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Abstract—The topic of personal credit scoring is a
prerequisite for the development of personal credit business
and has become an important research area in the field of
financial risk management. However, little attention has been
paid to the field of personal credit scoring research on how
to introduce additional features in improving personal credit
scoring services. To solve this problem, a new method based on
Histogram of Gradients Oriented (HOG) for personal credit
scoring is proposed for enhancing the scoring capability. The
proposed method utilizes the gradient relationship between
different features of personal credit data and introduces
additional features on the basis of the original features of
personal credit data to construct a set of personal credit
datasets based on HOG. The experimental results show that
the personal credit dataset based on HOG not only has higher
values but also better stability in terms of the four metrics
(accuracy, recall, precision, and F1-value) for personal credit
scoring when compared to the original personal credit dataset.
Therefore, the proposed personal credit scoring method has
been demonstrated to be both reliable and feasible.

Index Terms—Histogram of Oriented Gradient, personal
credit scoring, credit dataset, additional features.

I. INTRODUCTION

THE lending business has always held significant
importance in financial activities and serves as the

primary source of income for financial institutions. However,
every loan that a financial institution provides is exposed
to varying degrees of risk, making the quality of the
lending business a crucial aspect for these institutions. The
financial industry has devoted considerable effort to studying
methods for assessing loan risks for an extended period,
aiming to decrease the potential for loan defaults. In 1975,
the implementation of the Equal Credit Opportunity Act
established a legal framework in the United States for
granting personal loans based on individuals’ credit scores.

The topic of personal credit scoring has gained increasing
attention in recent years. In 2000, West [1] incorporated
neural networks into credit scoring models and compared
their effectiveness to conventional methods such as Linear
Discriminant Analysis (LDA) algorithm. The credit scoring
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model established on neural networks yields more precise
results. In 2002, Lee et al. [2] introduced a two-stage
hybrid credit scoring model that combines discriminant
analysis and neural networks methods. The neural networks
construct a more robust statistical foundation with the aid
of discriminant analysis, resulting in scoring outcomes that
are more precise than those generated by a credit scoring
model built solely on neural networks. In 2003, Baesens
et al. [3] pointed out that research in the field of credit
scoring has few analytical tools, mostly focusing on how
to make the scoring results more accurate, proposing the
use of neural networks rule extraction and decision tables
for credit scoring of credit datasets, and experimentally
proving the effectiveness of neural networks rule extraction
applied to the field of credit scoring. In 2005, Ong et
al. [4] utilized genetic programming in constructing credit
scoring models, verifying the models through the German
and Australian credit datasets. The experimental results
demonstrate the superiority of the genetic programming
based model’s scoring outcomes in comparison to those from
a neural network-based model. In 2007, Huang et al. [5]
put forward a model for hybrid credit scoring that utilizes
Support Vector Machine (SVM) and genetic algorithms to
enhance the accuracy of feature selection in credit datasets.
In 2008, Mavri et al. [6] introduced a two-stage dynamic
credit scoring model for evaluating credit applicants. They
confirmed the model’s accuracy using data from a European
bank, which can serve as a basis for bank’s credit operations.
In 2008, Yu et al. [7] proposed a credit risk assessment
model based on the integration of a six-stage neural networks
that performs credit scoring with a high accuracy. In 2009,
Antonakis et al. [8] suggested that the Naive Bayes (NB)
algorithm is frequently employed in credit scoring tasks
because of its easy-to-understand nature; however its results
are typically less granular when applied to large datasets.
Thus, there are limited situations in which the NB algorithm
is appropriate for credit scoring capacity. In 2009, Zhao
et al. [9] presented a credit scoring model for assessing
the creditworthiness of applicants, which was implemented
by a Hong Kong-based Chinese bank to analyze credit
applicant repayment risk. In 2009, Zhou et al. [10] proposed
a credit scoring model that utilizes SVM and the Area
Under Curve (AUC) metric. The accuracy of the model was
confirmed by using data from a Hong Kong-based bank
in China. This method can increase profits for the bank
while ensuring organized credit control. Furthermore, Zhou
et al. [10] applied their credit scoring model to German and
Australian credit datasets, successfully verifying the model’s
scoring capability. The experimental results prove that the
credit scoring model combining SVM and AUC algorithms
scores better than traditional credit scoring models such as
Linear Regression (LR) and Decision Trees (DT) algorithms.
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In 2011, Chuang et al. [11] proposed a two-stage credit
scoring model based on case-based reasoning and verified
the model’s accuracy using the German credit dataset, which
searches for incorrectly categorized credit cases to improve
the accuracy of credit scoring. In 2016, Wei et al. [12]
conducted a study on the influence of social network data
on credit scoring. In 2018, Kapoor et al. [13] suggested that
Social Media provides a significant amount of data that can
be utilized to assess an individual’s credit risk; therefore, it
is a vital source of information for credit risk assessment.
In 2020, Fu et al. [14] proposed a two-stage credit scoring
model based on neural networks and bidirectional long-term
and short-term memories and verified the model accuracy
using a real dataset of 1,000 online lending platforms, which
improves the accuracy of credit scoring. In 2020, Zhang et
al. [15] proposed a multi-stage hybrid credit scoring model
based on stacked integrated learning, which improves the
accuracy of credit scoring results. In 2023, Li et al. [16]
proposed a federated learning credit scoring model based
on utilizing data from multiple institutions, which can be
advantageous for small and medium-sized banks and other
organizations with limited data samples. In 2023, Zhou et
al. [17] proposed a KCSMOTE credit scoring model based
on utilizing a few classes of clustering centers as the base
point for enhancing data balancing, which appears to be more
effective in handling unbalanced fraud data. In 2024, Talaat
et al. [18] proposed a new interpretable credit scoring model
based on a combination of deep learning and interpretable
AI techniques, which improves the accuracy of credit card
default predictions. In 2024, Bennehalli et al. [19] proposed
a robust credit scoring model based on a one-sided selection
methodology in conjunction with information gain and
Pearson correlation, which improves the accuracy of credit
in both balanced and unbalanced datasets. In 2024, Chen et
al. [20] proposed a fiscal risk controlling model based on
a data structure and random subspace, which contributes to
the management of risk in the context of Internet finance. In
2024, Idrees et al. [21] proposed a solution to the challenge
posed by unbalanced credit card datasets, achieving a
balanced dataset, thereby improving the efficiency of the
system designed for the detection of fraudulent activity. In
2024, Chiang et al. [22] proposed an inventory system with
present value and credit period, which serves to enhance the
existing body of knowledge surrounding future cash outflows
within the context of financial credit environment inventories
and models. In 2025, Meng et al. [23] proposed a novel
approach for short-term personal credit load forecasting,
which improves personal credit load forecasting performance
while maintaining personal credit data security.

