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Abstract—The notion of harmonic quermassintegrals was
introduced by Hadwiger. Later, Yuan, Yuan and Leng pro-
posed the concept of dual harmonic quermassintegrals for star
bodies. We derive several Brunn-Minkowski type inequalities
for dual harmonic quermassintegrals associated with Blaschke-
Minkowski homomorphisms and radial Blaschke-Minkowski
homomorphisms.

Index Terms—dual harmonic quermassintegral, Brunn-
Minkowski type inequality, Blaschke-Minkowski homomor-
phism, radial Blaschke-Minkowski homomorphism

I. INTRODUCTION

LET Kn denote a set of convex bodies (compact, convex
subsets with non-empty interiors) in Euclidean space

Rn. Let Kn
o denote the set of convex bodies in Rn that

contain the origin in their interiors. The set of star bodies
in Rn is denoted by Sn. Let Sn−1 denote the unit sphere,
voli(K | ζ) denote the i-dimensional volume of the orthogo-
nal projection of K onto an i-dimensional subspace ζ ∈ Rn,
and kn denote the volume of the unit ball Bn in Rn.

The concept of quermassintegrals plays an important role
in convex geometry analysis. It is defined as follows: For
K ∈ Kn and 0 ≤ i ≤ n, the quermassintegrals, Wn−i(K),
of K is defined by

Wn−i(K) = kn

∫
G(n,i)

voli(K | ζ)
ki

dµi(ζ). (1)

Here, the Grassmann manifold G(n, i) is endowed with
the normalized Haar measure. The quermassintegrals are
generalizations of the surface area and the volume. Moreover,
if i = n − 1 or i = n in (1), then nW1(K) is the surface
area of K, and W0(K) is the volume of K.

The dual quermassintegrals for star bodies were introduced
by Lutwak [12]. For K ∈ Sn and 0 ≤ i ≤ n, the dual
quermassintegrals, W̃n−i(K), of K is defined by

W̃n−i(K) = kn

∫
G(n,i)

voli(K ∩ ζ)

ki
dµi(ζ). (2)

Here, voli(K ∩ ζ) denotes the i-dimensional volume of slice
of K by an i-dimensional subspace ζ ∈ Rn. If i = n or i = 0
in (2), then W̃0(K) = vol(K) denotes the n-dimensional
volume of the body K, W̃n(K) = kn.

The study of quermassintegrals of convex bodies and
dual quermassintegrals of star bodies has attracted extensive
attention in convex geometry. The book [20, Chapters 5] by
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Schneider provides a comprehensive account of the classical
Brunn-Minkowski theory and its recent developments.In ad-
dition, for further discussions on quermassintegrals and dual
quermassintegrals, as well as their latest research results, see
[10], [15], [16], [21], [27], [28], [29].

The concept of harmonic quermassintegrals, introduced
by Hadwiger [9, page 267], can be defined as follows: Let
K ∈ Sn and 0 ≤ i ≤ n, the harmonic quermassintegrals,
Ŵn−i(K), of K is defined by

Ŵn−i(K) = kn

[ ∫
G(n,i)

(
voli(K | ζ)

ki

)−1

dµi(ζ)

]−1

. (3)

If i = n or i = 0 in (3), then Ŵ0(K) = vol(K), Ŵn(K) =
kn.

At the same time, Hadwiger obtained the Brunn-
Minkowski inequality for harmonic quermassintegrals. Later,
Lutwak [13] established the Blaschke-Santaió inequality and
the affine inequality for harmonic quermassintegrals. Re-
cently, Ji and Zeng [18] introduced the notion of Orlicz
mixed harmonic quermassintegrals, proved the variational
formula with respect to the Orlicz combination, and es-
tablished the Minkowski-type inequality and the Brunn-
Minkowski-type inequality for Orlicz mixed harmonic quer-
massintegrals.

