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Characterization of Almost Interior Ideals and
Their Fuzzifications in Ternary Semigroups
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Abstract—The ternary algebraic structure was given by
Lehmer in 1932. Grosek and Stako studied almost ideals in
semigroups in 1980. Later, in 2019, S. Suebsung et al. introduced
almost ideals in ternary semigroups. This paper aims to define
almost interior ideals in ternary semigroups and fuzzy almost
interior ideals in ternary semigroups. We discussed the union of
almost interior ideals, including almost interior ideals in ternary
semigroups. In class, fuzzifications are the same. Finally, we
connect almost interior ideals and fuzzy almost interior ideals
in ternary semigroups.

Index Terms—almost interior ideals, fuzzy almost interior
ideals, almost weakly interior ideals, fuzzy almost weakly
interior ideals

I. INTRODUCTION

EHMER gave the concept of a ternary semigroup in

1932 [1], but Kanser studied earlier such structures
in 1904 [3]. In 2010, Santiago and Sri Bala [3] discussed
regularity conditions in a ternary semigroup. The classical
of fuzzy sets was proposed in 1965 by Zadeh [4]. These
concepts were applied in many areas, such as medical sci-
ence, theoretical physics, robotics, computer science, control
engineering, information science, measure theory, logic, set
theory, and topology. Rosenfeld used the concepts of fuzzy
sets to fuzzy subgroups and fuzzy ideals. Kuroki studied the
fuzzy semigroups in 1981. Satko and Grosek defined the
concept of an almost-ideal (A-ideal) in a semilattice in 1981
[5]. In 1981, S. Bogdanovic [6] gave the concept of almost
bi-ideals in semigroups. In 2019, S. Suebsung et al. [7], [8]
investigated almost ideals and fuzzy almost ideals in ternary
semigroups. In 2020, Chinram et al. [9] discussed almost
interior ideals and weakly almost interior ideals in semi-
groups and studied the relationship between almost interior
ideals and weakly almost interior ideals in semigroups. The
research of almost ideals studied in semihypergroups such
that in 2021, P. Muangdoo et al. [10] studied almost bi-
hyper ideals and their fuzzification of semihypergroups. W.
Nakkhasen et al. [11] discussed fuzzy, almost interior ideal
hyper ideals of semihypergroups. In 2022, T. Gaketem and P.
Khamrot [12] explored the concept of almost ideals within
the framework of bipolar fuzzy sets, specifically focusing
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on bipolar fuzzy almost bi-ideals in semigroups. In 2023, T.
Gaketem and P. Khamrot [13] studied bipolar fuzzy almost
interior ideals in semigroups. In 2024, T. Gaketem and
P. Khamrot [14] discussed bipolar fuzzy almost ideals in
semigroups. Recently, P. Khamrot et al. [15] presented almost
n-interior ideals and their fuzzifications in semigroups. In
addition, almost ideal’s work also has many studies, such
as almost ideals in ordered semigroup [16], almost ternary
semigroup [17], [18], almost ideals in semirings [19], almost
ideals in ternary semiring [20], etc.

This paper defines almost interior ideals in ternary semi-
groups and fuzzy almost interior ideals in ternary semi-
groups. We discussed the union of almost interior ideals,
including almost interior ideals in ternary semigroups. In
class, fuzzifications are the same. Moreover, we connect
almost interior ideals and fuzzy almost interior ideals in
ternary semigroups.

II. PRELIMINARIES

Now, we discussed the concept of ternary semigroups,
fuzzy set, types of fuzzy ideal in ternary semigroups, and
basic properties for the study of the next sections.

A non-empty set 7 together with a ternary operation
defined on 7 is said to be a ternary semigroups (TSG)
if it satisfies the associative law, that is; (vwo(zyz)) =
(o(rorn);) = vro(ryz) for all v, 1, 1,n,5 € T [8].

For non-empty subsets V,W, X of TSG 7T, defined
VWX = {oror |p e V,weW,re X}

Example 2.1. Let 27~ be a set of all even numbers. Then
the usual ternary multiplication of negative numbers. Thus,
27~ is a TSG.

Definition 2.2. [8] A nonempty subset © of a TSG T is
called

1) A ternary subsemigroup (TSSG) © of T if ©00 C ©.
2) A left ideal (LD) © of T if TTO© C ©.
) A middle ideal (MD) © of T if TOT C ©.
4) A right ideal (RD) © of T if ©TT C ©.
5) An ideal (ID) © of T if it is a LD, an MD, and a RD
of T.
(6) An interior ideal (IID) © of T if © is a TSSG and
TTOTT C6.
(7) Anweakly interior ideal (WID) © of T if TTOTT C ©.
(8) A left almost ideal (LAD) © of T if tO0 N O #£ O, for
all teT.
(9) A middle almost ideal (MAD) © of T if tOtN © # {,
forall teT.
(10) A right almost ideal (RAD) © of T if OttN O # , for
allte T.
(11) An almost ideal (AID) © of T if it is an LAD, an MAD
and a RAD of T.

Volume 55, Issue 6, June 2025, Pages 1538-1545



TAENG International Journal of Applied Mathematics

For any b; € [0,1], ¢ € F, define

;= ; ; .= inf {h;}.
Jebi = supth) and - pbe = Inlihi)

We see that for any h,t € [0, 1], we have

hVte=max{h,t} and hAr=min{h,t}.

A fuzzy set (FS) T in a nonempty set 7 is a function
from 7 into the unit closed interval [0, 1] of real numbers,
ie, T:7 —[0,1].

For any two FSs T and Y5 of a nonempty set 7, define
the symbol as follows:

(1) Tl S TQ = Tl(h) S Tg(h) for all h (S T,

(2) Tl = Tg = Tl < TQ and TQ < Tl,

(3) (Y1 AT2)(h) = min{Ty(h), T2(h)} = T1(h) A To(bh)
forallh € T,

(4) (T1V T2)(h) = max{T1(h), T2(h)} = T1(h) V T2(b)
forall h € T,

(5) the support of Y instead of supp(Yy) = {h € T |
T1(h) # 0}.
For the symbol T > 15, we mean Yo < Y.