In summary, research in the area of personal credit scoring
has undoubtedly focused on how to build a better personal
credit scoring model, and little attention has been paid to
the introduction of additional features in the credit scoring
process.

In this paper, we propose a new personal credit scoring
method that utilizes the gradient relationship between
different features of personal credit data and introduces
additional features on the basis of the original features of
personal credit data to construct a set of personal credit
datasets based on Histogram of Oriented Gradient (HOG)
[20].

II. METHODS

Personal credit data x of size m× n is given as follows

x ∈ Rm×n (1)

Equation (1) defines x as a digital signal containing
personal credit data, Rm×n as a m× n matrix (1 ≤ m, 2 ≤
n), m as the number of items of personal credit data, and n
as the number of variables (which can be either numeric or
categorical) contained in each item of personal credit data.

The last variable of personal credit data x is given as
follows

xi,n =

{
1, good credit
2, bad credit

, (1 ≤ i ≤ m) (2)

where xi,n = 1 represents good credit and xi,n = 2
represents bad credit.

Here, we temporarily set aside the last variable of the
personal credit data x, so the personal credit data y of size
m× (n− 1) is given below

yi,j = xi,j , (1 ≤ i ≤ m, 1 ≤ j ≤ n− 1) (3)

Equation (3) defines y as a m × (n − 1) matrix, i as the
rows where the personal credit data y and x are located, j
as the columns where the personal credit data y and x are
located, yi,j as the row i and column j of the personal credit
data y, and xi,j as the row i and column j of the personal
credit data x.