The concept of dual harmonic quermassintegrals is the
dual of harmonic quermassintegrals. The dual quermassin-
tegrals were first introduced by Yuan, Yuan and Leng [22]
as follows: For K ∈ Sn and 0 ≤ i ≤ n, the dual harmonic
quermassintegrals, W̆n−i(K), of K is defined by

W̆n−i(K)=kn

[∫
G(n,i)

(
voli(K ∩ ζ)

ki

)−1

dµi(ζ)

]−1

. (4)

Specially, if i = n or i = 0 in (4), then W̆0(K) = vol(K),
W̆n(K) = kn. In addition, from the Schwarz or Hölder
inequality, Yuan, Yuan and Leng [22] obtained: For K ∈ Sn

and 0 ≤ i ≤ n, then

W̆i(K) ≤ W̃i(K), (5)

with equality if and only if L is of constant (n− i)-section.
Meanwhile, Yuan, Yuan and Leng [22] are also introduced

the concept of mixed p-dual harmonic quermassintegrals as
follows: Let K,L ∈ Kn

o , ζ ∈ G(n, i), and 0 ≤ p ≤ i, the
mixed p-dual harmonic quermassintegrals W̆p,n−i(K,L), of
K and L is defined by

W̆p,n−i(K,L)=kn

[∫
G(n,i)

(
Vp,i(K,L;ζ)

ki

)−1

dµi(ζ)

]−1

, (6)

where

Vp,i(K,L; ζ) = vol(K ∩ ζ, i− p;L ∩ ζ, p). (7)
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If p = 1 in (6), then W̆p,n−i(K,L) = W̆i(K,L). If L = K
and 0 ≤ p ≤ n − i in (6), then W̆p,i(K,K) = W̆i(K) and
W̆n−i,i(K,L) = W̆i(L).

Recently, Ma and Wang [17] extended the notion of dual
harmonic mixed quermassintegrals from the classical Brunn-
Minkowski theory to Orlicz dual harmonic mixed quermass-
integrals in the Orlicz-Brunn-Minkowski theory. They estab-
lished the dual Minkowski isoperimetric inequality and the
dual Brunn-Minkowski inequality for dual Orlicz harmonic
mixed quermassintegrals (see also [30]).

The projection bodies were introduced by Minkowski at
the turn of the previous century. For K ∈ Kn, the projection
body, ΠK of Kis an origin-symmetric convex body whose
support function is defined by

h(ΠK,u) =
1

2

∫
Sn−1

|u · v|dS(K, v),

for all u ∈ Sn−1. Here, S(K, ·) denotes the surface area
measure of K.

The projection body is a central object of study in the
Brunn-Minkowski theory. A great deal of results are collected
in two excellent books (see [8], [20]). In 2006, based on the
properties of projection bodies, Schuster [19] introduced the
notion of Blaschke-Minkowski homomorphisms as follows:
Definition 1.A. A map Φ : Kn → Kn is called a Blaschke-
Minkowski homomorphisms if it satisfies the following con-
ditions:

(a) Φ is continuous.
(b) For all K,L ∈ Kn,

Φ(K#L) = ΦK +ΦL. (8)

(c) For all K ∈ Kn and every ϑ ∈ SO(n), Φ(ϑK) =
ϑΦK.
Here, SO(n) is the group of rotations in n dimensions.
ΦK+ΦL denotes the Minkowski sum of ΦK and ΦL, K#L
denotes the Blaschke addition of convex bodies K and L.
Additionally, we denote the polar of ΦK for the polar of
Φ∗K.

The intersection body is the dual form of the projection
body. The concept of intersection bodies was first introduced
by Lutwak [14], and its definition is given by: for K ∈
Sn, the intersection body, IK, of K is a star body whose
radial function in the direction u ∈ Sn−1 is equal to the
(n− 1)-dimensional volume of the section of K by u⊥, the
hyperplane orthogonal to u, i.e., for all u ∈ Sn−1,

ρ(IK, u) = voln−1(K ∩ u⊥),

where voln−1 denotes (n− 1)-dimensional volume.
In recent years, intersection bodies and their generaliza-

tions in the Brunn-Minkowski theory have attracted increased
attention (see [8], [20]). Later, based on the properties of the
well-known intersection operators, Schuster [19] introduced
a special class of valuations: radial Blaschke-Minkowski
homomorphisms, which are defined as follows.
Definition 1.B. A map Ψ : Sn → Sn is called a
radial Blaschke-Minkowski homomorphism if it satisfies the
following conditions:

(d) Ψ is continuous.
(e) For all K,L ∈ Sn,

Ψ(K+̂L) = ΨK+̃ΨL. (9)

(f) For all K ∈ Sn and every ϑ ∈ SO(n), Ψ(ϑK) =
ϑΨK.
Here, ΨK+̃ΨL denotes the radial addition of ΨL and ΨL,
K+̂L denotes the radial Blaschke addition of convex bodies
K and L.

