ability to approximate the root with minimal computational 

effort. 

In particular, KM demonstrates a remarkable ability to 

achieve stability in fewer iterations, showcasing its 

convergence precision. While the other methods exhibit a 

gradual or slower decline in residuals over multiple 

iterations, KM outperforms them by exhibiting a steep 

descent, signaling a more effective approach to solving the 

nonlinear system. This behavior reflects the method's robust 

algorithmic design, which minimizes computational cost 

without compromising accuracy. 

 

Graphical comparisons further substantiate the dominance 

of KM. The curves for DM, RM, YM, and SM reflect their 

slower progression toward the root, often requiring 

additional iterations to achieve comparable levels of 

precision. In contrast, KM's curve stabilizes significantly 

earlier, affirming its efficiency and suitability for practical 

engineering and computational applications. 

V.   BASINS OF ATTRACTION 

According to the study on basins of attraction covered 

below, the new method is better than the comparable methods 

in some crucial areas. Combined with an iterative method 

acting on a polynomial, this rational function trait provides 

critical information about the technique's numerical aspects, 

ensuring its stability and reliability. This is another approach 

to compare iterative processes without taking initial 

approximations. To derive the basins of attraction of the root 

in fractal graphs, assume a square    2, 2 2, 2R R = −  −  in 

which we take 250 250 initial points containing all the roots 

( )1, 2,3,...zi
 =  of the relevant complex polynomial and use 

the KM technique starting at each initial point 
0Z  in the 

square. We determine that 
0Z  is in the basins of attraction of 

the root Z j  of the polynomial if the sequence produced by 

the iterative technique converges to it after a maximum of 

100 iterations and a tolerance of ( ) 1610
j

f z
  − 
 

. Consider 

0Z  is given a dark violet colour if 
( ) 1610
N

z zi
 −−   and the 

iterative process begins there and reaches a root after N 

iterations (N ≤ 100). Should N exceed 100, we deduce that 

the origin has diverged and designate it with the colour 

yellow. The basins of attraction for the KM and sixteenth-

order methods—DM, RM, YM, and SM—are as follows. 

Consider the following complex polynomial functions  

1. 1

4( ) 1f z z= −          

2. 2

11( ) 1f z z= −   

                                                                                                                         

The developed algorithm KM and the comparison methods 

have the following basins. 
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Example 1. 4( ) 1
1
f z z= −    

                                             
                                          (a) KM 

           
                                               (b) DM                                                                                                                                                                                                                                                                                                                                                              

           
                                                      (c) RM 

          
                                                      (d) YM                                                                                             

                  
                                                      (e) SM 

Fig. 1.  The polynomiographs for the suggested methods for 1( )f z .                                                                                                                                                                                  

Example 2. 11( ) 1
2

f z z= −  

     
                                             (a) KM 

         
                                          (b) DM 

         
                                         (c) RM 
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                                         (d) YM                                                                                                           

                            

                                          (e) SM                                                                                                                                                                                         

Fig. 2.  The polynomiographs for the suggested methods KM, DM, RM, 

YM and SM for
2 ( )f z . 

In Fig. 1, the proposed method KM takes five to twenty 

iterations for strong convergence, twenty to twenty-five for 

moderate convergence, and more than twenty-five iterations 

for weak convergent or divergent to another root. The other 

methods, DM, RM, YM, and SM, show chaotic behavior. 

In Fig. 2, the proposed method KM takes five to twenty 

iterations for strong convergence, twenty to thirty for 

moderate convergence, and thirty to thirty-five for weak 

convergence or divergence to another root. The other 

methods, DM, RM, YM, and SM, show chaotic behavior. 
 

VI.   CONCLUSIONS 

In this research, we introduced the sixteenth-order 

iterative method and created a novel optimal four-step. 

Based on the convergence study, the suggested strategy has 

a convergence order of sixteen. There is a computational 

efficiency index of 
1 516 1.7411= . The unique approaches 

outperform the comparative methods regarding results in a 

few test and application challenges across several areas. 

Based on the facts gathered, our proposed solutions are 

superior to the existing techniques and significantly more 

effective. To explore their areas of interest, we have also 

looked at the complex field of cyclical techniques. The 

numerical results of the proposed techniques and related 

fractal graphs demonstrate that the unique approaches are a 

valuable alternative to solving the scalar nonlinear equation. 

The proposed method is compatible with other existing 

approaches of the same order. The suggested scheme is the 

most effective approach for each example. Table 3 makes it 

abundantly evident that, when considering the number of 

iterations, successive errors, and computational time, the 

created KM scheme outperforms the other four methods: 

DM, RM, YM, and SM.  

The rapid convergence and reduced iteration count of KM 

not only highlights its theoretical advantages but also its 

practical utility in real-world scenarios where time and 

resource efficiency are critical. This analysis underscores 

the effectiveness of KM in providing quicker, more reliable 

solutions compared to the existing methodologies, 

establishing it as a highly competitive and superior option 

for solving nonlinear equations. 
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