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Abstract—In this paper, we derive expressions for bounding
intervals of the eigenvalues of real symmetric matrices. These
bounds are relatively good provided approximations to the
eigenvectors are known. We show how the problem is reduced
to that of finding the spectrum of matrices of order two. We
also prove the existence of a non optimal vector parameter.

Index Terms—symmetric, eigenvalues, bounds, trace

I. INTRODUCTION

THE eigenvalue distribution of a matrix A is indispens-
able in almost all branches of science and engineering.

For real symmetric matrices, this distribution is limited to
R. Some recent applications have been to search engines [5]
and crypto correlation matrices [3]. The latter facilitates the
timing of investment into a particular crypto asset, based on
the rally of its accompanying correlated crypto asset. The
conditioning of a symmetric linear system depends on the
|λn|
|λ1| , λn is the eigenvalue of largest absolute magnitude and
λ1 is the eigenvalue of least absolute magnitude. Accurate
location of the eigenvalues is usually accompanied by the
computation of the associated eigenvectors. However, such
computations are rarely accurate, being limited by machine
precision. Some simple, yet effective methods based on
matrix entries are the Gerschgorin disks and ovals of Cassini
[2]. These methods provide crucial regions to search for
eigenvalues. Bounds based on only the traces of the matrix
and the traces of its powers, have been studied in great detail
[8]–[10], [13]. Singh et al [12] have shown how to optimally
derive inner bounds for the extremal eigenvalues. Further-
more for positive definite matrices, they have shown [11] that
it is possible to obtain bounding intervals for the extremal
eigenvalues, by considering the minimal polynomial.. The
power methods and its variants, together with the Rayleigh
quotient [6] can locate the dominant eigenpairs effectively.
Usually iterative methods are employed to efficiently com-
pute the eigenpairs. Earlier numerical bounds due to Kato
are discussed by Hayes [14], while bounds due to Weinstein
are discussed by Cohen and Fedmann [15]. Here we shall
find bounding intervals for each eigenvalue.
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II. THEORY

Let λ = (λi), i = 1, 2, · · · , n denote the eigenvalues of a
real symmetric matrix A arranged in increasing order

λ1 ≤ λ2 ≤ · · · ≤ λn (1)

The corresponding eigenbasis is denoted by the set

S = {u1,u2, · · · ,un}, (2)

where ∥ui∥2=1. Let (λ̃, ũ) be an approximate eigenpair of
A, where ∥ũ∥2=1, then the residual δũ is defined by

δũ = Aũ− λ̃ũ ̸= 0 (3)

Theorem 1: Let A be a real symmetric matrix with the
eigenvalues arranged as in (1), then there is an eigenvalue
of A in the interval [λ̃ − ∥δũ∥, λ̃ − ∥δũ∥]. There is also
an eigenvalue of A in the interval (−∞, λ̃− ∥δũ∥] or [λ̃+
∥δũ∥,∞) .

Proof: Let Q be the orthogonal matrix that diagonalizes
A, then QtAQ = D, where D is diagonal. Since λ̃ /∈ σ(A),
it follows that A− λ̃I is invertible so that

ũ = (A− λ̃I)−1δũ

= (QDQt − λ̃QQt)−1δũ

= Q(D− λ̃I)−1Qtδũ

Thus, we get

∥ũ∥2 ≤ ∥Q∥2∥Qt∥2∥(D− λ̃I)−1∥2∥δũ∥2, (4)

so that

1 ≤ max
i=1,2,...,n

|λi − λ̃|−1∥δũ∥2

=
1

|λp − λ̃|
∥δũ∥2, (5)

where λp is the closest eigenvalue to λ̃. Thus

|λp − λ̃| ≤ ∥δũ∥2, (6)

from which the result follows. From (3) it follows that

δũ = QDQtũ− λ̃QQtũ

= Q(D− λ̃I)Qtũ (7)
Thus, we get

∥δũ∥2 ≤ ∥Q∥2∥Qt∥2∥D− λ̃I∥2∥ũ∥2, (8)

so that

∥δũ∥2 ≤ |λq − λ̃|, (9)

where λq is the furthest eigenvalue from λ̃. The result then
follows from (9)
The bounds in Theorem 1 are known as Weinstein bounds.