If ) # © C T, then the characteristic function Ag of T
is a function from 7 into {0, 1} defined as follows:

A@(h):{l if he o

0 otherwise.

Definition 2.3. Let 7 be a TSG and =, be a non-empty
subset of T, we define the set Z, by

S ={(1,3) €T xT xT |u=rns}.

Definition 2.4. [8] Let Y1, Yo and Y3 be FSs of a TSG T.
The product of FSs Y, Yo and n of T is defined as follow,
forallueT
(Tl o TQ o} Tg)(u) =

Vo AT1@) AT2(0) ATs(3)} i Eu # 0,

(1,9,3)€EEu

0 if 2y = 0.

Lemma 2.5. [2] Let ©1,02 and O3 be non-empty subsets
of a TSG T. Then the following holds.

1) Ao, N Ao, NAeo, = Ao ne,ne;-

2) A, oMo, 0 Ae, = Ao, 0,0;-

For u € T and t € (0,1], a fuzzy point (FP) /i, of a set
T is a FS of T defined by

h(e) = {t if

0 otherwise.

e =u,

Definition 2.6. A FS ¥ of a TSG T is called

(1) a fuzzy subsemigroup (FSSG) of T if ¥(abc) < ¥(a) A
W(b) A¥(c) for all a,b,c €T,

(2) a fuzzy left ideal (FLID) of T if ¥(abc) < W(c) for all
a,beT,

(3) a fuzzy middle ideal (FMID) of T if ¥(abc) < ¥ (b) for
all a,b,c € T,

(4) a fuzzy right ideal (FRID) of T if ¥(abc) < U(a) for
all a,b,c €T,

(5) a fuzzy ideal (FID) of T if it is both a FLID, FMID and
FRID of T,

(6) a fuzzy interior ideal (FIID) of T if it is a FSSG and
U(abcde) < U(c) for all a,b,c,0,e € T.
(7) afuzzy weakly interior ideal (FWID) of T if ¥ (abcde) <
U(c) for all a,b,c,0,e € T.
(8) a fuzzy left almost ideal (FLAID) of T if (hyohyo W) A
W £ 0 for all FP hy € T.
(9) a fuzzy middle almost ideal (FMAID) of © if (hyo W o
) AU 0 for all FP h € T.
(10) a fuzzy right almost ideal (FRAID) of © if (W ohiiohy) A
W £ 0 for all FP hy € T.
(11) a fuzzy almost ideal (FAID) of © if it is both a FLAID,
FMAID and FRAID of T.

ITI. ALMOST INTERIOR IDEAL AND FUZZY ALMOST
INTERIOR IDEAL

In this section, we define the almost interior ideal and
fuzzy almost interior ideal in TSG. We study basic some
interesting properties of almost interior ideal and fuzzy
almost interior ideal in the TSG.

Definition 3.1. A non-empty subset © on a TSG T is called
a almost interior ideal (AIID) of T if t1t20t1t2, N O # () for
all fl, f2 € T

Example 3.2. Let Zg be a TSG under the addition on Zg
and let K = {1,3,4}. Then K is an almost interior ideal of
ZLg.

Ift=0 then 0+0+K+04+0)NK =K.

Ift=1 then 1+1+K+14+1)NnK=1{1,3}
Ift=2 then 2+2+K+24+2)NnK=1{1,3}
Ift=3 then 3+3+K+1+3)NK=1{3,3}.
Ift=4 then (4+4+K+4+4)NK=1{1,3}
Ift=5,then (5+5+K+5+5) NK=1{1,3}

But it is not an interior ideal of Z¢ because 5+5+4+5+5 =
0¢ K.

Theorem 3.3. Every IID of a TSG T is an AIID of T.

Proof: Assume that © is an IID of a TSG 7 and let
t1,t € T. Then t1t2,0t1t; C TTOTTO. Thus, t;t,0t1t2N
© # (). We conclude that © is an AIID of 7. [ |

Theorem 3.4. Let © and ) be two non-empty subsets of a
TSG T such that © C Q. If © is an AIID of T, then () is
also an AIID of T.

Proof: Let ) be a subset of 7 with it containing © and
let tl, tg € T. Then tlfg@flfz - fthQflfg Thus, fthQfltgﬂ
Q # (. Hence, Q is an AIID of 7. [

The following result is an obvious of Theorem 3.4.

Corollary 3.5. Let ©1 and ©4 be AlIDs of a TSG T. Thus
©1 U Oy is also an AIID of T.

Proof: Since ©1 C ©1 U O, by Theorem 3.4, ©; U O,
is an AIID of 7. [ |

Theorem 3.6. Let ©1 and Oy be nonempty subsets of a TSG
T. If ©1 is an AIID of T, then ©1 U O is an AIID of T.

Proof: By Theorem 3.4, and ©; C ©; U O,. Thus,
©1UO;y is an AIID of 7. [ |

Corollary 3.7. The finite union of AIlDs of a TSG T is an
AIID of T.
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Example 3.8. Let Zg be a TSG under the addition on Zg
and let K1 = {1,3,4} and K5 = {0, 3,5}. By Theorem 3.2,
K1 and Ko are AIIDs of Zs. But K1 N Ko = {3} is not AIID
Of ZG-

Definition 3.9. A FS Y on a TSG T is called a fuzzy almost
interior ideal (FAIID) of T if (Ayobio T ohy oby) AT # 0.
for any FP h’u bt, hy, bt' € T

Theorem 3.10. If Y is a FAIID of a TSG T and Y5 is a
FS of T such that Y1 < Y, then Y4 is a FAIID of T.

Proof: Suppose that Y is a FAIID of a TSG 7 and
Ts is a FS of 7 such that T; < Y5. Then for any FPs
ht, I)t, ﬁt/, bt/ € T, we obtain that (htothTl ohy Obt/)/\Tl 7é
0. Thus,

(htothTl ohy Obt/)ATl (htomngohtf Obt’)/\TQ £ 0.

Hence (ficobi o Yoo hy oby) A Ty # 0. Therefore, Ts is a
FAIID of 7. [ |
The following result is an obvious of Theorem 3.10.