In addition, Schuster investigated Busemann-Petty type
problems for Blaschke-Minkowski homomorphisms and ra-
dial Blaschke-Minkowski homomorphisms. Later, Wang
[23], [24] extended the Blaschke-Minkowski homomorphism
and the radial Blaschke-Minkowski homomorphism to the
Lp space and studied their Busemann-Petty type problems.
In 2020, Wang [25] provided a lower bound for the dual
quermassintegrals of mixed radial Blaschke-Minkowski ho-
momorphisms. Blaschke-Minkowski homomorphisms and
radial Blaschke-Minkowski homomorphisms have attracted
considerable interest; see, for example, [2], [3], [4], [5], [6],
[11], [26].

The purpose of this paper is to establish Brunn-Minkowski
type inequalities for dual harmonic quermassintegrals of
Blaschke-Minkowski homomorphisms and radial Blaschke-
Minkowski homomorphisms, respectively. First, we estab-
lish the following Brunn-Minkowski type inequality for
Blaschke-Minkowski homomorphisms.
Theorem 1.1. Let Φ : Kn → Kn be a Blaschke-Minkowski
homomorphism. If K,L ∈ Kn

o , and 0 ≤ i < n, then

W̆i(Φ(K#L))
1

n−i ≥ W̆i(ΦK)
1

n−i + W̆i(ΦL)
1

n−i , (10)

with equality if and only if ΦK and ΦL are dilates.
Note that the special case Φ = Π of Theorem 1.1 provide

a new Brunn-Minkowski inequality for the dual harmonic
quermassintegrals of projection bodies.
Corollary 1.1. If K,L ∈ Kn

o , and 0 ≤ i < n, then

W̆i(Π(K#L))
1

n−i ≥ W̆i(ΠK)
1

n−i + W̆i(ΠL)
1

n−i ,

with equality if and only if ΠK and ΠL are dilates.
Specially, if i = 0 in Corollary 1.1, we obtain the

following result.
Corollary 1.2. Let K,L ∈ Kn

o , then

vol(Π(K#L))
1
n ≥ vol(ΠK)

1
n + vol(ΠL)

1
n ,

with equality if and only if ΠK and ΠL are dilates.
In particular, if ΠK have constant (n−i)-section, then, we

have that W̆i(ΠK) = W̃i(ΠK), by the equality condition of
(5), then Corollary 1.1 yields:
Corollary 1.3. Let K,L ∈ Kn

o , ΠK and ΠL have constant
(n− i)-section, if 0 ≤ i < n, then

W̃i(Π(K#L))
1

n−i ≥ W̃i(ΠK)
1

n−i + W̃i(ΠL)
1

n−i ,

with equality if and only if ΠK and ΠL are dilates.
The next theorem shows that polar of Blaschke-Minkowski

homomorphisms also satisfy a Brunn-Minkowski inequality.
Theorem 1.2. Let Φ : Kn → Kn be a Blaschke-Minkowski
homomorphism. If K,L ∈ Kn

o and 0 ≤ i < n, then

W̆i(Φ
∗(K#L))−

1
n−i ≥ W̆i(Φ

∗K)−
1

n−i +W̆i(Φ
∗L)−

1
n−i , (11)

with equality if and only if Φ∗K and Φ∗L are dilates.
Since the projection body is a special example of a

Blaschke-Minkowski homomorphism, by Theorem 1.2, we
obtain the following Brunn-Minkowski inequality for polar
projection bodies.
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Corollary 1.4. If K,L ∈ Kn
o and 0 ≤ i < n, then

W̆i(Π
∗(K#L))−

1
n−i ≥ W̆i(Π

∗K)−
1

n−i + W̆i(Π
∗L)−

1
n−i ,

with equality if and only if Π∗K and Π∗L are dilates.
In addition, if M = ΠK and N = ΠL, then (M +N)∗ =

Π∗(K#L), since ΠK+ΠL = Π(K#L), then we can obtain
the following Brunn-Minkowski inequality for polar of the
Minkowski combination.
Corollary 1.5. If K,L ∈ Kn

o and 0 ≤ i < n, then

W̆i((M +N)∗)−
1

n−i ≥ W̆i(M
∗)−

1
n−i + W̆i(N

∗)−
1

n−i ,

with equality if and only if M and N are dilates.
Let i = 0 in Corollary 1.5, and in relation to W̆i(K) =

vol(K). Hence, Corollary 1.4 can also be obtained directly
by the following classical result of Firey [7].
Corollary 1.6. If M,N ∈ Kn

o , then

vol((M +N)∗)−
1
n ≥ vol(M∗)−

1
n + vol(N∗)−

1
n ,

with equality if and only if M and N are dilates.
Finally, we establish the following Brunn-Minkowski type

inequality of dual harmonic quermassintegrals for the radial
Blaschke-Minkowski homomorphisms
Theorem 1.3. Let Ψ : Sn → Sn be a radial Blaschke-
Minkowski homomorphism. If K,L ∈ Sn, for n−1 < i < n,
then