Theorem 2: Let ũ be an approximate eigenvector of A
and λ̃ = ⟨Aũ, ũ⟩ be the corresponding approximate eigen-
value. If µ, ν ∈ R are known such that

λk−1 ≤ µ < λ̃ < ν ≤ λk+1, (10)
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then

λ̃− ∥δũ∥22
ν − λ̃

≤ λk ≤ λ̃+
∥δũ∥22
λ̃− µ

. (11)

Proof: We shall prove the left hand side of (11). The
matrix

B = A2 − (λk + ν)A+ λkνI (12)

is positive semi-definite. This is easy to deduce as the
eigenvalues of B are

λ2 − (λk + ν)λ+ λkν = (λ− λk)(λ− ν)

≥ 0. (13)

Thus it follows that ⟨Bũ, ũ⟩ ≥ 0. Hence

⟨(A2 − (λk + ν)A+ λkνI)ũ, ũ⟩
= ∥Aũ∥22 − (λk + ν)⟨Aũ, ũ⟩+ λkν

= ∥Aũ∥22 − (λk + ν)λ̃+ λkν ≥ 0 (14)

From (3) we have that

∥δũ∥22 = ⟨Aũ− λ̃ũ,Aũ− λ̃ũ⟩
= ∥Aũ∥22 − 2λ̃⟨Aũ, ũ⟩+ λ̃2

= ∥Aũ∥22 − λ̃2. (15)

Substituting (15) into (14) results in

λ̃2 − (λk + ν)λ̃+ λkν ≥ −∥δũ∥22
(λk − λ̃)(ν − λ̃) ≥ −∥δũ∥22. (16)

Solving for λk from (16) yields the result. If ν is replaced by
µ in the above proof, the right hand side of (11) is obtained.

The bounds in Theorem 2 are attributed to Kato.
Corollary 1: If k = 1 in the left hand side of (11) then

we obtain

λ̃ν − (λ̃2 + ∥δũ∥22)
ν − λ̃

≤ λ1 (17)

or by using (15)

ν⟨Aũ, ũ⟩ − ⟨Aũ,Aũ⟩2

ν − ⟨Aũ, ũ⟩
≤ λ1. (18)

Equation (18) represents the well known Temple bounds. Let
Sm = {v1,v2, · · · ,vm}, where m ≤ n, ∥vi∥2 = 1 and
vi ⊥ vj . Define the matrix V by

V = [v1,v2, · · · ,vm],

then A span(Sm) = R(AV) ⊆ R(A), where R(.) denotes
the range of an operator. The matrix Bm = VtAV is m×m
and symmetric, VtV = Im and VVt is n × n. Thus V is
semi-orthogonal. In fact VVt is a projector from Rn to the
subspace span(Sm). When vi = ei, where ei are the standard
basis vectors in Rn , then B is the leading principal m×m
submatrix of A. The matrix Bm has the form

Bm =


⟨Av1,v1⟩ ⟨Av1,v2⟩ · · · ⟨Av1,vm⟩
⟨Av2,v1⟩ ⟨Av2,v2⟩ · · · ⟨Av2,vm⟩

...
...

. . .
...

⟨Avm,v1⟩ ⟨Avm,v2⟩ · · · ⟨Avm,vm⟩

 (19)

We shall denote the eigenvalues of Bm by βi,
i = 1, 2, · · · ,m, where

β1 ≤ β2 ≤ · · · ≤ βm. (20)

Theorem 3: The extremal eigenvalues of A and Bm sat-
isfy

λ1 ≤ β1 ≤ βm ≤ λn (21)

Proof: We shall prove only the right hand side of
inequality (21).

βm = max
∥x∥2=1

⟨Bmx,x⟩

= max
∥x∥2=1

⟨AVx,Vx⟩

= max
∥x∥2=1

〈
AVx

∥Vx∥2
,

Vx

∥Vx∥2

〉
∥Vx∥22

= max
y∈span(Sm)

⟨Ay,y⟩ y =
Vx

∥Vx∥2
≤ max

∥z∥2=1
z∈Rn

⟨Az, z⟩

= λn (22)

The left hand side of (21) is proved similarly by considering
min∥x∥2=1⟨Bmx,x⟩.
It follows from Theorem 3 that β1 and βm are inner
bounds for the extremal eigenvalues of A. Usually fairly
good approximations to the eigenvectors of A are available
from numerical techniques, like say the power method with
deflation. The following theorem shows how the eigenvalues
of A may be approximated in this sense.

Theorem 4: Let {vi}mi=1 be good approximations to the
eigenvectors {ui}mi=1 of A. We assume that vi ⊥ vj , i ̸=
j, and that ∥vi∥2 = 1, then the eigenvalues of the matrix
(19) satisfy |βi − λi| = O(ε2),where ε is a small parameter
described in the proof below.