Theorem 3.11. Let Y1 and Yo be FAIIDs of a TSG T. Then
Ty VY5 is also a FAIID of T.

Proof: Since T < 11V Yo, by Theorem 3.10, T1 VY5
is a FAIID of 7. [ |

Theorem 3.12. If Y is a FAIID of a TSG T and Y5 is a
FS, then Y1V Y5 is a FAIID of T.

Proof: By Theorem 3.10, and T; < T3 V YTs. Thus,
Y1V Yy is a FAIID of T. [ |

Corollary 3.13. Let T be a TSG. Then the finite maximum
of FAIIDs of T is a FAIID of T.

Example 3.14. Define Y : Zg — [0,1] by T(0) =0 T(1) =
05 T(2) =0 T(3) = 0 TA) = 0.4 Y(5) = 0.3, and
V¥ Zg — [0,1] by $(0) = 0 (1) = 0.6 $(2) = 0.1
P(3) =0 ¥(4) =0 v(5) =0.3. Then Y and 1) are FAIIDs
of Zg. Thus, T V v is a FAIID of Zs. But T N is not a
FAIID of Zs.

Theorem 3.15. Let © be a nonempty subset of a TSG T.
Then © is an AIID of T if and only if Ag is a FAIID of T.

Proof: Suppose that O is an AIID of 7. Then ryOry N
© £ () for all ¢,y € T. Thus, there exists ¢ € T such that
¢ € 1pOry and ¢ € O. Let Iy, by, Ay, by € T and t, ¢ € (0, 1].
Then (A, obg o Ag o fiy oby)(c) # 0 and Ag(c) # 0. Thus,
((hyobgoAgohyoby) AAe)(c) # 0. So (AgoboAg o
hy oby) A Ag # 0. Hence, Ag is a FAIID of 7.

Conversely, suppose that Ag is a FAIID of 7 and let
ht,bt,ht/, bt/ € T and t, t e (0, 1] Then (ht o bt oAg o
hy oby) A Ag # 0.. Thus, there exists ¢ € © such that
((hy oby o Ag o iy o by) A Ap)(c) # 0. It implies that
(Aig o by o Ag o Ay 0 by)(c) # 0 and Ae(c) # 0.Hence,
¢ €Oy and ¢ € O. So YO N O #£ (P for all r,p € T.
We conclude that © is an AIID of 7. [ |

Theorem 3.16. Let Y be a fuzzy subset of a TSG T . Then
Y is a FAIID of T if and only if supp(Y) is an AIID of T.

Proof: Assume that T is a FAIID of a TSG 7T and let
hy, bt, hy, by € T and t, t' e (07 1] Then (htothTOhUObU)/\
T # 0. Thus, there exists 3 € 7 such that ((hcobioYTohy o

bt')/\T)(E) 7é 0. So ((ﬁtothTOht/Obt/)(E) 7é 0 and T(E) 7é 0
Thus, there exists £ € 7 such that such that £ = rbey and
T (&) # 0. So, ((hEObtoAsupp(T)Oht’obt/)/\Asupp(T))(E) £ 0.
Hence, (htobtoAgupp yohy Obt’)/\Asupp(T) 2 0. Therefore,
Agupp(r) is a FAIID of T. By Theorem 3.15, supp(Y) is an
AIID of T.

Conversely, suppose that supp(Y) is an AIID of 7. By
Theorem 3.15, Agpp(y) is a FAIID of 7. Then for any fuzzy
point fig, by, iy, by € T and t,t' € (0, 1], we have (A obgo
Agupp(r) i 0b¢ ) A Agupp(r)y 7 0.. Thus, there exists £ € T
such that ((h¢ 0 by o Agupp(r) © hir 0 by ) A Agupp(r)) (€) # 0.
Hence, (ﬁtOthAsupp(T Oﬁt/ Oby)( ) =0, Asupp('r) (E) 75 0.
Then there exists € € T € supp(Y) such that ¢ = gbcy Thus,
T(€) #0. So ((Atobgo Y ohy oby) AY)(E) # 0. Hence,
(Agobio Y ohy oby) AT # 0. Therefore, T is a FAIID of
T. [ |

Next, we investigate relationships between minimal and
maximal almost interior ideals and minimal and maximal
fuzzy almost interior ideals of TSGs.

Definition 3.17. An AIID © of a TSG T is called

(1) a minimal almost interior ideal (MiAIID) if for any AIID
Q of T if whenever Q) C ©, then 2 = O,

(2) a maximal almost interior ideal (MaAIID) if for any AIID
Q of T if whenever © C ), then 2 = O.

Definition 3.18. A FAIID Y of a TSG T is called

(1) a minimal fuzzy almost interior ideal (MiFAIID) if for
any FAIID Yo of T if whenever Yo < Ti, then
supp(Y2) = supp(Y1),

(2) @ maximal fuzzy almost interior ideal (MaFAIID) if
for any FAIID Yo of T if whenever Y1 < Yo, then

supp(Y2) = supp(7T1).

Theorem 3.19. Let O be a nonempty subset of a TSG T .

Then

(1) © is a MiAIID of T if and only if Ae is a MiFAIID of
T.

(2) © is a MaAIID of T if and only if Ao is a MaFAIID of
T.

Proof:

(1) Assume that © is a MiAIID of 7. Then © is an AIID of a

TSG 7. Thus by Theorem 3.15, Ag is a FAIID of T. Let
T be a FAIID of T such that T < Ag. Then by Theorem
3.16, supp(Y) is an AIID of 7 such that supp(T) C
supp(Ag) = O. Thus, supp(Y) C O. Since O is a
MIAIID of 7 we have supp(Y) = © = supp(Ae).
Therefore, Ag is a MiFAIID of 7.
Conversely, suppose that Ag is a MiFAIID of 7. Then
Ao is a FAIID of 7. Thus by Theorem 3.15, © is an
AIID of a TSG 7. Let §2 be an AIID of 7 such that
Q) C O. Then Aq is a FAIID of 7 such that Aq < Ag.
Thus, supp(Aq) C supp(Ae). So, @ = supp(Ae) C
supp(Ae) = O implies that @ C ©O. Since Ag is a
MIFAIID of T we have supp(Aq) = supp(Ae). Thus,
Q = supp(xa) = supp(Ae) = O. Hence, O is a
MiAIID of 7.