In order to greatly reduce the impact on the results caused
by the large differences in the values of the variables in
different columns of the personal credit data y, the personal
credit data y needs to be normalized by columns.

We now introduce the row vector ymax ∈ R1×(n−1),
which is defined as

ymax
j = max(yi,j), (1 ≤ i ≤ m, 1 ≤ j ≤ n− 1) (4)

where ymax
j represents the value located in row 1 and column

j of matrix ymax
j , and it denotes the maximum value in the

variable in column j of the personal credit data y.
So, we can divide each variable in Equation (4) by the

maximum value of the variable data in that column.
The mathematical definition of ynormalization

i,j of size m×
(n− 1) is as follows

ynormalization
i,j =

yi,j
ymax
j + ε

(5)

where the positive parameter ε is a constant that is very close
to zero in order to avoid having a zero denominator.

The value of Equation (5) has been obtained. In order to
incorporate additional features on the basis of the original
features of the personal credit data , it is also necessary to
construct a three-dimensional matrix CELL of size e× f ×
m, which is given as follows

CELLk,h,g = ynormalization
i,j (6)

Equation (6) defines CELLk,h,g as a three-dimensional
matrix with e rows, f columns, and g pages (1 ≤ e ≤ n−1,
1 ≤ f ≤ n− 1 and 1 ≤ g ≤ m).

Here, parameters e, f , n, k, h, j, g, and i need to share
the following relations

e× f = n− 1
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Fig. 1. The HOG of bin equal parts

(k − 1)× f + h = j

g = i

Therefore, the gradient of the CELLk,h,g matrix for
personal credit data in the row direction can be defined as

CELLline
k,h,g =


CELLk+1,h,g − CELLk,h,g,

(1 ≤ k ≤ e− 1, 1 ≤ h ≤ f, 1 ≤ g ≤ m)
0− CELLk,h,g,

(k = e, 1 ≤ h ≤ f, 1 ≤ g ≤ m)
(7)

And the gradient of the CELLk,h,g matrix for personal
credit data in the column direction can be defined as

CELLcolumn
k,h,g =


CELLk,h,g − CELLk,h+1,g,

(1 ≤ k ≤ e, 1 ≤ h ≤ f − 1, 1 ≤ g ≤ m)
0− CELLk,h,g,

(1 ≤ k ≤ e, h = f, 1 ≤ g ≤ m)
(8)

We now calculate the gradient magnitude of the
CELLk,h,g matrix for personal credit data, which is defined
as

CELLmagnitude
k,h,g =

√
(CELLline

k,h,g)
2
+ (CELLcolumn

k,h,g )
2

(9)
where 1 ≤ k ≤ e, 1 ≤ h ≤ f and 1 ≤ g ≤ m.

Let θk,h,g be the gradient direction of the CELLk,h,g

matrix for personal credit data. Therefore, θk,h,g is given
as follows

θk,h,g =



arctan(
CELLcolumn

k,h,g

CELLline
k,h,g

),

(CELLline
k,h,g > 0)

arctan(
CELLcolumn

k,h,g

CELLline
k,h,g

) + π,

(CELLcolumn
k,h,g ≥ 0, CELLline

k,h,g < 0)

arctan(
CELLcolumn

k,h,g

CELLline
k,h,g

)− π,

(CELLcolumn
k,h,g < 0, CELLline

k,h,g < 0)
π
2 ,
(CELLcol

k,h,g ≥ 0, CELLline
k,h,g = 0)

−π
2 ,

(CELLcolumn
k,h,g < 0, CELLline

k,h,g = 0)

(10)

The subsequent step is to generate a HOG, as illustrated
in Figure1.

Figure 1 shows that the range from −π to −π is
divided into equal bin parts (bin ≥ 2). The part 1
covers the range

[
−π,−π + 2π

bin

)
, the part 2 covers the

range
[
−π + 2π

bin ,−π + 4π
bin

)
, . . . , the part bin-1 covers the

range
[
π − 4π

bin , π − 2π
bin

)
, and the part bin covers the range[

π − 2π
bin , π

)
.