Proof: It is sufficient to write

vi =
ui + ϵiu

⊥
i√

1 + ϵ2i
, (23)

where we have assumed that ∥ui∥2 = ∥u⊥
i ∥2 = 1 and |ϵi| <

1, thus vi is normalized. From

Avi =
λiui + ϵiAu⊥

i√
1 + ϵ2i

, (24)

we have√
1 + ϵ2i

√
1 + ϵ2j ⟨Avi,vj⟩

= λi⟨ui,uj⟩+ λiϵj⟨ui,u
⊥
j ⟩+ λjϵi⟨u⊥

i ,uj⟩
+ ϵiϵj⟨Au⊥

i ,u
⊥
j ⟩. (25)

For j = i, we have from (21)

⟨Avi,vi⟩ =
λi + ϵ2i ⟨Au⊥

i ,ui⊥⟩
1 + ϵ2i

= λi + (⟨Au⊥
i ,ui⊥⟩ − λi)ϵ

2
i (26)

If ε = max
i

|ϵi|, we conclude that

|⟨Avi,vi⟩ − λi| = O(ε2). (27)
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For j ̸= i, we have from (23)√
1 + ϵ2i

√
1 + ϵ2j ⟨vi,vj⟩

= ϵi⟨u⊥
i ,uj⟩+ ϵj⟨ui,u

⊥
j ⟩+ ϵiϵj⟨u⊥

i ,u
⊥
j ⟩ = 0. (28)

Let M = max{λi, λj} and m = min{λi, λj}, then from
(25) and (28), it follows that√

1 + ϵ2i

√
1 + ϵ2j ⟨Avi,vj⟩

≤ M(ϵj⟨ui,u
⊥
j ⟩+ ϵi⟨u⊥

i ,uj⟩) + ϵiϵj⟨Au⊥
i ,u

⊥
j ⟩

= ϵiϵj(⟨Au⊥
i ,u

⊥
j ⟩ −M⟨u⊥

i ,u
⊥
j ⟩. (29)

Similarly√
1 + ϵ2i

√
1 + ϵ2j ⟨Avi,vj⟩

≥ m(ϵj⟨ui,u
⊥
j ⟩+ ϵi⟨u⊥

i ,uj⟩) + ϵiϵj⟨Au⊥
i ,u

⊥
j ⟩

= ϵiϵj(⟨Au⊥
i ,u

⊥
j ⟩ −m⟨u⊥

i ,u
⊥
j ⟩. (30)

From (29), we have

⟨Avi,vj⟩
≤ ϵiϵj(1 + ϵ2i )

− 1
2 (1 + ϵ2j )

− 1
2 (⟨Au⊥

i ,u
⊥
j ⟩ −M⟨u⊥

i ,u
⊥
j ⟩)

≈ ϵiϵj(1− 1
2ϵ

2
i − 1

2ϵ
2
j )(⟨Au⊥

i ,u
⊥
j ⟩ −M⟨u⊥

i ,u
⊥
j ⟩)

≈ ϵiϵj(⟨Au⊥
i ,u

⊥
j ⟩ −M⟨u⊥

i ,u
⊥
j ⟩) (31)

to second order in ϵi, ϵj . Similarly from (30) one can show
that

⟨Avi,vj⟩ ≥ ϵiϵj(⟨Au⊥
i ,u

⊥
j ⟩ −m⟨u⊥

i ,u
⊥
j ⟩) (32)

Let ϵ = max{|ϵi|, |ϵj |}, then (31) implies that

⟨Avi,vj⟩ ≤ ϵiϵj(⟨Au⊥
i ,u

⊥
j ⟩ −M⟨u⊥

i ,u
⊥
j ⟩)

≤ |ϵi||ϵj |(⟨Au⊥
i ,u

⊥
j ⟩ −M⟨u⊥

i ,u
⊥
j ⟩)

≤ ϵ2(⟨Au⊥
i ,u

⊥
j ⟩ −M⟨u⊥

i ,u
⊥
j ⟩) (33)

Similarly (32) implies that

⟨Avi,vj⟩ ≥ −|ϵi||ϵj |(⟨Au⊥
i ,u

⊥
j ⟩ −m⟨u⊥

i ,u
⊥
j ⟩

≥ −ϵ2(⟨Au⊥
i ,u

⊥
j ⟩ −m⟨u⊥

i ,u
⊥
j ⟩) (34)