(2) Assume that © is a MaAIID of 7. Then © is an AIID
of a TSG 7. Thus by Theorem 3.15, Ag is a FAIID of
T.Let T be a FAIID of 7 such that Ag < Y. Then by
Theorem 3.16, supp(Y) is an AIID of 7 such that © =
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supp(Ae) C supp(Y). Since O is a MaAIID of T we
have supp(Y) = supp(Ag). Hence, Ag is a MaFAIID
of T.
Conversely, suppose that Ag is a MaFAIID of 7. Then
Ao is a FAIID of 7. Thus by Theorem 3.15, © is an
AIID of a TSG 7. Let §2 be an AIID of 7 such that
© C Q. Then Aq is a FAIID of 7 such that Ag < Agq.
Thus, supp(Ae) C supp(Aq). So, © = supp(Ae) C
supp(Aq) = Q. It implies that supp(Ae) C supp(Aq).
Since Ag is a MAFAIID of 7 we have supp(Aq) =
supp(Ae). Thus, = supp(xa) = supp(Ae) = O.
Hence, © is a MaAIID of T.

|

Corollary 3.20. Let T be a TSG. Then T has no proper
AIID if and only if supp(Y) = T for every FAIID T of T.

Next, we give definitions of prime (resp., semiprime,
strongly prime) AIIDs, and prime (resp., semiprime strongly
prime) FAIIDs. We study the relationships between prime
(resp., semiprime strongly prime) AlIDs and their fuzzifica-
tion of TSGs.

Definition 3.21. Let © be an AIID of a TSG T. Then we
called

(1) © is a prime almost interior ideal (PAIID) if for any
three AIIDs Q1 , Qo and Q3 of T such that 2,Q2:Q3 C O
implies that 1 C © or Q5 C O or Q3 C O.

(2) © is a semiprime almost interior ideal (SPAIID) if for
any AIID Q of T such that Q3 C © implies that Q C ©.

(3) © is a strongly prime almost interior ideal (StPAIID) if
for any AIIDs Q1,9 and Q3 of T such that 2,503 N
Q302207 C O implies that Q1 C © or Q2 C O or
Q3 C O.

Definition 3.22. A FAIID Y on a TSG T. Then we called
(1) Y is a prime fuzzy almost interior ideal (PFAIID) if
for any three FAIIDs V{,Vs and V3 of T such that
WU, 00Uy 0 Wy <Y implies that V1 <Y or Vo < 7T or
Uy <7,

T is a semiprime fuzzy almost interior ideal (SPFAIID)
if for any FAIID V of T such that YVoWoW <Y implies
that ¥ < Y.

YT is a strongly prime fuzzy almost interior ideal
(StPFAIID) if for any three FAIIDs U1, V5 and V3 of T
such that (V1 0 Wy 0 W3) A (U50WUs0W) < T implies
that V1 <Y or U5 <Y or V3 < 7.

It is clear, every StPFAIID of a TSG is a PFAIID and
every PFAIIDs of a TSG is a SPFAIIDs.

Theorem 3.23. Let © be a nonempty subset of a TSG T.
Then © is a PAIID of T if and only if Ao is a PFAIID of
T.

Proof: Suppose that © is a PAIID of 7. Then © is an
AIID of 7. Thus by Theorem 3.15, Ag is a FAIID of 7. Let
W1, ¥y and U3 be FAIIDs of 7. such that U1 o0Ws0W3 < Ag.
Assume that ¥; £ Ag and Uy £ Ag and U5 £ Ae. Then
there exist b,t,0 € T such that Uy(h) # 0Vs(r) # 0 and
W3(0) # 0. While Ag(h) =0, Ao(r) = 0 and Ag(r) = 0.
Thus, h € supp(¥y), ¢t € supp(\Ilg) and 0 € supp(¥s),
but h,t,0 ¢ O. So supp(¥1) ¢ O supp(¥2) ¢ © and
supp(¥3) ¢ ©. Since \Ill,\Ilg and W3 is FAIIDs of 7 we

(2)

3)

have supp(¥;) supp(¥sz) and supp(¥3) are AIIDs of T.
Thus, supp(¥1) supp(¥2) supp(¥s) € ©. So, there exists
m = pqb for some p € supp(¥), q € supp(¥s) and b €
supp(¥3) such that m ¢ O. Hence, Ag(m) = 0 implies that
(T10Pq0W3)(m) = 0. Since U3 0 T30 T3 < Ag such that
p € supp(¥1), g € supp(¥2) and b € supp(¥3) we have,
Uy(p) #0,¥s(q) # 0, and ¥3(b) # 0. Thus,

(T10Wy0Wg)(m) = \/  {W1(p)AWa(q)ATs(b)} #0
(pqb)EEM

It is a contradiction so ¥; < Ag or ¥y < Ag or U3 < Ag.
Therefore, Ag is a PFAIID of 7.

Conversely, suppose that Ag is a PFAIID of 7. Then Ag
is a FAIID of 7. Thus by Theorem 3.15, © is an AIID of 7.
Let Ql, Qg and Qs be AIIDs of T such that QlQQQ3 - O.
Then Ag, A, and Aq, are FAIIDs of 7. By Lemma 2.5
AQl o AQz o AQS = AQIQZQS < Ap. By assumption, AQl <
Ag or Ag, < Ag or Ag, < Ag. Thus, 3 CO or 23 C O
or Q23 C ©. We conclude that © is a PAIID of 7. [ |

Theorem 3.24. Let © be a nonempty subset of a TSG T.
Then © is a SPAIID of T if and only if Ao is a SPFAIID of
T.