W̆i(Ψ(K+̂L))
1

n−i ≥ W̆i(ΨK)
1

n−i + W̆i(ΨL)
1

n−i , (12)

with equality if and only if ΨK and ΨL are dilates.
Since the intersection operator I is an example of a radial

Blaschke-Minkowski homomorphism, Theorem 1.3 provides
the following new Brunn-Minkowski inequality for the dual
harmonic quermassintegrals of intersection bodies.
Corollary 1.7. If K,L ∈ Sn, for n− 1 < i < n, then

W̆i(I(K+̂L))
1

n−i ≥ W̆i(IK)
1

n−i + W̆i(IL)
1

n−i ,

with equality if and only if IK and IL are dilates.

II. NOTATIONS AND BACKGROUND MATERIALS

In this section, some notations and basic facts about
convex bodies are presented. For general reference, readers
may consult the books by Gardner [8] and Schneider [20].

A. Support function, radial function and polar body

For K ∈ Kn, its support function, hK = h(K, ·) : Rn →
R, is defined by

h(K,x) = max{x · y : y ∈ K}, x ∈ Rn, (13)

where x · y denotes the standard inner product of x and y.
If K is origin symmetric, then h(K, ·) = h(−K, ·).

For K,L ∈ Kn
o and λ, µ ≥ 0 (not both zero), the

Minkowski combination, λK + µL, of K and L is defined
by

h(λK + µL, ·) = λh(K, ·) + µh(L, ·), (14)

where “ + ” denotes the Minkowski addition and λK =
{λx : x ∈ K}. Let K be a compact star-shaped set (about
the origin) in Rn, then its radial function, ρK = ρ(K, ·) :
Rn \ {0} → [0,∞), is defined by

ρ(K,x) = max{λ ≥ 0 : λx ∈ K}, x ∈ Rn \ {0}. (15)

If ρK is positive and continuous, K will be called a star
body (with respect to the origin).

If K,L ∈ Sn
o , and λ, µ ≥ 0 (not both zero), the radial

linear combination, λ ◦K+̃µ ◦L, of K and L is defined by

ρ(λ ◦K+̃µ ◦ L, ·) = λρ(K, ·) + µρ(L, ·). (16)

If K ∈ Kn
o , the polar body, K∗, of K is defined by

K∗ = {x ∈ Rn : x · y ≤ 1, y ∈ K}. (17)

From (13), (15) and (17), it follows that if K ∈ Kn
o , then

h(K∗, ·) = 1

ρ(K, ·)
, ρ(K∗, ·) = 1

h(K, ·)
. (18)

B. Mixed volumes

For K1,K2, · · · ,Kn ∈ Kn, the mixed volumes
vol(K1,K2, · · · ,Kn), of K1,K2, · · · ,Kn is defined by

vol(K1,K2, · · · ,Kn)

=
1

n!

n∑
j=i

(−1)n+j
∑

i1<···<ij

vol(Ki1 +Ki2 + · · ·+ Vij ).

Next, we give some elementary properties of mixed vol-
umes.
(a) If K1,K2, . . . ,Kn−1,K, L ∈ Kn, then

vol(K1,K2,. . .,Kn−1,K+L)

= vol(K1,K2,. . . ,Kn−1,K)+vol(K1,K2,. . . ,Kn−1,L).