Let

K = max{|⟨Au⊥
i ,u

⊥
j ⟩ −M⟨u⊥

i ,u
⊥
j ⟩|,

|⟨Au⊥
i ,u

⊥
j ⟩ −m⟨u⊥

i ,u
⊥
j ⟩|},

then −Kϵ2 ≤ ⟨Avi,vj⟩ ≤ Kϵ2 or |⟨Avi,vj⟩| ≤ Kϵ2.
Recall that ε = max

i
|ϵi|, thus we may conclude that all

off diagonal elements of the matrix Bm are O(ε2). It then
follows from Gerschgorin’s theorem , for ε small enough,
that the Gerschogrin disks are mutually disjoint and that the
radii are O(ε2). Hence we may conclude that each circle
contains at least one eigenvalue (two or more circles may
coincide for identical eigenvalues). Thus we may conclude
from (27) that

|βi − λi| ≤ |βi − ⟨Avi,vi⟩|+ |⟨Avi,vi⟩ − λi|
= O(ε2). (35)

Theorem 4 provides a useful means of approximating few
of the eigenvalues of A by evaluating the corresponding
eigenvalues of the smaller matrix B. In addition it shows that
the approximation is O(ε2), thus maintaining good accuracy.

Theorem 5: Let x ∈ span(S2), ∥x∥2 = 1 where, S2 =
{v1,v2}, with ∥v1∥2 = ∥v2∥2 = 1, then

max
x∈S2∥x∥2=1

⟨Ax,x⟩

= 1
2 [⟨Av1,v1⟩+ ⟨Av2,v2⟩

+
√
(⟨Av1,v1⟩ − ⟨Av2,v2⟩)2 + 4⟨Av1,v2⟩2

]
(36)

and

min
x∈S2

∥x∥2=1

⟨Ax,x⟩

= 1
2 [⟨Av1,v1⟩+ ⟨Av2,v2⟩

−
√
(⟨Av1,v1⟩ − ⟨Av2,v2⟩)2 + 4⟨Av1,v2⟩2

]
(37)

Proof: Let

x =
α1v1 + α2v2√

α2
1 + α2

2

, (38)

where α1, α2 ̸= 0, then

x =

α1

|α1|v1 +
α2

|α1|v2√
1 + (α2

α1
)2

. (39)

We shall assume that α1 > 0 as the proof is similar if α1 < 0,
thus (39) may be written as

x =
v1 + αv2√
1 + α2

, (40)

where α = α2

α1
is a parameter to be determined. Let f(α) =

⟨Ax,x⟩, then

f(α) =
⟨Av1 + αAv2,v1 + αv2⟩

1 + α2
(41)

Thus

f(α)(1 + α2)

= ⟨Av1,v1⟩+ 2α⟨Av2,v1⟩+ α2⟨Av2,v2⟩ (42)

Differentiate (42) with respect to α and set f ′(α) = 0, to get

αf(α) = ⟨Av2,v1⟩+ α⟨Av2,v2⟩ (43)

Using (42) in (43), we get

α[⟨Av1,v1⟩+ 2α⟨Av2,v1⟩+ α2⟨Av2,v2⟩]
=⟨Av2,v1⟩+α⟨Av2,v2⟩+α2⟨Av2,v1⟩+α3⟨Av2,v2⟩ (44)

Simplifying (44) yields the quadratic

α2a+ αb− a = 0, (45)

where a = ⟨Av2,v1⟩ and b = ⟨Av1,v1⟩−⟨Av2,v2⟩. Thus

α =
−b±

√
b2 + 4a2

2a
. (46)

From (42) and (46) it may shown that

f(α) =
b+ ⟨Av2,v2⟩

1 + α2
+

2αa

1 + α2
+

α2⟨Av2,v2⟩
1 + α2

= ⟨Av2,v2⟩+
b+ 2αa

1 + α2

= ⟨Av2,v2⟩ ±
√
b2 + 4a2

1 + α2
(47)
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From (46) and rationalization, it may be shown that

1

1 + α2
=

2a2√
b2 + 4a2(

√
b2 + 4a2 ∓ b)

(48)

Using (48), equation (47) simplifies to

f(α) = ⟨Av2,v2⟩ ±
2a2√

b2 + 4a2 ∓ b)

= ⟨Av2,v2⟩ ±
2a2(

√
b2 + 4a2 ± b)

4a2

= ⟨Av2,v2⟩+ 1
2b±

1
2

√
b2 + 4a2

= 1
2 [⟨Av1,v1⟩+ ⟨Av2,v2⟩

±
√
(⟨Av1,v1⟩ − ⟨Av2,v2⟩)2 + 4⟨Av1,v2⟩2

]
(49)