The gradient magnitude and gradient direction of the
CELLk,h,g matrix for personal credit data are obtained in
Equations (9) and (10). In order to expand the additional
features of personal credit data, we also need to accumulate
the gradient magnitude into bin equal intervals according to
the gradient direction. Thus, we create the matrix ybin ∈

Rm×bin used to refer to the additional features of personal
credit data, which is defined as

ybini,j =

f∑
h=1

e∑
k=1

CELLmagnitude
k,h,g (11)

where 1 ≤ i ≤ m, 1 ≤ j ≤ bin , i = g and θk,h,g ∈[
−π + (j−1)×2π

bin ,−π + j×2π
bin

)
.

Introducing the additional features ybin into the personal
credit data x, we obtain the data xbin as follows

xbin
i,j =


xi,j , 1 ≤ j ≤ n− 1
ybini,j−n+1, n ≤ j ≤ n+ bin− 1
xi,n, j = n+ bin

(12)

where x ∈ Rm×(n+bin).

III. CONCLUSIONS AND FUTURE WORK

The data utilized in this study was retrieved from
the German credit dataset (http://archive.ics.uci.edu/ml/
datasets/Statlog+(German+Credit+Data)) offered by the
University of California, Irvine, comprising of 1,000 credit
data entries.

The mathematical definition of accuracy is as follows

Accuracy =
TP + TN

TP + FP + TN + FN
(13)

Equation (13) defines accuracy as the ratio of correctly
categorised data to all categorised data. The variables TP,
TN, FN, and FP represent true positives, true negatives, false
negatives, and false positives, respectively. True positives
represent the positive class that is predicted to be positive;
true negatives represent the negative class that is predicted to
be negative; false negatives represent the positive class that
is predicted to be negative; and false positives represent the
negative class that is predicted to be positive.

Accuracy is the ratio of the number of correctly
categorized samples to the total number of samples. A higher
accuracy rate means that a higher percentage of people with
good and bad credit are successfully identified.

The mathematical definition of recall is as follows

Recall =
TP

TP + FN
(14)

Equation (14) defines recall as the ratio of correctly
predicted positive categories to all the actual positive
categories in the data.

A 100% recall rate signifies that no benign credit applicant
is rejected erroneously. For example, commercial banks
generate the majority of their profits from the deposit
credit spread. Consequently, wrongly rejecting a benign loan
application results in loss of profit. In situations where a bank
seeks to expand its lending business, the cost of wrongly
rejecting a conscientious loan application is greater than that
of passing a non-performing load application. Therefore, at
this juncture, it can be concluded that an elevated recall rate
engenders a more beneficial model.

The mathematical definition of precision is as follows

Precision =
TP

TP + FP
(15)
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TABLE I
EXPERIMENTAL RESULTS FOR THE ACCURACY

Dataset LDA LR SVM

German credit dataset (Original data) 75.1% 75.6% 75.1%

bin=3 76.3% 76.5% 76.0%
bin=4 76.9% 77.3% 76.5%
bin=5 75.5% 75.9% 75.7%
bin=6 76.0% 76.2% 76.3%
bin=7 75.9% 75.9% 76.4%
bin=8 76.8% 76.8% 77.2%
bin=9 76.4% 76.5% 76.7%

bin=10 76.9% 76.6% 76.3%
bin=11 75.6% 76.1% 76.1%
bin=12 76.9% 76.1% 76.4%
bin=13 76.5% 77.4% 76.8%
bin=14 76.2% 76.3% 76.3%
bin=15 76.5% 76.8% 77.2%
bin=16 76.3% 76.6% 76.1%
Average 76.3% 76.5% 76.4%

Equation (15) defines precision as the ratio of correctly
predicted positive categories to all predicted positive
categories in the data.

Precision represents the percentage of applicants with
genuinely good credit among those rated as having
good credit. A higher precision value indicates a lower
percentage of non-performing loans formed from all
approved applications, which in turn implies a corresponding
reduction in the incidence of bad debts in the future.

The mathematical definition of F1-value is as follows

F1 = 2
Precision×Recall

Precision+Recall
(16)

Equation (16) defines the F1-value as a measure that
balances the recall and precision to illustrate the classification
effect.

F1-value is a measure of both precision and recall, with
higher values indicating superior classification performance.

Higher values of the four metrics (accuracy, recall,
precision, and F1-value) indicate better classification
performance.

