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~ Abstract—In this paper, a quasi-uniform DIN-FE method [7], [4], [8]define it by Fourier expansion series, whereas
is presented to deal with the exterior scattering problem in some researchers represent the DN mapping by means of
acoustics within an unbounded domain. An artificial boundary  |,5gic boundary integral operators [5], [6], [9], [10].There

is utilized to cause the computational domain to be finite. Then, tensi f the DIN-FE thod |
the original problem is reformulated into an equivalent nonlocal &€ SOMe extensions of the -FE method on more genera

boundary value problem in a bounded domain. A number of a artificial boundary in [11], [12], [13]. We also refer to [14],
priori error estimates of the DtN (Dirichlet-to-Neumann) finite  [15], [16] for the boundary integral equation methods and
element method are developed. The error estimates take into [17], [18] for the perfectly matched layer (PML) method.
account both the influence of the DtN boundary condition trun- Corresponding to the exact DtN mapping, there exist several

cation and that of the finite element discretization. Numerical | . o\
experiments are presented which confirm the convergence rates. kinds of local boundary conditions [3], [19], [20], [21] as

well.
Index Terms—DtN mapping, exterior scattering problems, Thl.s paper a'T“S to make Conmbuuo.ns .towards. computing
Finite element methods, quasiuniform meshes. exterior scattering problem on quasiuniform triangle ele-

ments. With the aim of examining the errors arising from
the truncation of the DtN map, Xu and Yin deduce a new
) ) _ and more obvious truncation error indicating exponential
HE propagation of acoustic and electromagnetic wavggcrease between the exact DtN and the truncated one in
arises in a wide variety of applications, for examplgg)(Theorem 7). Using the new truncation error in [8], the
nonCdestructive testing, ocean science, spectroscopy, remgiue solvability of the corresponding truncated variation-
sensing, and radar. imaging. A key aspeF:IIOf a great nUMBgrformuyla (Theorem 3.2) and the classical finite element
of these problems is that they are most fittingly presented gRa|ysis, we formulate a priori error estimates which involve
an unbounded domain, and conditions at spatial infinity Mygfs influences of both finite element discretization and the
be utilized to specify a unique solution. Such domains aRfncations of the DIN map. In addition, a new explicit for-
conditions create major challenges for numerical simulationgyja is given to obtain the finite element computed solution
This paper is focused on the investigation of the numericg{ the Galerkin problem in this paper. It is different from
solutions of the scattering of two-dimensional time-harmonjge formula (82) in [4], which was derived by equispaced
acoustic waves by an impenetrable bounded obstacle. SoRgfes. Finally, we carry out a series of numerical tests to
numerical methods are very appropriate for treating thgymonstrate the efficiency and accuracy of the new formula.
Helmholtz scattering problem in an infinite domain. The The layout of the paper is presented as follows: In Section
coupling of finite element method (FEM) [1]and some appre> e first describe the conventional Helmholtz exterior
priate numerical methods is one of the highly conventiong}oplem. Then we convert the exterior problem in acoustics
numerical methods. The key technique involves introducinigio a nonlocal boundary value problem. The corresponding
an artificial boundary large enough to enclose the obstagigational equations and modified formulation are discussed
and imposing a proper artificial boundary condition. Thejp, section 3. In Section4, using a point estimate of the
the exterior problem is reduced to an equivalent nonlocgiy map, we give a priori error approximations for the
boundary value problem. Many researchers implemented #gjerkin solution. In the concluding section, we carry out

coupling procedure to exterior scattering problem througfyme numerical tests to show efficiency and the accuracy of
defining a Dirichlet-to-Neumann (DtN) mapping on the artige proposed method.

ficial boundary [2], [3], [4], [5], [6]. The authors of [2], [3],
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exterior domain beyonH(see Fig. 1). The following exterior C2(Qz) (N C*(Qr) satisfying
Neumann problem in acoustics is considered: Giety v,

@ 2, _ i
find u € C2(0°) N C1(QF) satisfying Autkiu=0 in Qg (7)
ou  ou’ on T (8)

Au+k%=0, in D¢, (1) v ov ’

du o’ ou” _ Tu® on T (9)