Thus both (36) and (37) are proved.
The calculus approach to proving theorem 5 is instinctive,
though if one chooses x ∈ Sm, m > 2, then this leads to a
non linear system of m − 1 unknowns which is difficult to
solve. The following algebraic approach however holds for
all 0 < m ≤ n. We shall consider only the case m = 2 as an
illustration. Since x ∈ S2, we have that x = Vy for some
y ∈ R2. Also ∥x∥2 = 1 =⇒ ∥y∥2 = 1 . Thus

max
x∈S2

∥x∥2=1

⟨Ax,x⟩ = max
y∈R2

∥y∥2=1

⟨AVy,Vy⟩

= max
y∈R2

∥y∥2=1

⟨VtAVy,y⟩

= max
y∈R2

∥y∥2=1

⟨B2y,y⟩

= β2 (50)

Note that B2 is a 2 × 2 matrix and that β2 is its largest
eigenvalues. Replacing max by min in the above argument
yields β1, the smallest eigenvalue of B2. Since B2 has the
simple form

B2 =

[
⟨Av1,v1⟩ ⟨Av1,v2⟩
⟨Av2,v1⟩ ⟨Av2,v2⟩

]
(51)

the calculation of its eigenvalues is elementary and yields
both (36) and (37).

Theorem 6: Let (λ̃k,vk) be a good approximation to
(λk,uk), that is vk =

uk+ϵu⊥
k√

1+ϵ2
and λ̃k = ⟨Avk,vk⟩. Let

w = δvk

∥δvk∥2
, where the residual δvk = Avk − λ̃kvk, then

vk ⊥ w. If further ∥u⊥
k − up∥ << 1 for some eigenvector

up of A, then ⟨Aw,w⟩ ≈ λp.
Proof: Since ⟨δvk,vk⟩ = ⟨Avk,vk⟩−λ̃k = 0, we have

w ⊥ vk. For the rest of the proof we shall work to O(ϵ2).
Now

⟨Aw,w⟩ = ⟨A2vk − λ̃kAvk,Avk − λ̃kvk⟩
∥Avk − λ̃kvk∥22

=
⟨A3vk,vk⟩ − 2λ̃k⟨A2vk,vk⟩+ λ̃3

k

⟨A2vk,vk⟩ − λ̃2
k

=
N

D
, (52)

where N denotes the numerator and D denotes the denom-
inator. It is trivial to show that

⟨Arvk,vk⟩ =
⟨λr

kuk + ϵAru⊥
k ,uk + ϵu⊥

k ⟩
1 + ϵ2

=
λr
k + ϵ2⟨Aru⊥

k ,u
⊥
k ⟩

1 + ϵ2

= λr
k + (⟨Aru⊥

k ,u
⊥
k ⟩ − λr

k)ϵ
2. (53)

Thus using (53) N and D simplify to

N = λ3
k + (⟨A3u⊥

k ,u
⊥
k ⟩ − λ3

k)ϵ
2

− 2[λk + (⟨Au⊥
k ,u

⊥
k ⟩ − λk)ϵ

2]

= [λ2
k + (⟨A2u⊥

k ,u
⊥
k ⟩ − λ2

k)ϵ
2]

+ [λk + (⟨Au⊥
k ,u

⊥
k ⟩ − λk)ϵ

2]3

= [⟨A3u⊥
k ,u

⊥
k ⟩ − λ3

k − 2λk(⟨A2u⊥
k ,u

⊥
k ⟩ − λ2

k)

− 2λ2
k(⟨Au⊥

k ,u
⊥
k ⟩ − λk)

+ 3λ2
k(⟨Au⊥

k ,u
⊥
k ⟩ − λk)]ϵ

2

=[⟨A3u⊥
k ,u

⊥
k⟩−2λk⟨A2u⊥

k ,u
⊥
k⟩+λ2

k⟨Au⊥
k ,u

⊥
k⟩]ϵ2 (54)

D = λ2
k + (⟨A2u⊥

k ,u
⊥
k ⟩ − λ2

k)ϵ
2

− [λk + (⟨Au⊥
k ,u

⊥
k ⟩ − λk)ϵ

2]2

= [⟨A2u⊥
k ,u

⊥
k ⟩ − λ2

k − 2λk(⟨Au⊥
k ,u

⊥
k ⟩ − λk)]ϵ

2

= [⟨A2u⊥
k ,u

⊥
k ⟩ − 2λk⟨Au⊥

k ,u
⊥
k ⟩+ λ2

k]ϵ
2. (55)

Thus (52) simplifies to

⟨Aw,w⟩ = ⟨A3u⊥
k ,u

⊥
k ⟩−2λk⟨A2u⊥

k ,u
⊥
k ⟩+λ2

k⟨Au⊥
k ,u

⊥
k ⟩

⟨A2u⊥
k ,u

⊥
k ⟩ − 2λk⟨Au⊥

k ,u
⊥
k ⟩+ λ2

k

=
λ3
p − 2λkλ

2
p + λ2

kλp

λ2
p − 2λkλp + λ2

k

= λp (56)

Theorem 7: Let (λ̃k,vk) and w be as defined in theorem
6, then ⟨Avk,w⟩ is O(ϵ).