Proof: Suppose that © is a SPAIID of 7. Then © is an
AIID of 7. Thus by Theorem 3.15, Ag is a FAIID of 7. Let
U be a FAIID of 7. such that U3 = ToP¥o¥ < Ag. Assume
that ¥ £ Ag. Then there exist b,t,d € T such that U(h) #

U(r) # 0 and ¥(d) # 0. While Ag(h) = 0, Ag(t) =0
and Ag(t) = 0. Thus, b, t,0 € supp(¥), but h,r,0 ¢ ©. So
supp(¥) € ©. Since ¥ is a FAIID of 7" we have supp(¥) is
an AlIDs of 7. Thus, supp(¥)supp ¥)supp(¥) ¢ O. So,
there exists m = pqb for some p,q, b € supp(¥) such that
m ¢ O. Hence, Ag(m) = 0 implies that (To T o ¥)(m) = 0.
Since U3 = W o Wo ¥ < Ag such that p,q,b € supp(¥)
we have, U(p) #0 ,%(q) # 0, and ¥(b) # 0. Thus,

/{2 AT(a) A T(B)} £ 0
(pab)EEM
It is a contradiction so ¥ < Ag. Therefore, Ag is a SPFAIID
of T.

Conversely, suppose that Ag is a SPFAIID of 7. Then
Ag is a FAIID of 7. Thus by Theorem 3.15, © is an AIID
of 7. Let Q be an AIID of 7 such that Q® C ©. Then Ag
is a FAIID of 7. By Lemma 2.5 A}, = Agoo < Ae. By
assumption, Ag < Ag. Thus, 2 C ©. We conclude that ©
is a SPAIID of 7. [ ]

Theorem 3.25. Let © be a nonempty subset of a TSG T.
Then © is a StPAIID of T if and only if Ao is a StPFAIID
of T.

Proof: Suppose that © is a StPAIID of 7. Then ©
is an AIID of 7. Thus by Theorem 3.15, Ag is a FAIID
of 7. Let ¥y,¥, and W3 be FAIIDs of 7 such that
(U10U0W3)A(U30P500) < Ag. Assume that ¥ £ Ag
and Uy £ Ag or U3 £ Ag. Then there exist b, t,d € T such
that ¥(h) # 0P(xr) # 0 and ¥(D) # 0. While Ag(h) =0,
Ao(t) = 0 and Ag(r) = 0. Thus h,t,0 € supp(¥),
but h,t,0 ¢ ©. So supp(¥ Q@supp\llg ¢ O
and supp(¥3) ¢ ©. Since \Ill,\Ifg and U3 is FAIIDs of
T we have supp(¥;) supp(¥s2) and supp(¥s3) are Al-
IDs of 7. Thus, supp(¥;)supp(¥s)supp(¥s3) ¢ O. and

(PoWoW)(m)=
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supp(¥3) supp(¥2) supp(¥1) ¢ O. So, there exists m =
pqb for some p € supp(¥1), q € supp(¥s), b € supp(¥s3)
and m = gft for some g € supp(¥s), f € supp(¥z),t €
supp(¥y) such that m ¢ O. Hence, Ag(m) = 0 implies
that (¥; o Uy 0 U3)(m) = 0 and (P30 Uy 0 ¥y)(m) = 0.
Since ¥y o Uy 0 U3 < Ag and W3 0 ¥y 0 ¥y < Ag such
that p € supp(¥y), q € supp(¥2) b € supp(¥3) and
g € supp(¥3), f € supp(¥s),t € supp(¥;) we have,
Wi (p) £ 0, Wa(q) # 0, a(b) £ 0 and ¥ (£) £ 0, Wa(f) #
0, U3(g) # 0 Thus,

(\Ijl 0\1120\113)(111) = \/ {\Ill<p)/\l1/2(q)/\\p3(b)} # 0

(pab)EEM

and

(Tgo0Wy0Wy)(m) = \/ {Ws(g) A Ta(f) AT1(E)} #0

(EfE)GEm

It is a contradiction so ¥; < Ag or ¥y < Ag or U3 < Ag.
Therefore, Ag is a StPFAIID of 7.

Conversely, suppose that Ag is a StPFAIID of 7. Then
Ao is a FAIID of 7. Thus, by Theorem 3.15, © is an
AIID of T. Let Q1,5 and Q3 be AIIDs of T such that
Q19203 N 23020, C O. Then Ag,, Aq, and Aq, are
FAIIDs of 7. By Lemma 2.5 Aq, 0,0, = Ag,0Aq,0Aq, and
AQsﬂzﬂl = AQS OAQ2 OAQl . Thus, (A9192QS)/\(AQ1 oAQz o
Aa,) = Ao 0.0, A Aay0.0, = Ao0.0:n0:0.0, < Ae. By
assumption, Ag, < Ag, Ag, < Ag and Aq, > Ag. Thus,
Q1 COorfly COor 3 CO. We conclude that © is a
StPAIID of 7. |

IV. ALMOST WEAKLY INTERIOR IDEAL AND FUZZY
ALMOST WEAKLY INTERIOR IDEAL

In this section, we define the weakly almost interior ideal
and fuzzy weakly almost interior ideal in TSG. We study
basic some interesting properties of almost interior ideal and
fuzzy almost interior ideal in the TSG.

Definition 4.1. A non-empty subset © on a TSG T is called a
weakly almost interior ideal (WAIID) of T if t1t10t,4,NO #
O for all t; € T.

Theorem 4.2. Every WIID of a TSG T is an WAIID of T.

Proof: Assume that © is a WIID of a TSG 7 and let
t; € 7. Then t;4,0t;t; € TTOTTO. Thus t1t;0tt; N
© # (). We conclude that © is a WAIID of 7. [ |

Theorem 4.3. Let O and ) be two non-empty subsets of a
TSG T such that © C Q. If © is a WAIID of T, then § is
also a WAIID of T.

Proof: Let ) be a subset of 7 with it containing © and

let fl S T Then t1t19t1t1 g flflgtlfl Thl]S, fltlgflfl N

Q # (). Hence, € is a WAIID of 7. ]
The following result is an obvious of Theorem 4.3.

Corollary 4.4. Let ©1 and ©5 be WAIIDs of a TSG T. Thus
©1 U Oy is also a WAIID of T.