(b) If K1,K2, . . . ,Kn−1,K, L ∈ Kn and K ⊆ L, then

vol(K1,K2,. . .,Kn−1,K) ≤ vol(K1,K2,. . . ,Kn−1,L), (19)

with equality if and only if K = L.
(c) If K1,K2, . . . ,Kn−1,Kn,K ∈ Kn, and K1 = K2 =
· · · = Kn−1 = Kn = K, then

vol(K1,K2,. . . ,Kn−1,Kn)=vol(K,. . . ,K)=vol(K). (20)

If K1 = K2 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = L
in (20), we write

vol(K1,K2,· · · ,Kn)=vol(K,n−i;L, i)=voli(K,L). (21)

Let K ∈ Kn, the volume vol(K) of K is given by (see
[8])

vol(K) =
1

n

∫
Sn−1

ρ(K,u)ndu. (22)

III. Proofs of the Theorems
This section provides the proofs of Theorems 1.1-1.3. To

begin, we prove Theorem 1.1 using the following Minkowski
inequality for p-dual harmonic quermassintegrals.
Lemma 3.1([22]). Let K,L ∈ Kn

o and 0 ≤ i < n, if 0 ≤
p ≤ n− i, then

W̆p,i(K,L)n−i ≥ W̆i(K)n−i−pW̆i(K)p, (23)

with equality if and only if K and L are dilates.
Proof of Theorem 1.1. Since K,L ∈ Kn

o , 0 ≤ i < n, and
0 ≤ p ≤ n − i, in fact, for u ∈ Sn−1 ∩ ζ and ζ ∈ G(n, i),
by (14), we have

h[(K + L) ∩ ζ, u] = h(K + L, u)

= h(K,u) + h(L, u)

= h(K ∩ ζ, u) + h(L ∩ ζ, u)

= h(K ∩ ζ + L ∩ ζ, u),
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thus, for all ζ ∈ G(n, i), we have

(K + L) ∩ ζ = (K ∩ ζ) + (L ∩ ζ). (24)

Let Q ∈ Kn
o and p = 1, by (7), (8), (24) and (19), we obtain

V1,i(Q,Φ(K#L); ζ)

=vol(Q ∩ ζ, i− 1; (ΦK +ΦL) ∩ ζ)

=vol(Q ∩ ζ, i− 1; (ΦK ∩ ζ) + (ΦL ∩ ζ))

=vol(Q ∩ ζ, i− 1; ΦK ∩ ζ)

+ vol(Q ∩ ζ, i− 1; ΦL ∩ ζ)

=V1,i(Q,ΦK; ζ) + V1,i(Q,ΦL; ζ), (25)

by (6), (25), Minkowski integral inequality[1] and (23), we
deduce

W̆i(Q,Φ(K#L))

=kn

[∫
G(n,n−i)

(
V1,n−i(Q,Φ(K#L); ζ)

kn−i

)−1

dµn−i(ζ)

]−1

=kn

[ ∫
G(n,n−i)

(
V1,n−i(Q,ΦK; ζ)

kn−i

+
V1,n−i(Q,ΦL; ζ)

kn−i

)−1

dµn−i(ζ)

]−1

≥W̆i(Q,ΦK) + W̆i(Q,ΦL)

≥W̆i(Q)
n−i−1
n−i (W̆i(ΦK)

1
n−i + W̆i(ΦL)

1
n−i ). (26)

Setting Q = Φ(K#L) in (26), by W̆p,i(K,K) = W̆i(K),
we get

W̆i(Φ(K#L))
1

n−i ≥ W̆i(ΦK)
1

n−i + W̆i(ΦL)
1

n−i ,

this yields inequality (10).
From the equality condition of (23), we see that equality

holds in (26) if and only if Q, ΦK and ΦL are dilates. Thus
Φ(K#L), ΦK and ΦL are dilates, by (8), we obtain equality
in (10) holds if and only if ΦK and ΦL are dilates.

Next, we give the proof of Theorem 1.2, the following
lemma is necessary.
Lemma 3.2. Let Φ : Kn → Kn be a Blaschke-Minkowski
homomorphism. If K,L ∈ Kn

o and 0 ≤ i < n, then

voln−i(Φ
∗(K#L) ∩ ζ)−

1
n−i

≥voln−i(Φ
∗K ∩ ζ)−

1
n−i + voln−i(Φ

∗L ∩ ζ)−
1

n−i , (27)

with equality if and only if Φ∗K and Φ∗L are dilates.
Proof. Since K,L ∈ Kn

o and 0 ≤ i < n, by polar
coordinate formula for volume, (22), (18) and the Minkowski
integral inequality[1], we have