Proof: We shall work to O(ϵ2).

vk =
uk+ϵu⊥

k√
1+ϵ2

(57)

= uk + ϵu⊥
k − 1

2ϵ
2uk. (58)

λ̃ =⟨Avk,vk⟩
= λ+ (⟨Au⊥

k ,u
⊥
k ⟩ − λ)ϵ2 (59)

λ̃vk = λuk + ϵλu⊥
k + ϵ2(⟨Au⊥

k ,u
⊥
k ⟩ − 3

2 )uk (60)

Avk =
λuk + ϵAu⊥

k√
1 + ϵ2

= λuk + ϵAu⊥
k − 1

2ϵ
2λuk (61)

δvk = Avk − λ̃kvk

= ϵ(Au⊥
k − λu⊥

k ) + ϵ2(λ− ⟨Au⊥
k ,u

⊥
k ⟩)uk (62)

It follows that

∥δvk∥2 = |ϵ|∥Au⊥
k − λu⊥

k ∥2 (63)

Thus from (62) and (63) it follows that

w =
δvk

∥δvk∥2

=
±(Au⊥

k − λu⊥
k ) + |ϵ|(λ− ⟨Au⊥

k ,u
⊥
k ⟩)uk

∥Au⊥
k − λu⊥

k ∥2
, (64)
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where we use the + sign for ϵ > 0 and − sign for ϵ < 0.
Using (61) results in

⟨Av,w⟩ = |ϵ|λ2 − λ⟨Au⊥
k ,u

⊥
k ⟩(|ϵ| ± ϵ)± ϵ⟨Au⊥

k ,Au⊥
k ⟩

∥Au⊥
k − λu⊥

k ∥2

= ±ϵ
∥Au⊥

k − λu⊥
k ∥22

∥Au⊥
k − λu⊥

k ∥2
= ±ϵ∥Au⊥

k − λu⊥
k ∥2 (65)

Theorem 8: Let w̃ ⊥ vk be any normalized vector, then

|⟨Avk,w⟩| ≤ |ϵ|∥Au⊥
k − λu⊥

k ∥2 (66)

Proof: If x ⊥ v, then let w̃ = x
∥x∥ and from (57) it

follows that

⟨uk + ϵu⊥
k ,x⟩ = 0 (67)

⟨uk,x⟩ = −ϵ⟨u⊥
k ,x⟩ (68)

Thus using (58), (68) and retaining at most terms of O(ϵ2)
yields

⟨Avk, w̃⟩ =
⟨λuk + ϵAu⊥

k − 1
2ϵ

2λuk,x⟩
∥x∥2

(69)

=
λ⟨uk,x⟩+ ϵ⟨Au⊥

k ,x⟩ − 1
2ϵ

2λ⟨uk,x⟩
∥x∥2

=
ϵ(⟨Au⊥

k ,x⟩ − λ⟨u⊥
k ,x⟩)

∥x∥2

=
ϵ⟨Au⊥

k − λu⊥
k ,x⟩

∥x∥2
(70)

The result then follows by taking the modulus and applying
the Cauchy-Schwarz inequality.
There are many possibilities for choosing w̃. Suppose that
n = 2m and vt

k = [vt
1 vt

2], or n = 2m + 1 and vt
k =

[vt
1 µ vt

2] where v1 and v2 are vectors of length m, then
w̃t

k = [vt
2 −vt

1] and w̃t
k = [vt

2 0 −vt
1] will suffice.

III. BOUNDS

From (53) it is simple to show that for r = 1

|λk − ⟨Avk,vk⟩| = |λk − ⟨Au⊥
k ,u

⊥
k ⟩|ϵ2

≤ (|λk|+ ρ(A))ϵ2 (71)

Equation (71), although O(ϵ2), is of not much use bounding
λk due to the presence of unknowns on the right hand side.
However if we use the results of theorem 6,8 and 9, then we
may bound λk

Theorem 9:
1) If ⟨Av,v⟩ > ⟨Aw,w⟩, the β+ is closest to ⟨Av,v⟩

with ⟨Av,v⟩ < β+

2) If ⟨Av,v⟩ < ⟨Aw,w⟩, the β− is closest to ⟨Av,v⟩
with β− < ⟨Av,v⟩

Proof: We shall prove (1), as (2) is proved in a similar
manner.