- = - R-

Ov ov’ onT, (2) v

The uniqueness of the solution of (7)- (9) has been given
and the Sommerfeld radiation condition in [4] d (1)-©) g
. 1, 0u .
rll}IIolor (E — ihau) =0, v =al, (3) IIl. M ODIFIED NONLOCAL BOUNDARY VALUE PROBLEM

wherek # 0 is the wave numbers with k) > 0,i = v/—1 The wealk formulation of (7)- (9) reads as: Givéa’/on,
and « = (x1,22) € R2. In this papery represents the outer find u € H' (€r) such that

unit normall to .the boundary a@;/ay indicates the outward a(u,v) + b(u,v) = £(v), Y veH (Qg), (10)
normal derivative orl". The uniqueness of the problem (1)-
(3) are given in [22]. where
a(u,v) = / (Vu - VU — k*uv) do (11)
Q
I'r and
b(u,v) = —/ (Tw’®)vds (12)
I'r

are sesquilinear forms defined @h'(Qr) x H'(Qr), and
((v) = [ Z-7ds is a linear functional oI () depen-
Qgr° dent onZL- € H~1/2(I). For the uniqueness of the solution
of (10), we refer to [4]. In practical computing, one must
Fig. 2: The nonlocal boundary value problem (7)-(9). to truncate the infinite series of the accurate DtN map at a
finite order to acquire an approximate DtN map presented as

/
In order to solve numerically problem (1)-(3), we intro—TN¢ .: XN: JkHS (KR) %"

k
duce an artificial boundaryz = {z € R? : |z| = R} ~HO (kR) Jo (R, ) cos(n(0 = 9))dv,
. _ n=0 n
which should be sufficiently large to surround the region (13)
(see Fig. 2). A DtN mapping@ : H*(T'r) — H*~(T'r), for

V¢ € H*(I'g),1/2 < s € R is described as
N

(1)/ 2
Hy, .
< WV (k) (2 T%;:Z'k(f)(km P(R,)e™ OV ay, (14)
To:= ' — [ &(R)cos(n(d —v))dy, n=0 2mHn"(kR) Jo
n=o mHu (k) Jo @) for all ¢ € H*(Tgr), s > 1/2. Here, the non-negative
integer N is named the truncation order of the DN map.

or equivalently as Therefore, we reach a modified nonlocal boundary value
problem composed of (7), (8) and
(1)/ 2
kHy' (kR) (60— ou®
To:=S —r % (R, )e™ =Dy, (5) — =7Y4 onTp. 15
,% 2w HSY (kR) Jo ( v R (15)

) . o The modified variational equation of (10) is as: fingt €
here and after, the prime following the summation indicatg$1(q) ) such that

that the first term in the summation is multiplied by 1/2, N .
and H{"(-) is the Hankel function of the first kind. [4]  a(un,v) +b" (un,v) ={(v), VveH (Qr), (16)
has confirmed thal” is a bounded linear operator mapplngvherebN(quv) _ er (TN uy Yods.

s s—1
H*(I'R) t(.).h.T (I'r), for any constans Z, 1/2. . Theorem 3.1: Suppose that the DN mags and TV are
The artificial boundary divides the exterior dom&@ifiinto o604 a5 in (5) and (14), correspondingly. Lete the
two subdomains. One is the annular regiop betweenl’ . yion of Helmholtz equation if2; meeting either (6) or

andI'g, and the other is the infinite exterior regiélf, = (15) onT'. Then there exists ai, > 0, for all N > N
R\ QU Qg. OnTx, we utilize the exact radiation boundaryg,ch that ' '

condition

ou’ . (T =T )ull =10,y < cq ull grorevrrzgap,
=Tu® on Tpg. (6)

v Vit>0,s>1/2,

Then the original acoustic scattering problem is rdhrough out this papef) < ¢ < 1 andc > 0 are constants

duced to the following equivalent nonlocal boundary vaindependent ofV andh, whereh is the finite element mesh

ue problem: Givenou®/dv, find the scattered field: € size, which will be introduced in the following section.

(17)
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Proof: Regarding the proof of the theorem, we looKH!(Qg))’ is the adjoint operator of;. Consequently, we

up[8]. m have
Now we show the uniqueness and existence of solutions (b, ) — BN (u, o)
for the modified variational equation (16) which in the sup o —h o Th
subsequent theorem. The demonstration of the theorem can 0#0nESn ol @)
be found in [4]. . [(v2(T = TN )y1u, o) 0|
Theorem 3.2: There exists a constadf, > 0 such that 0o €S llonll a1 )

the modified variational formula (16) has a unique solution

- T — TN u 1 ’
uy € H'(Qp) for N > Ny, 12 Imull @)

<c|(T" - TN)’Vlu”H*l/?(FR)

<cq™||lu . 23
IV. FINITE ELEMENT ANALYSIS <cq”| ”Ht(QR) (23)

We state a prior error estimates for the finite elemeNioticing the results of Theorem 32 the trace theorem and
solution of (16) consisting of error effects of the finitdh® boundedness ai andy,, combining (21) and (23) leads
element grid sizé and the truncation orde¥ in the relevant (© the desired result. _ _ u
Sobolev spaces. Theorem 4.2: With the same assumptions as in Theorem

. . 2 H .