Proof: Since ©1 C ©1 U O, by Theorem 4.3, ©; U O,
is a WAIID of 7. [ ]

Theorem 4.5. Let ©1 and Oy be nonempty subsets of a TSG
T. If ©1 is a WAIID of T, then ©1 U O is a WAIID of T.

Proof: By Theorem 4.3, and ©; C ©; U O,. Thus,
©1UBOy is a WAIID of 7. [ |

Corollary 4.6. The finite union of WAIIDs of a TSG T is a
WAIID of T.

Definition 4.7. A FS Y on a TSG T is called a fuzzy weakly
almost interior ideal (FWAIID) of T if (hiobioTohigoby) A
T # 0. for any FP hy,by € T.

Theorem 4.8. If T is a FWAIID of a TSG T and Y3 is a
FS of T such that Y1 < Yo, then Y5 is a FWAIID of T.

Proof: Suppose that T is a FWAIID of a TSG T and
T, is a FS of 7 such that T; < Y5. Then for any FPs
hi,be € T, we obtain that (A obyo Yy 0ohiob) ATy #0.
Thus,

(AgobioTiohiob ) ATy < (AgobioYoohyoby)ATe #0.

Hence (Ai¢ oby o Yoo higob¢) A Yo # 0. Therefore, Y5 is a
FWAIID of T. [ |
The following result is an obvious of Theorem 4.8.

Theorem 4.9. Let Y1 and Yo be FWAIIDs of a TSG T.
Then Y1V Y5 is also a FWAIID of T.

Proof: Since T1 < 11V Y5, by Theorem 3.10, TV Y5
is a FWAIID of 7. [ |

Theorem 4.10. If T is a FWAIID of a TSG T and Y4 is
a FS, then Y1V Yo is a FWAIID of T.

Proof: By Theorem 4.8, and T; < Y3 V Ys. Thus,
TV YTy is a FWAIID of 7. [ |

Corollary 4.11. Let T be a TSG. Then the finite maximum
of FWAIIDs of T is a FWAIID of T.

Theorem 4.12. Let © be a nonempty subset of a TSG T.
Then © is a WAIID of T if and only if Ag is a FWAIID of
T.

Proof: Suppose that © is a WAIID of 7. Then rrOrzr N
© # () for all r € T. Thus, there exists ¢ € T such that
¢ € 11Ot and ¢ € O. Let A, by, € T € (0,1]. Then (hyobo
Ao ohigoby)(c) # 0 and Ag(c) # 0. Thus, ((hiobioAgo
htobt)/\A@)(C) 750 So (htothA@OhtObt)/\A@ 750
Hence, Ag is a FWAIID of 7.

Conversely, suppose that Ag is a FWAIID of 7 and let
hi,b¢ € T and t € (0, 1]. Then (h¢obioAgohiob)AAg # 0.
Thus, there exists ¢ € © such that ((¢obio Ag o Aigob() A
Ag)(c) # 0.. It implies that (hiobio Agofigoby)(c) # 0 and
Ao (c) # 0.Hence, ¢ € 1xOxr and ¢ € ©. So tpOrp N O #
for all ¢ € 7. We conclude that © is a WAIID of 7. ]

Theorem 4.13. Let Y be a fuzzy subset of a TSG T . Then
T is a FWAIID of T if and only if supp(Y) is a WAIID of
T.

Proof: Assume that Y is a FWAIID of a TSG 7 and let
hi,be, € T and t € (0,1]. Then (Acobio Y ohigob ) AT #£ 0.
Thus, there exists 3 € T such that ((igobio Y ofigoby) A
T)(E) 7é 0. So ((htothTOhtObt)/\T)(E) 7é 0 and T(E) 7& 0
Thus, there exists £ € 7 such that such that £ = rbcy and
T(E) ?é 0. So, ((htothAsupp(T)Oh’tobt)/\Asupp(T))(E) ;é 0.
Hence, (2¢obgo Agupp(r) 0 e 0be) A Agupp(r) 7# 0. Therefore,
Agupp(r) is a FWAIID of 7. By Theorem 4.12, supp(7Y) is
a WAIID of T.
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Conversely, suppose that supp(Y) is a WAIID of 7. By
Theorem 4.12, Agypp(y) is @ FWAIID of 7. Then for any
fuzzy point fi,bew € T and t € (0, 1], we have (fig o by o
Agupp(r) © T 00¢) A Agupp(ry 7 0.. Thus, there exists 3 € T
such that ((ht o b{ o Asupp(T) o ht o bt) AN Asupp(T))(E) 7é 0.
Hence, (hgobgo Asupp(y) ohgoby)(€) =0, Asupp('r) (&) #0.
Then there exists £ € T € supp(Y) such that ¢ = gbcy Thus,
T(€) #0. So ((Atobro YT ohigoby) AT)(E) # 0. Hence,
(Agobio T ohgoby) AY # 0. Therefore, Y is a FWAIID of
T. |

Next, we investigate relationships between minimal and
maximal weakly almost interior ideals and minimal and
maximal fuzzy weakly almost interior ideals of TSGs.

Definition 4.14. A WAIID © of a TSG T is called

(1) @ minimal weakly almost interior ideal (MiWAIID) if for
any WAIID Q of T if whenever Q) C ©, then 2 = O,

(2) a maximal weakly almost interior ideal (MaAIID) if for
any WAIID Q of T if whenever © C QQ, then Q) = ©.

Definition 4.15. A FAIID Y of a TSG T is called

(1) @ minimal fuzzy weakly almost interior ideal
(MiFWAIID) if for any FWAIID Yo of T if whenever
Yo < Ty, then supp(Y2) = supp(Y1),

(2) @ maximal fuzzy weakly almost interior ideal
(MaFWAIID) if for any FWAIID Yo of T if whenever
T1 < Yy, then supp(Ys) = supp(Yy).

Theorem 4.16. Let © be a nonempty subset of a TSG T.
Then

(1) © is a MiWAIID of T if and only if Ao is a MiFWAIID
of T.

(2) © is a MaWAIID of T if and only if Ag is a MaFWAIID
of T.