voln−i(Φ
∗(K#L) ∩ ζ)−

1
n−i

=

(
1

n− i

∫
Sn−1

ρ[Φ∗(K#L) ∩ ζ, u]n−idu

)− 1
n−i

=

(
1

n− i

∫
Sn−1∩ζ

ρ[Φ∗(K#L), u]n−idu

)− 1
n−i

=

(
1

n− i

∫
Sn−1∩ζ

h[Φ(K#L), u]−(n−i)du

)− 1
n−i

=

(
1

n− i

∫
Sn−1∩ζ

h[(ΦK +ΦL), u]−(n−i)du

)− 1
n−i

≥
(

1

n− i

∫
Sn−1∩ζ

h[(ΦK) ∩ ζ, u]−(n−i)du

)− 1
n−i

+

(
1

n− i

∫
Sn−1

h[(ΦL) ∩ ζ, u]−(n−i)du

)− 1
n−i

=

(
1

n− i

∫
Sn−1

ρ[Φ∗K ∩ ζ, u]idu

)− 1
n−i

+

(
1

i

∫
Sn−1

ρ[Φ∗L ∩ ζ, u]idu

)− 1
n−i

=voln−i(Φ
∗K ∩ ζ)−

1
n−i + voln−i(Φ

∗L ∩ ζ)−
1

n−i .

According to the equality condition of Minkowski integral
inequality, we see that equality holds in (27) if and only if
Φ∗K and Φ∗L are dilates.

Proof of Theorem 1.2. Since K,L ∈ Kn
o and 0 ≤ i < n,

by (4), (27) and the Minkowski integral inequality[1], we
obtain

W̆i(Φ
∗(K#L))−

1
n−i

=

[
kn
kn−i

∫
G(n,n−i)

(
voln−i(Φ

∗(K#L) ∩ ζ)

)−1

dµn−i(ζ)

] 1
n−i

=

[
kn
kn−i

∫
G(n,n−i)

(
[voln−i(Φ

∗(K#L)∩ζ)]−
1

n−i

)n−i

dµn−i(ζ)

] 1
n−i

≥
[

kn
kn−i

∫
G(n,n−i)

(
voln−i(Φ

∗K ∩ ζ)−
1

n−i

+ voln−i(Φ
∗L ∩ ζ)−

1
n−i

)n−i

dµn−i(ζ)

] 1
n−i

≥
[

kn
kn−i

∫
G(n,n−i)

voln−i(Φ
∗K ∩ ζ)−1dµn−i(ζ)

] 1
n−i

+

[
kn
kn−i

∫
G(n,n−i)

voln−i(Φ
∗L ∩ ζ)−1dµn−i(ζ)

] 1
n−i

=W̆i(Φ
∗K)−

1
n−i + W̆i(Φ

∗L)−
1

n−i .

This yields desired result.
From the equality conditions of (27) and the Minkowski

integral inequality, it follows that equality holds in (11) if
and only if Φ∗K and Φ∗L are dilates.

Finally, in order to prove Theorem 1.3, the following
lemma is required.
Lemma 3.4. Let Ψ : Sn → Sn be a radial Blaschke-
Minkowski homomorphism. If K,L ∈ Sn, for n−1 < i < n,
then

voln−i(Ψ(K+̂L) ∩ ζ)
1

n−i (28)

≥voln−i((ΨK) ∩ ζ)
1

n−i + voln−i((ΨL) ∩ ζ)
1

n−i ,

for 0 ≤ i < n− 1, then

voln−i(Ψ(K+̂L) ∩ ζ)
1

n−i (29)

≤voln−i((ΨK) ∩ ζ)
1

n−i + voln−i((ΨL) ∩ ζ)
1

n−i ,

in each case, equality holds if and only if ΨK and ΨL are
dilates.

Proof. Since K,L ∈ Kn and n − 1 < i < n, by
polar coordinate formula for volume, (22), (9), (16) and the
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Minkowski integral inequality[1], we get

voln−i(Ψ(K+̂L) ∩ ζ)
1

n−i

=

(
1

n− i

∫
Sn−1

ρ[Ψ(K+̂L) ∩ ζ, u]n−idu

) 1
n−i

=

(
1

n− i

∫
Sn−1

ρ[(ΨK+̃ΨL) ∩ ζ, u]n−idu

) 1
n−i

=

(
1

n− i

∫
Sn−1∩ζ

ρ(ΨK+̃ΨL, u)n−idu

) 1
n−i

=

(
1

n− i

∫
Sn−1∩ζ

[ρ(ΨK,u) + ρ(ΨL, u)]n−idu

) 1
n−i

≥
(

1

n− i

∫
Sn−1∩ζ

ρ(ΨK,u)n−idu

) 1
n−i

+

(
1

n− i

∫
Sn−1∩ζ

ρ(ΨL, u)n−idu

) 1
n−i

=voln−i((ΨK) ∩ ζ)
1

n−i + voln−i((ΨL) ∩ ζ)
1

n−i .