Let V;, represent the conforming finite element space 41, there holds thé”—norm error estimate:

piecewise polynomial functions. We take into account the = unllz2(m)
R

Galerkin formulation of (16): Giveu'/ov, finduy, € V, C o (24)
H'(Qgr) such that <c (h' + W TINT ) [lull e g -
alun, vn) + b (un, vn) = £(vn), ¥ vn € V. (18) Proof: Let d = u — uy, denote the finite element error,

subtracting (18) from (10), we have the following error
The discrete sesquilinear form(uy, v,) + bN (up,vy) was equation:
shown to satisfy the BBL-condition [23].

N N
The following two theorems are the primary conclusions ald, o) + b7 (d, vn) + b(u, vn) b7 (u, va) =0,
of this article, in which some a priori error approximations Vun € Sh
are provided inff' —norm andL?—norm, respectively. Now, the auxiliary boundary value problem is considered as:
Theorem 4.1: For2 <t € R anduy € Vj, we SUPpOSe Eing x € C2(Qr) N CL(QR) such that
thatu € H'(Qr). Then there are constants that satisfy>
0 and Ny > 0 for any h € (0, ho] and N > Ny, such that

(25)

B Ax+k*x=d inQg, (26)
Hu—uhHHl(QR) SC(ht 1+QN) ||U||Hf(QR)- (19) ax
— =0 onT, (27)
Proof: We know from Theorem 5.2 of [4] that gn
(’)_X =Tx onTg, (28)
llu — unllm(ar) §c{ uelg 1w — vl Qp)+ n
orEh Let x is the weak solution of boundary value problem (26)
sup |(b(u, o) — bN (u, o) - (28), w should satisfy for any v € H'(Qg) that,
0#0, €Sh, ||Jh||H1(QR) ,

(20) a(v, x + b (v,x) + b(v, x) = 0" (v, x) = (v, d) L2 () -
(29)

The foremost term on the right hand portion of (20) can be . , , )

estimated directly by the approximation characteristic of tf&€Placingu with e in (29) gives that

finite element spac@{; gives as a(d, x) + ¥ (d, x) + b(d, x) — b (d, x) = ||dH%2(QR)-
inf |lu—vpllgen < b Hullpian). (1) (30)

vp E€ESh
, Then subtracting (25) from (30) leads to
We now only need to take into account the second component
on the right hand side of (20). The trace theorem implies||d|\%2(QH) =a(d,x — vn) + b (d, x — vp) + b(d, x)—
that there is a bounded linear operatar : H'(Q2g) — ' BN (d, ) + bV ( ) — b v g
Hl/Q(FR) such that » X U, Up uavh)a Vp € (}%1)

|(b(u, on) = b (u,0n)] _ [{(T = T™)m1u, y10m) 14|

Because of the approximation property ®f and the regu-

lonller @) ol @) larity theory, there yields
_ (T =T )mu,von) 04|
lonllr(@n) la(d, x —vn) + bV (d,x — vp)|
(@2) <clldllm @mllx = vnll o) @)
where (-, -)r,, is the standard.? duality pairing between <chlldll g p) X1 (00)
H-Y2(Tg) and H'/?(I'g), and o : H Y?(Tg) — <chl|d|l g @m lldll 2 )
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wherec > 0 is a constant. Adhering to the same argument

in Theorem 4.1 and selecting= 2, we have
[b(d, x) — 0™ (d, x)|
<[y (T = T )mdll g2y X2 (000)
<N(T — TN )yadll gr-s/2 (0 ) IX ] 22 (2m)
<) 11 g2 Il 2202
Similarly, we can get that
6" (u, x = vp) — blu, x —vp)]
<2 (T = T )mull g1y 11X = onll (@)
< (T = T )ull g-172 ey X = vnll 20
<chg™ ||ull mre o Al L2(0m)

and N

<2 (T = T yull g2y IXN 22@0)
< (T = Tl g-s/2 (0 ) IX N 12 (62
SCQN||U||Ht(QR)Hd||L2(QR)-

Thus, by the triangular inequality, we have

|6 (w, vp,) — b(u, )]

Fig. 3: Computational annulus domain.

bN (u,v) = 7/ (M™Nu)ods. (36)
Ir
The discrete formulation of the integrals reads as