Proof:

1) Assume that © is a MiWAIID of 7. Then © is a WAIID
of a TSG 7. Thus by Theorem 4.12, Ag is a FWAIID
of 7. Let T be a FWAIID of T such that T < Ag.
Then by Theorem 4.13, supp(Y) is a WAIID of 7 such
that supp(Y) C supp(Ae) = ©. Thus, supp(Y) C O.
Since © is a MiWAIID of 7 we have supp(Y) =0 =
supp(Ag). Therefore, Ag is a MiFWAIID of 7.
Conversely, suppose that Ag is a MiFWAIID of 7. Then
Ag is a FWAIID of 7. Thus by Theorem 4.12, © is a
WAIID of a TSG 7. Let 2 be a WAIID of 7 such that
) C O. Then Ag is a FWAIID of 7 such that Ag < Ag.
Thus, supp(Aq) C supp(Ae). So, Q = supp(Aq) C
supp(Ae) = O implies that 2 C O. Since Ag is
a MiFWAIID of 7 we have supp(Aq) = supp(Ae).
Thus, Q = supp(xqa) = supp(Ae) = ©. Hence, O is a
MiWAIID of 7.

2) Assume that © is a MaWAIID of 7. Then © is a WAIID
of a TSG 7. Thus by Theorem 4.12, Ag is a FWAIID
of 7. Let T be a FWAIID of 7 such that Ag < Y. Then
by Theorem 4.13, supp(Y) is a WAIID of 7 such that
© = supp(Ag) C supp(T). Since O is a MaWAIID
of 7 we have supp(Y) = supp(Ae). Hence, Ag is a
MaFWAIID of 7.

Conversely, suppose that Ag is a MaFWAIID of 7.
Then Ag is a FWAIID of 7. Thus by Theorem 4.12,
O is a WAIID of a TSG 7. Let Q2 be a WAIID of

T such that © C Q. Then Aqg is a FWAIID of T
such that Ag < Agq. Thus, supp(Ae) C supp(Agq).
So, © = supp(Ae) C supp(Aq) = Q. It implies that
supp(Ae) C supp(Aq). Since Ag is a MAFWAIID
of T we have supp(Aq) = supp(Ae). Thus, Q =
supp(xa) = supp(Ae) = ©. Hence, © is a MaWAIID
of T.

|

Corollary 4.17. Let T be a TSG. Then T has no proper
WAIID if and only if supp(Y) =T for every FWAIID Y of
T.

Next, we give definitions of prime (resp., semiprime,
strongly prime) WAIIDs, and prime (resp., semiprime
strongly prime) WFAIIDs. We study the relationships be-
tween prime (resp., semiprime strongly prime) WAIIDs and
their fuzzification of TSGs.

Definition 4.18. Let © be a WAIID of a TSG T. Then we
called

(1) © is a prime weakly almost interior ideal (PWAIID)
if for any three WAIIDs Q2,9 and Q3 of T such that
Q19203 C O implies that Q1 C © or Q2 C O or
Q3 C 6.

(2) © is a semiprime weakly almost interior ideal (SP-
WAIID) if for any WAIID Q of T such that Q3 C ©
implies that ) C ©.

(3) © is a strongly prime weakly almost interior ideal
(StPWAIID) if for any WAIIDs 1, and Q3 of T such
that Q10503 N Q30501 C O implies that Q1 C O or
Qg Q 9 or Qg g 9

Definition 4.19. A FAIID Y on a TSG T. Then we called

(1) T is a prime fuzzy weakly almost interior ideal
(PFWAIID) if for any three FWAIIDs V1,Vy and V3
of T such that ¥, oWy o W3 <Y implies that V1 <Y
or Uy <Y or U3 <.

(2) T is a semiprime fuzzy weakly almost interior ideal
(SPFWAIID) if for any FWAIID U of T such that ¥ o
UoW <7 implies that V < Y.

(3) Y is a strongly prime fuzzy weakly almost interior ideal
(StPFWAIID) if for any three FWAIIDs V1, V5 and V5
of T such that (U1 0 Wy 0 U3) A (U30Ts00;) < T
implies that U1 <Y or Uy <Y or U3 < 7T.

It is clear, every StPFWAIID of a TSG is a PFWAIID and
every PFWAIIDs of a TSG is a SPFWAIIDs.

Theorem 4.20. Let © be a nonempty subset of a TSG T.
Then © is a PWAIID of T if and only if Ao is a PFWAIID
of T.

Proof: Suppose that © is a PWAIID of 7. Then O is a
WAIID of 7. Thus by Theorem 4.12, Ag is a FWAIID of
T. Let ¥y, ¥y and U3 be FWAIIDs of 7. such that ¥; o
Uy 0 U3 < Ag. Assume that ¥y £ Ag and ¥y £ Ag and
U3 £ Ae. Then there exist h,t,d € T such that ¥y (h) #
0Ts(r) # 0 and P3(d) # 0. While Ag(h) =0, Ap(r) =0
and Ag(t) = 0. Thus, b € supp(¥;), v € supp(¥s) and 0 €
supp(¥3), but h,t,d ¢ O©. So supp(¥y) € © supp(¥2) €
© and supp(¥3) € O. Since ¥y, ¥, and U3 is FWAIIDs of
T we have supp(¥;) supp(¥2) and supp(¥s3) are WAIIDs
of T. Thus, supp(¥1)supp(¥s)supp(¥s3) € O. So, there
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exists m = pqb for some p € supp(¥4), q € supp(¥s) and
b € supp(¥3) such that m ¢ O. Hence, Ag(m) = 0 implies
that (U1 o Uy 0 Ws3)(m) = 0. Since U1 0 Uy0 U3 < Ag such
that p € supp(¥1), q € supp(V¥2) and b € supp(¥3) we
have, ¥1(p) # 0, ¥2(q) # 0, and U5(b) # 0. Thus,

Vo AT(P) AT (a) A T5(6)} #0

(Pqb)EEm

It is a contradiction so ¥; < Ag or ¥y < Ag or U3 < Ag.
Therefore, Ag is a PFWAIID of 7.