The experiments involved transforming 1000 personal
credit data from the German credit dataset into a 4×5×1000
CELL matrix. The data was then classified using three
algorithms: LDA, LR, and SVM. The values of bin ranged
from 3 to 16.

The experiment utilised a 10-fold cross-validation. The
German credit dataset contains 1000 individual credit data,
which were evenly divided into 10 parts, each with 100
individual credit data. Ten experiments were conducted on
the 10 individual credit data respectively. Each time, one of
the 10 parts of the data was used as the test data in turn, and
the remaining 9 parts of the data were used as the training
data. Subsequently, the experiment involved the utilisation
of ten copies of data, which were employed in succession as
test data. The average of the classification results were then
calculated, thereby providing an estimation of the utility of
the method.

Table I shows the experimental results of the accuracy.
Table I summarizes the comparison results of the average

classification accuracy of the German credit dataset and the

TABLE II
EXPERIMENTAL RESULTS FOR THE RECALL

Dataset LDA LR SVM

German credit dataset (Original data) 87.4% 88.0% 88.7%

bin=3 88.3% 88.3% 89.9%
bin=4 88.6% 88.6% 89.1%
bin=5 88.4% 88.6% 89.6%
bin=6 88.0% 88.4% 89.6%
bin=7 88.0% 88.4% 90.1%
bin=8 88.3% 88.4% 89.9%
bin=9 88.6% 88.7% 89.7%

bin=10 88.7% 88.9% 90.1%
bin=11 88.7% 88.1% 89.4%
bin=12 88.6% 88.2% 89.3%
bin=13 88.0% 88.9% 90.3%
bin=14 88.3% 88.3% 90.0%
bin=15 88.0% 88.4% 89.9%
bin=16 88.0% 88.7% 89.9%
Average 88.2% 88.5% 89.8%

TABLE III
EXPERIMENTAL RESULTS FOR THE PRECISION

Dataset LDA LR SVM

German credit dataset (Original data) 79.2% 79.4% 78.5%

bin=3 79.9% 80.2% 78.8%
bin=4 80.4% 80.8% 79.7%
bin=5 79.4% 79.5% 78.7%
bin=6 79.8% 79.8% 79.3%
bin=7 79.7% 79.5% 79.1%
bin=8 80.5% 80.4% 80.0%
bin=9 79.9% 79.9% 79.6%

bin=10 80.3% 79.9% 79.0%
bin=11 79.5% 80.0% 79.1%
bin=12 80.4% 80.1% 79.5%
bin=13 80.3% 80.8% 79.4%
bin=14 79.8% 80.3% 79.0%
bin=15 80.3% 80.4% 80.0%
bin=16 80.1% 80.0% 78.9%
Average 80.0% 80.1% 79.3%

German credit dataset based on HOG using LDA, LR, and
SVM algorithms. From Table I, we can see that the average
classification accuracies of the German credit dataset based
on HOG using LDA, LR, and SVM algorithms are 1.2%,
0.9%, and 1% higher than that of the German credit dataset,
respectively.

Table II shows the experimental results of the recall.
Table II summarizes the comparison results of the average

classification recall of the German credit dataset and the
German credit dataset based on HOG using LDA, LR, and
SVM algorithms. From Table II, we can see that the average
classification recalls of the German credit dataset based
on HOG using LDA, LR, and SVM algorithms are 0.8%,
0.5%, and 1% higher than that of the German credit dataset,
respectively.

Table III shows the experimental results of the precision.
Table III summarizes the comparison results of the average

classification precision of the German credit dataset and the
German credit dataset based on HOG using LDA, LR, and
SVM algorithms. From Table III, we can see that the average