MN ¢ pids. (37)
I'r
The finite element spadg, is composed of piecewise linear
functions{¢;} /], where NP is the total number of free-
dom. The outer boundaiyy, is discretized by noneqwspaced
nodeszy, x, ..., rN, and thej*" point {xj} %, possesses
the polar coordinategR, 6;).
For thoseg;’s which do not vanish o', we have

<[6™ (u, x = vn) = b(u, x — wa)| + [b(u, x) — ™ (u, x)|
<crhg™ ull g m 1l L2 (0n)
+ cahg™ [[ull e 4] L2(r)-
(34)
Therefore, by the combination of the inequality (31) - (34)
and (19), we derive that

llu = unll 2y <ch (K1 + ) ullmegon)
C o
+ o (B 4 %) [l on)
+ chq™ |Jull g n) + cd™ Jull e (on)-

Finally, noticing to the fact: € (0,ho] and N > Ny, the
desired result is obtained. [ |

V. NUMERICAL EXPERIMENTS

In this part, for the purpose of verifying the effectiveness
of the proposed method, we consider a model with a plane
waveu! = e?*22d with the propagation directiod = (1,0)
around an infinite circular cylinder with a radiug,. The
exact solutionsu of the exterior problem (1)-(3) can be
written as

u(r,0) = — Z iniﬂl(kRo)

- H,Sl) (kr)eme,
= HY (kRo)

VTZR(%

(35)

where the prime behind Bessel and Hankel functions denotes
the first order derivative.

We select the artificial boundaryr as a circle with a
radius of R. It surrounds the circle with a radius &, and
has the same center &5 Then, the computational region
Qpr is the annulus region betwedhandI'r (see Fig. 3).
The computational annulus region is further discretized by
quasi-uniform triangle elements.

In order to obtain the finite element solution of (18), we
have to numerically compute the sesquilinear form

Here,A9j71 = Hj —
In terms of the definition ofM/", the computation of
integrals (37) is equivalent to calculating the following series

979]‘71

A9j71 ’ ej—l S 9 S 9-]7
¢j(9) = %7 0, <0 <041,
0, others

9]',1, AQJ = 9j+1 — 9]'.

FR MN¢;hids
(1
72 kRHl) Iil;})%) "
02” o 6, (R, )8 (R, 0)cos(n(0 — 1)) dbde)
N g
{[Ml“ (cos(nb;) — cognb;_1))
_ Alai (cos(nfi 1) — cognb;))] (38)
. [MH (cos(nb;) — cognb;_1))
_ A%j(cos(n@jﬂ) — cognb;))]
" [ﬁ(sin(nei) — sin(nf; 1))
- Alei (sin(n;41) — sin(nd;))]

) [m(sin(nﬂj) —sin(nd;_1))

- R nn8510) - sinos ) |
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0.8

0.7

coarse triangular mesh is generated by MATLAB and tF o
mesh is refined uniformly to carry out an investigation ¢ —°-°
convergence (Fig. 4). Additionally, we invariably fix the -t

—1.5

Equation (38) plays an important role in the following 27 27
computations. 15 ‘ o8 g
In the following part, several numerical examples utilizin 1r o7 1r
radiusRy = 1, R = 2 unless otherwise being stated.

linear Lagrange elements will be presented. An origin 0.5 o o5/ 0.6
) 0.5 © ) 0.5
—0.5
0.4 0.4
|!' a1l ' y
03 _, gl 0.3
—2 0.2 —2 0.2
o 2 -2 o 2

-2

a

2 ) 2
1.5 o.a 1.5 o.s
0.7 1 0.7

o.s / —_— 0.5 i
o o
0.5 0.5
0.5 ‘ 0.5 Y
0.4 0.4
-1 -1
0.3 0.3
-1.5 -1.5
- 0.2 - 4 0.2
<> o 2 Z> o 2

Fig. 5: Absolute values of the numerical solutions (left) and
the exact solutions (right) of. on coarse mesh (top) and
finest mesh (bottom).

TABLE II: Numerical errors wherk = 1,N = 15.

N, dof h L%2-norm order HT-norm order

) 2 24 0.9310 9.1615E-2 3.8745E-1

= -1 0 1 2 4 80 0.4655 2.0250E-2 2.18 1.4723E-1 1.40
8 288 0.2328 4.7179E-3 2.10 7.1523E-2 1.04

) ) ) . 16 1088 0.1164 1.1649E-3  2.02 3.5745E-2  1.00
Fig. 4: From left to right: coarse mesh; fine mesh; finest 32 4224 00582 28913E-4 2.01 1.7825E-2  1.00

mesh.