Conversely, suppose that Ag is a PFWAIID of 7. Then Ag
is a FWAIID of 7. Thus by Theorem 4.12, © is a WAIID of
T. Let 1, Q5 and Q3 be WAIIDs of 7 such that ;0505 C
©. Then Ag, Aq, and A, are FWAIIDs of 7. By Lemma
2.5 Aq, o Aq, o Mg, = Ag,0,0, < Ae. By assumption,
AQl < A@ or AQz < A@ or AQ3 < A@. Thus, Ql - © or
Qo C O or Q3 C O. We conclude that © is a PWAIID of
T. [ |

Theorem 4.21. Let © be a nonempty subset of a TSG T.
Then © is a SPWAIID of T if and only if Ao is a SPFWAIID
of T.

Proof: Suppose that © is a SPWAIID of 7. Then
© is a WAIID of 7. Thus by Theorem 4.12, Ag is a
FWAIID of 7. Let ¥ be a FWAIID of 7. such that
U3 = WoWoWl < Ag. Assume that ¥ £ Ag. Then
there exist h,v,0 € T such that ¥(h) # 0¥(r) # 0 and
U(d) # 0. While Ag(h) =0, Ap(r) = 0 and Ag(r) = 0.
Thus, b,t,0 € supp(¥), but h,t,d ¢ O. So supp(¥) ¢ O.
Since ¥ is a FWAIID of 7 we have supp(¥) is a WAIIDs of
T . Thus, supp(¥) supp(¥) supp(¥) ¢ ©. So, there exists
m = pgb for some p,q,b € supp(¥) such that m ¢ ©O.
Hence, Ag(m) = 0 implies that (¥ o ¥ o ¥)(m) = 0. Since
U3 = WoWoW < Ag such that p,q,b € supp(¥) we have,

U(p) #0,T(q) #0, and ¥(b) # 0. Thus,

Vo A{p) A T(g) A

(pab)EEM

(P10Wz0W5)(m) =

(PoToT)(m)= T(b)} #£0

It is a contradiction so ¥ < Ag. Therefore Ag is a
SPFWAIID of 7.

Conversely, suppose that Ag is a SPFWAIID of 7. Then
Ag is a FWAIID of 7. Thus by Theorem 3.15, © is a WAIID
of T. Let Q be a WAIID of 7 such that Q2 C ©. Then Agq
is a FWAIID of 7. By Lemma 2.5 A}, = Agon < Ae. By
assumption, Ag < Ag. Thus 2 C ©. We conclude that © is
a SPWAIID of 7. [ |

Theorem 4.22. Let © be a nonempty subset of a TSG T.
Then © is a StPWAIID of T if and only if Ag is a StPFWAIID
of T.

Proof: Suppose that © is a StPWAIID of 7 Then O is
a WAIID of 7. Thus by Theorem 4.12, Ag is a FWAIID
of 7. Let ¥y,¥5 and ¥3 be FWAIIDs of 7 such that
(U10U0W3)A(U30W500) < Ag. Assume that ¥ £ Ag
and Uy £ Ag or U3 £ Ag. Then there exist b, t,d € T such
that ¥(h) # 0P(xr) # 0 and ¥(D) # 0. While Ag(h) =0,
Ao(t) = 0 and Ag(r) = 0. Thus, h,t,0 € supp(¥),
but h,v,0 ¢ ©. So supp(¥1) € O supp(¥y) ¢ © and
supp(¥3) ¢ ©. Since Uy, ¥, and U3 is FWAIIDs of
T we have supp(¥;) supp(¥s) and supp(¥s3) are WAI-
IDs of 7. Thus, supp(¥1)supp(¥s)supp(¥s3) ¢ O. and

supp(¥3) supp(¥2) supp(¥1) ¢ O. So, there exists m =
pqb for some p € supp(¥1), q € supp(¥s2),b € supp(¥3)
and m = gft for some g € supp(¥s), § € supp(¥s3),t €
supp(¥) such that m ¢ O. Hence, Ag(m) = 0 implies
that (U3 o Uy 0 U3)(m) = 0 and (P30 ¥y 0 ¥y)(m) = 0.
Since ¥y o Uy 0 U3 < Ag and W3 0 ¥y 0 ¥y < Ag such
that p € supp(¥y), q € supp(¥s3), b € supp(¥s3) and
g € supp(¥3), f € supp(¥s),t € supp(¥;) we have,
Wy (p) £ 0, Wa(q) # 0, a(b) £ 0 and ¥ (E) £ 0, Wa(f) #
0, U3(g) # 0 Thus,

(T10Wy0Wg)(m) = \/  {W1(p) AWa(q)ATs(b)} #0
(Pgb)E€Em

and

(U30Ty0W)(m) = \/ {Ts(g) A Ta(f) AW (E)} #0
(gf8)€EEm

It is a contradiction so ¥; < Ag or ¥y < Ag or U3 < Ag.
Therefore, Ag is a StPFWAIID of 7.

Conversely, suppose that Ag is a St(PFWAIID of 7. Then
Ao is a FWAIID of 7. Thus, by Theorem 4.12, © is a
WIID of 7. Let Q1,5 and Q3 be WAIIDs of 7 such
that 1003 N Q30201 C ©. Then Ag,, Ag, and Aqg, are
FWAIIDs of 7. By Lemma 2.5 Ag, 0,0, = Aq, ©Aq, 0Aq,
and AQSQQQI = AQB OAQ2 OAQI. Thus, (AQIQZQS) N (AQ1 o
Aq, o Ag,) = Aa,0,0, AN Aas0.00 = A0i0,0:n0:0.0, <
A@. By assumption, AQl < A@, AQz < A@ and AQ3 > A@.
Thus, 27 C © or 25 C © or Q23 C O. We conclude that ©
is a StPWAIID of 7. [ |

V. CONCLUSION

The aim paper gives the concept of almost interior ideals in
ternary semigroups. The union of two almost interior ideals
is also an almost interior ideal in ternary semigroups, and
the results in class fuzzifications are the same. In Theorems
3.15, 3.16, 3.19, 4.20, and 4.21, we prove the relationship
between almost interior ideals and class fuzzifications. In
future work, we can study other kinds of almost ideals and
their fuzzifications in ordered ternary semigroups.
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