IAENG International Journal of Applied Mathematics

Volume 55, Issue 6, June 2025, Pages 1562-1570

 
______________________________________________________________________________________ 



TABLE IV
EXPERIMENTAL RESULTS FOR THE F1-VALUE

Dataset LDA LR SVM

German credit dataset (Original data) 83.1% 83.5% 83.3%

bin=3 83.9% 84.0% 84.0%
bin=4 84.3% 84.5% 84.2%
bin=5 83.5% 83.7% 83.8%
bin=6 83.7% 83.9% 84.1%
bin=7 83.6% 83.7% 84.2%
bin=8 84.2% 84.2% 84.7%
bin=9 84.0% 84.1% 84.4%

bin=10 84.3% 84.2% 84.2%
bin=11 83.4% 83.7% 84.0%
bin=12 84.3% 83.7% 84.1%
bin=13 84.0% 84.6% 84.5%
bin=14 83.9% 83.8% 84.2%
bin=15 84.0% 84.2% 84.7%
bin=16 83.9% 84.1% 84.0%
Average 84.0% 84.0% 84.2%

classification precisions of the German credit dataset based
on HOG using LDA, LR, and SVM algorithms are 0.8%,
0.7%, and 0.8% higher than that of the German credit dataset,
respectively.

Table IV shows the experimental results of the F1-value.
Table IV summarizes the comparison results of the average

classification F1-value of the German credit dataset and the
German credit dataset based on HOG using LDA, LR, and
SVM algorithms. From Table IV, we can see that the average
classification F1-values of the German credit dataset based
on HOG using LDA, LR, and SVM algorithms are 0.8%,
0.5%, and 0.9% higher than that of the German credit dataset,
respectively.

To summarise, the German credit dataset based on HOG
yields higher accuracies, recalls, precisions, and F1-values
compared to the German credit dataset when employing
LDA, LR, and SVM algorithms.

The 10-fold cross-validation allows for the derivation of
average values from the data presented in Tables I to IV.
The construction of the corresponding box plots for the
results of the 10 experiments provides a means of more
accurately reflecting the performance of the method under
different algorithms, as well as its stability. This includes the
ability to identify outliers, assess the distribution of data, and
determine whether the date is centralized or decentralized, as
illustrated in Figure 2, 3, 4, and 5.

Figure 2 shows box plots of accuracy based on LDA, LR,
and SVM algorithms.

As illustrated in Figure 2, the application of LDA, LR,
and SVM algorithms in conjunction with the German credit
dataset based on HOG exhibits a smaller Interquartile Range
(IQR) in terms of accuracy when compared to the German
credit dataset. In Figure 2(a), one outlier occurs when bin =
8. However, the outliers fall within the range of the maximum
and minimum values of the German credit dataset box plot,
and the IQR of the box plot for bin = 8 is considerably
smaller than that of the box plot for the German credit
dataset. Similarly, in Fig. 2(b), there are six outliers when
bin=8 and 15. The outliers also fall within the range of the
maximum and minimum values of the German credit dataset
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(a) Box plot of accuracy based on LDA algorithm.
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(b) Box plot of accuracy based on LR algorithm.
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(c) Box plot of accuracy based on SVM algorithm.

Fig. 2. Box plots of accuracy based on LDA, LR, and SVM algorithms.

box plot, and the IQR of the box plot for bin = 8 and 15
are also considerably smaller than that of the box plot for
the German credit dataset. The results of the experimental
comparisons demonstrate that the German credit dataset
based on HOG has superior stability in terms of accuracy
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(a) Box plot of recall based on LDA algorithm.
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(b) Box plot of recall based on LR algorithm.
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(c) Box plot of recall based on SVM algorithm.

Fig. 3. Box plots of recall based on LDA, LR, and SVM algorithms.

when compared to the German credit dataset.
Figure 3 shows the box plots of recall based on LDA, LR,

and SVM algorithms.
As illustrated in Figure 3, the application of LDA, LR,

and SVM algorithms in conjunction with the German credit

dataset based on HOG exhibits a smaller IQR in terms of
recall when compared to the German credit dataset. In Figure
3(a), three outliers occur when bin = 10 and 11. However, the
outliers fall within the range of the maximum and minimum
values of the German credit dataset box plot, and the IQR of
the box plots for bin = 10 and 11 are considerably smaller
than those of the box plot for the German credit dataset.
In Fig. 3(b), there are four outliers when bin=9, 12, and
13. One outlier falls within the range of the maximum and
minimum values of the German credit dataset box plot.
The other three outliers exceed the range of the maximum
values of the German credit dataset boxplot, and exhibit
a rightward skew because of the considerably smaller IQR
in comparison to the German credit dataset. The results of
the experimental comparisons demonstrate that the German
credit dataset based on HOG has superior stability in terms
of recall when compared to the German credit dataset.