Experiment 1. In this experiment, we choose the wavd/h (h being the meshsize) and confirms that the optimal
numberk = 1 and the truncation ordelN = 15 of the DtN order of convergence
mapping. Then the solutions for differehtare computed
and correspondllng numerical results and exact solutions are u — unllzz = O(h%), |lu—up|m = O(h), (39)
presented in Fig. 5 wheh = 0.4110 and h = 0.0262,
respectively. We can find that the numerical solution are @& depicted in Theorem 4.1 and 4.2 for a truncation order
complete accordance with the exact solutioifis small 0f the DtN mapping that is large enough. It also indicates that
enough. Numerical errors and convergence order are listé@ quality of numerical solutions relies on wave numbers
in Table | corresponding to the differeiit The number and the accuracy degrades correspondingly as the wave
of degrees of freedom is represented dwyf. We use the numberk; grows with the identical mesh size
numerical method in [4] to calculate this problem and present
the results in Table Il. Heré is the diagonal length of 10° — 10* ——
the rectangular meshes. It can be seen that our results —e—k=2 —o—k=2
consistent with the results in [4]. However, we don't need 1 10 2N |- ‘C‘;ﬁz) o ‘é,:(ﬁ)
project the annular region onto the rectangular region. ]

TABLE |: Numerical errors wherk = 1,N = 15.

dof h L?-norm order HI-norm order 10
143 0.4110 4.4642E-2 2.8550E-1

512 0.2084 1.1637E-2 1.98 1.4285E-1 1.02 ~
1928 01042 2.9455E-3 1.98 7.1509E-2  1.00 0 s o o 0 o o
7472 0.0521  7.3896E-4 1.99 3.5775E-2 1.00 1/h 1/h

29408 0.0262 1.8492E-4 2.02 1.7892E-2 1.01

Fig. 6: Log-log plot vs.1/h for errors inL?-norm (left) and
H'-norm (right).
Experiment 2. In this experiment, we calculate the model
problem to test the error effect of the numerical discretiza- Experiment 3. It is considered with the effects of
tion. We fix N = 15 and take into account three differentruncation order N regarding the overall numerical er-
wave numbersg = 1,2, 4. Fig. 6 shows the log-log plot of rors. Letk = 2, and compute the numerical errors mea-
errors measured i.?-norm andH'-norm with respect to sured in L?-norm for four distinct meshsizes of =
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0.2084, 0.1042,0.0521, 0.0262, in turn. Fig. 7 indicates that
the errors diminish very rapidly for alh because of the
truncation orderN. This is agrees with the theory which
indicates, based on (24), that the convergence order is
O(C(]X,—";f)) provided thath is sufficiently small. In Fig. 7,

we recognize that whetv = Ny = 4, the accuracy for

h = 0.2084 and 0.1042 reaches the optimal level whereas
N = Ny = 5 for other magnitudes of. In addition, we note
that there are no numerical enhancements in accuracy when
N > N, for everyh because error of domain discretization
prevails.

~+h=0.2084
& o h=0.1042
\ h=0.0521
~+—h=0,0262
10’ _
g Fig.
= 107
10 :
10’ 10

N

Fig. 7: Log-log plot of errors ir{°-norm vs the truncation
order N for varioush whenkR = 4.

Experiment 4. This test aims at investigating the numer-
ical rule N > kR introduced in [24], [25]. We choose the
meshsizeh = 0.0521. The log-log plots of numerical values
evaluated inL?-norm are shown in Fig. 8. It shows that
the optimal truncation ordel, rises linearly in proportion
to kR. For example, we can see from Fig. 8, the optimal
truncation orderNy = 5 as kR = 4 while Ny = 13 as
kR = 20. To eachk R, there is no enhancement of accuracy
when N > N,. Our numerical outcomes are in excellent
accordance with the numerical rulé > kR.

VI. CONCLUSION [2]

In the present paper, we compute the finite element
solution of an exterior Neumann problem through Fourief
analysis on quasi-uniform meshes. The initial boundary;
value problem is reformulated into an equivalent nonlocal
boundary value problem in a bounded domain. Uniqueness
and existence for the weak solution are demonstrated withijg
suitable function spaces. Priori error estimates of the finite
element solution, incorporating the impacts of both the trunz
cation of the DtN operator and the numerical discretisation,
are developed in suitable Sobolev spaces. In the end, we
carry out a series of numerical experiments to demonstraté
the efficiency and accuracy of the DtN-FE method for solving
the exterior scattering problem in acoustics. [8]
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