|β±−⟨Av,v⟩|
= 1

2 |⟨Aw,w⟩−⟨Av,v⟩
±
√

(⟨Av,v⟩−⟨Aw,w⟩)2+4⟨Av,w⟩2| (72)

Clearly if ⟨Aw,w⟩ − ⟨Av,v < 0, then (72) is minimized
by using the positive sign prepending the radical, so that β+

is closest to ⟨Av,v⟩ and

β+ − ⟨Av,v⟩ = 1
2

(√
(⟨Av,v⟩−⟨Aw,w⟩)2+4⟨Av,w⟩2

−(⟨Av,v⟩−⟨Aw,w⟩))
> 0. (73)

From Gerschgorin’s theorem it follows that whether β = β+

or β = β− is closest to that⟨Av,v⟩, that

|β − ⟨Av,v⟩| ≤ |⟨Av,w⟩| (74)

Now

|λ− β| ≤ |λ− ⟨Av,v⟩|+ |β − ⟨Av,v⟩| (75)

We note from (59) that the first term is O(ϵ2). We shall show
that the second term is also O(ϵ2), specifically for β+. Let
γ = ⟨Av,v⟩ − ⟨Aw,w⟩ > 0 in (73), then

β+ − ⟨Av,v⟩ = 1
2

(√
γ2 +4⟨Av,w⟩2 − γ

)
= 1

2γ

[(
1 +

4⟨Av,w⟩2

γ

) 1
2

− 1

]

≈ 1
2γ

(
2⟨Av,w⟩2

γ2

)
=

⟨Av,w⟩2

γ

= O(ϵ2). (76)

Since a similar proof may be applied for β−, we conclude
that |λ− β| = O(ϵ2). Thus from (74) we have

⟨Av,v⟩ − |⟨Av,w⟩| ≤ β ≤ ⟨Av,v⟩+ |⟨Av,w⟩| (77)

Thus for ϵ << 1 we may replace β by λ to get

⟨Av,v⟩ − |⟨Av,w⟩| ≤ λ ≤ ⟨Av,v⟩+ |⟨Av,w⟩| (78)

In view of theorem 7 and 8 , we conclude that sharper bounds
should be obtained for w ̸= w̃.

IV. RESULTS

We shall consider two examples regarding matrices taken
from taken from [4]. The exact eigenvalues and eigenvectors
are computed using Julia 1.10.5. Each eigenvector ui is
perturbed by 0.01 × rand(n), where rand(n) denotes a
random vector of order n. The resulting vector is then
normalized to give vi. By taking the inner product with ui

in (23) it is simple to show that

ϵi =

√
1

⟨vi,ui⟩
− 1 (79)

Example 1: Consider the matrix A given by

A =



5 1 −2 0 −2 5

1 6 −3 2 0 6

−2 −3 8 −5 −6 0

0 2 −5 5 1 −2

−2 0 −6 1 6 −3

5 6 0 −2 −3 8


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The matrix has three distinct eigenvalues each of algebraic
multiplicity two. The eigenvalues together with the corres-
ponding perturbation parameter ϵi, of the exact eigenvectors
is summarized in table I. In table II the bounding intervals
using w̃ and w are shown.

TABLE I
λ AND ϵ, EXAMPLE 1

Eigenvalue Epsilon

−1.598734 0.016015

4.455990 0.016196

16.142745 0.012149

TABLE II
BOUNDS, EXAMPLE 1

Bounds(w) Bounds(w̃)

[−1.676944,−1.518775 ] [−1.796466,−1.400970 ]

[ 4.349058, 4.561257 ] [ 4.306216, 4.601440 ]

[ 16.102869, 16.178121 ] [ 15.939010, 16.346463 ]

Example 2: Consider the matrix A given by

A =



7 6 5 4 3 2 1

6 6 5 4 3 2 1

5 5 5 4 3 2 1

4 4 4 4 3 2 1

3 3 3 3 3 2 1

2 2 2 2 2 2 1

1 1 1 1 1 1 1


The matrix has distinct eigenvalues. The eigenvalues together
with the corresponding perturbation parameter ϵi, of the
exact eigenvectors is summarized in table III. In table IV
the bounding intervals using w̃ and w are shown. An exact
expression for the eigenvalues is known [4] and given below.

λi =
1
2

[
1− cos

(
(2i−1)π

15

)]−1

, i = 1, 2, · · · , 7.