Figure 4 shows the box plots of precision based on LDA,
LR, and SVM algorithms.

As illustrated in Figure 4, the application of LDA, LR,
and SVM algorithms in conjunction with the German credit
dataset based on HOG exhibits a smaller IQR in terms
of precision when compared to the German credit dataset.
Moreover, there are no outliers in Figure 4. The results of
the experimental comparisons demonstrate that the German
credit dataset based on HOG has superior stability in terms
of precision when compared to the German credit dataset.

Figure 5 shows the box plots of F1-value based on LDA,
LR, and SVM algorithms.

As illustrated in Figure 5, the application of LDA, LR,
and SVM algorithms in conjunction with the German credit
dataset based on HOG exhibits a smaller IQR in terms of
F1-value when compared to the German credit dataset. In
Figure 5(a), one outlier occurs when bin = 9. However, the
outlier falls within the range of maximum and minimum
values of the German credit dataset boxplot, and the IQR
of the box plot for bin = 9 is considerably smaller than that
of the box plot for the German credit dataset. The results of
the experimental comparisons demonstrate that the German
credit dataset based on HOG has superior stability in terms
of F1-value when compared to the German credit dataset.

In addition to box plots, standard deviation also can be
utilised to ascertain the stability of the results of the 10
experiments.

Table V shows the standard deviation results of the
accuracy.

Table V summarizes the comparison results of the standard
deviation for accuracy of the German credit dataset and the
German credit dataset based on HOG using LDA, LR, and
SVM algorithms. From Table V, we can see that the average
standard deviations for accuracy of the German credit dataset
based on HOG using LDA, LR, and SVM algorithms are
0.0127, 0.0111, and 0.0054 higher than that of the German
credit dataset, respectively.

Table VI shows the standard deviation results of the recall.
Table VI summarizes the comparison results of the

standard deviation for recall of the German credit dataset
and the German credit dataset based on HOG using LDA,
LR, and SVM algorithms. From Table II, we can see that
the average standard deviations for recall of the German
credit dataset based on HOG using LDA, LR, and SVM
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(a) Box plot of precision based on LDA algorithm.
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(b) Box plot of precision based on LR algorithm.
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(c) Box plot of precision based on SVM algorithm.

Fig. 4. Box plots of precision based on LDA, LR, and SVM algorithms.

algorithms are 0.0137, 0.0068, and 0.0075 higher than that
of the German credit dataset, respectively.

Table VII shows the standard deviation results of the
precision.

Table VII summarizes the comparison results of the
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(a) Box plot of F1-value based on LDA algorithm.
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(b) Box plot of F1-value based on LR algorithm.
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(c) Box plot of F1-value based on SVM algorithm.

Fig. 5. Box plots of F1-value based on LDA, LR, and SVM algorithms.

standard deviation for precision of the German credit dataset
and the German credit dataset based on HOG using LDA,
LR, and SVM algorithms. From Table I, we can see that
the average standard deviations for precision of the German
credit dataset based on HOG using LDA, LR, and SVM
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TABLE V
STANDARD DEVIATION FOR THE ACCURACY

Dataset LDA LR SVM

German credit dataset (Original data) 0.0587 0.0541 0.0558

bin=3 0.0560 0.0490 0.0501
bin=4 0.0530 0.0514 0.0520
bin=5 0.0516 0.0513 0.0547
bin=6 0.0500 0.0469 0.0550
bin=7 0.0439 0.0455 0.0541
bin=8 0.0442 0.0407 0.0545
bin=9 0.0439 0.0437 0.0478
bin=10 0.0411 0.0375 0.0504
bin=11 0.0504 0.0483 0.0505
bin=12 0.0468 0.0394 0.0418
bin=13 0.0427 0.0358 0.0442
bin=14 0.0352 0.0287 0.0450
bin=15 0.0393 0.0407 0.0545
bin=16 0.0452 0.0434 0.0507
Average 0.0460 0.0430 0.0504

TABLE VI
STANDARD DEVIATION RESULTS FOR THE RECALL

Dataset LDA LR SVM

German credit dataset (Original data) 0.0459 0.0404 0.0456

bin=3 0.0380 0.0336 0.0387
bin=4 0.0308 0.0319 0.0401
bin=5 0.0383 0.0383 0.0384
bin=6 0.0341 0.0323 0.0411
bin=7 0.0274 0.0347 0.0384
bin=8 0.0299 0.0398 0.0423
bin=9 0.0376 0.0327 0.0341
bin=10 0.0332 0.0270 0.0396
bin=11 0.0276 0.0275 0.0346
bin=12 0.0379 0.0320 0.0317
bin=13 0.0379 0.0322 0.0399
bin=14 0.0201 0.0312 0.0308
bin=15 0.0276 0.0398 0.0423
bin=16 0.0299 0.0376 0.0411
Average 0.0322 0.0336 0.0381

TABLE VII
STANDARD DEVIATION RESULTS FOR THE PRECISION

Dataset LDA LR SVM

German credit dataset (Original data) 0.0622 0.0587 0.0570

bin=3 0.0613 0.0585 0.0562
bin=4 0.0584 0.0565 0.0565
bin=5 0.0565 0.0544 0.0553
bin=6 0.0564 0.0569 0.0569
bin=7 0.0552 0.0506 0.0553
bin=8 0.0528 0.0459 0.0532
bin=9 0.0528 0.0509 0.0557
bin=10 0.0488 0.0443 0.0552
bin=11 0.0606 0.0556 0.0564
bin=12 0.0503 0.0493 0.0513
bin=13 0.0502 0.0448 0.0517
bin=14 0.0474 0.0398 0.0491
bin=15 0.0508 0.0459 0.0532
bin=16 0.0555 0.0490 0.0541
Average 0.0541 0.0502 0.0543

TABLE VIII
STANDARD DEVIATION RESULTS FOR THE F1-VALUE

Dataset LDA LR SVM

German credit dataset (Original data) 0.0432 0.0391 0.0412

bin=3 0.0393 0.0350 0.0374
bin=4 0.0373 0.0356 0.0354
bin=5 0.0369 0.0374 0.0403
bin=6 0.0367 0.0335 0.0400
bin=7 0.0312 0.0333 0.0384
bin=8 0.0329 0.0300 0.0395
bin=9 0.0300 0.0296 0.0341
bin=10 0.0281 0.0249 0.0344
bin=11 0.0376 0.0355 0.0351
bin=12 0.0343 0.0301 0.0304
bin=13 0.0312 0.0273 0.0315
bin=14 0.0254 0.0212 0.0304
bin=15 0.0295 0.0300 0.0395
bin=16 0.0330 0.0328 0.0367
Average 0.0331 0.0312 0.0360

algorithms are 0.0082, 0.0085, and 0.0027 higher than that
of the German credit dataset, respectively.

Table VIII shows the standard deviation results of the
F1-value.

Table VIII summarizes the comparison results of the
standard deviation for F1-value of the German credit dataset
and the German credit dataset based on HOG using LDA,
LR, and SVM algorithms. From Table IV, we can see that
the average standard deviations for F1-value of the German
credit dataset based on HOG using LDA, LR, and SVM
algorithms are 0.8%, 0.5%, and 0.9% higher than that of
the German credit dataset, respectively.

In conclusion, the experimental results indicate that the
accuracy, recall, precision, and F1-value of the German
credit dataset based on HOG exhibit superior stability to the
German credit dataset when utilising LDA, LR, and SVM
algorithms.

IV. CONCLUSION

In this study, a method based on HOG was proposed
for personal credit scoring. We employed the gradient
relationship between disparate features of personal credit
data and introduced novel features derived from the original
features of personal credit data to construct a set of personal
credit datasets based on HOG. The experimental results
demonstrate that the German credit dataset based on HOG
achieves a better performance compared to the German credit
dataset in both terms of classification and stability.

In future work, we will not only consider the German
credit dataset, but also different datasets such as the
Australian credit dataset, the Bene 1 dataset, the European
bank dataset, the Hong Kong bank dataset, and other different
datasets for experiments, so as to study more fully the
impacts of diverse cultural backgrounds and credit scoring
factors on individual credit scores at greater depths.
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