TABLE III
λ AND ϵ, EXAMPLE 2

Eigenvalue Epsilon

0.261295 0.017217

0.299557 0.017225

0.381966 0.017225

0.558365 0.016614

1.000000 0.016623

2.618034 0.017204

22.880783 0.006299

Example 3: Consider the positive definite heptadiagonal

TABLE IV
BOUNDS, EXAMPLE 2

Bounds(w) Bounds(w̃)

[ 0.239662, 0.288647 ] [−0.102376, 0.625006 ]

[ 0.252151, 0.348060 ] [−0.063277, 0.662429 ]

[ 0.368628, 0.404184 ] [ 0.020379, 0.743585 ]

[ 0.541704, 0.585187 ] [ 0.201288, 0.915461 ]

[ 0.789894, 1.209886 ] [ 0.649961, 1.350025 ]

[ 2.374878, 2.860885 ] [ 2.291871, 2.944032 ]

[ 22.813824, 22.946412 ] [ 22.741855, 23.019710 ]

matrix A given by

A =



5 2 1 1

2 6 3 1 1

1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1

1 1 3 6 2

1 1 2 5


The eigenvalues together with the corresponding perturbation
parameter ϵi, of the exact eigenvectors is summarized in table
V. In table VI the bounding intervals using w̃ and w are
shown.

TABLE V
λ AND ϵ, EXAMPLE 3

Eigenvalue Epsilon

0.522282 0.021184

1.803848 0.020927

3.171573 0.021179

4.000000 0.021085

4.0000000 0.020553

4.129248 0.021181

4.406650 0.020875

6.000000 0.021119

8.828427 0.020571

12.196152 0.021044

14.941819 0.009671

Example 4: Our final example is the famous Lehmer
matrix A, where

aij =
min(i, j)

max(i, j)
.

This is a real symmetric positive definite matrix. Here we
use order n = 10. The eigenvalues together with the corres-
ponding perturbation parameter ϵi, of the exact eigenvectors
is summarized in table VII. In table VIII the bounding
intervals using w̃ and w are shown.
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TABLE VI
BOUNDS, EXAMPLE 3

Bounds(w) Bounds(w̃)

[ 0.526975, 0.528967 ] [ 0.242471, 0.802380 ]

[ 1.797944, 1.820540 ] [ 1.550785, 2.057141 ]

[ 3.175254, 3.176891 ] [ 2.944870, 3.398416 ]

[ 3.992056, 4.014621 ] [ 3.790134, 4.209923 ]

[ 4.000111, 4.068231 ] [ 3.790780, 4.209276 ]

[ 4.130921, 4.137039 ] [ 3.921557, 4.336982 ]

[ 4.406327, 4.414866 ] [ 4.203549, 4.609756 ]

[ 5.955749, 6.047857 ] [ 5.828303, 6.171400 ]

[ 8.826198, 8.834651 ] [ 8.704952, 8.949913 ]

[ 12.155654, 12.233509 ] [ 12.116111, 12.280658 ]

[ 14.937480, 14.944540 ] [ 14.852639, 15.030891 ]

TABLE VII
λ AND ϵ, EXAMPLE 4

Eigenvalue Epsilon

0.066657 0.019956

0.090525 0.01984

0.122013 0.019869

0.166994 0.020008

0.235515 0.019869

0.346963 0.019566

0.539329 0.019987

0.896943 0.019589

1.776579 0.019957

5.758482 0.007304

TABLE VIII
BOUNDS, EXAMPLE 4

Bounds(w) Bounds(w̃)

[ 0.067642, 0.069662 ] [−0.039554, 0.172898 ]

[ 0.069131, 0.110762 ] [−0.015671, 0.196748 ]

[ 0.086807, 0.151175 ] [ 0.016935, 0.227116 ]

[ 0.137391, 0.193049 ] [ 0.062540, 0.271469 ]

[ 0.228430, 0.245543 ] [ 0.132070, 0.338974 ]

[ 0.322741, 0.372631 ] [ 0.246271, 0.447660 ]

[ 0.489283, 0.569278 ] [ 0.441890, 0.636752 ]

[ 0.854561, 0.971002 ] [ 0.806377, 0.987447 ]

[ 1.705401, 1.846259 ] [ 1.701522, 1.851381 ]

[ 5.719552, 5.797409 ] [ 5.101889, 6.717488 ]

V. CONCLUSION

It is evident from Table II, Table IV, Table VI and Table
VIII, that sharper bounds are obtained by using w than w̃.
This validates Theorems 7 and 8. We have thus provided
a relatively simple means for bounding eigenvalues of real
symmetric matrices, provided that approximations to their
eigenvectors are known.
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