The equality condition of Minkowski integral inequality
implies that equality holds in (28) if and only if ΨK and
ΨL are dilates.

Similar to the above method, for 0 ≤ i < n − 1, the
inequality (29) follows from (22), (9), (16) and inverse of
the Minkowski integral inequality.

Proof of Theorem 1.3. Since K,L ∈ Sn and n − 1 <
i < n, by (4), (28) and Minkowski integral inequality[1], we
obtain[

kn−iW̆i(Ψ(K+̂L))

kn

] 1
n−i

=

[ ∫
G(n,n−i)

[voln−i(Ψ(K+̂L) ∩ ζ)]−1dµn−i(ζ)

]− 1
n−i

=

[∫
G(n,n−i)

[voln−i(Ψ(K+̂L) ∩ ζ)]
1

n−i(−(n−i))dµn−i(ζ)

]− 1
n−i

≥
[ ∫

G(n,n−i)

[voln−i((ΨK) ∩ ζ)
1

n−i

+ voln−i((ΨL) ∩ ζ)
1

n−i ]−(n−i)dµn−i(ζ)

]− 1
n−i

≥
[ ∫

G(n,n−i)
[voln−i((ΨK) ∩ ζ)−1dµn−i(ζ)

]−(n−i)

+

[ ∫
G(n,n−i)

[voln−i((ΨL) ∩ ζ)−1dµn−i(ζ)

]−(n−i)

=

[
kn−iW̆i(ΨK)

kn

] 1
n−i

+

[
kn−iW̆i(ΨL)

kn

] 1
n−i

.

From the equality condition of (28) and the Minkowski
integral inequality, it follows that equality in (12) holds if
and only if ΨK and ΨL are dilates.
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Berlin Göttingen Heidelberg, Springer, 1957.

[10] C. Li and W. D. Wang, “Log-Minkowski inequalities for the Lp-mixed
quermassintegrals,” in Journal of Inequalities and Applications, vol.
85, pp. 1-21, 2019.

[11] C. Li and W. D. Wang, “Inequalities for general width-integrals
of Blaschke-Minkowski homomorphisms,”Czechoslovak Mathematical
Journal, vol. 70, pp. 767-779, 2020.

[12] E. Lutwak, “Mean dual and harmonic cross-sectional measures,” in
Annali di Matematica Pura ed Applicata, vol. 119, no. 4, pp. 139-
148, 1979.

[13] E. Lutwak, “Inequalities for Hadwiger’s harmonic quermassintegrals,”
in Mathematische Annalen, vol. 280, no. 1, pp. 165-175, 1988.

[14] E. Lutwak, “Intersection bodies and dual mixed volumes,” in Advances
in Mathematics, vol. 71, no. 2, pp. 232-261, 1988.

[15] E. Lutwak, “The Brunn-Minkowski-Firey theory I: mixed volumes and
the Minkowski problem,” in Journal of Differential Geometry, vol. 38,
no. 1, pp. 131-150, 1993.

[16] E. Lutwak, “The Brunn-Minkowski-Firey theory II: affine and geo-
minimal surface areas,” in Advances in Mathematics, vol. 118, no. 2,
pp. 244-294, 1996.

[17] T. Y. Ma and W. D. Wang, “Dual Orlicz harmonic mixed quermass-
integrals,” in IAENG International Journal of Applied Mathematics,
vol. 49, no. 2, pp. 188-200, 2019.

[18] L. W. Ji and Z. B. Zeng, “Inequalities for Orlicz mixed harmonic quer-
massintegrals,” Journal of Computational Analysis and Applications,
vol. 24, no. 3, pp. 454-462, 2018.

[19] F. E. Schuster, “Volume inequalities and additive maps of convex
bodies,” in Mathematica, vol. 53, pp. 211-234, 2006.

[20] R. Schneider, “Convex Bodies: The Brunn-Minkowski Theory,” 2nd
edn, Cambridge Univ. Press, Cambridge, 2014.

[21] G. Xiong and D. Zou, “Orlicz mixed quermassintegrals,” in Science
China Mathematics, vol. 57, pp. 2549-2562, 2014.

[22] J. Yuan, S. F. Yuan and G. S. Leng, “Inequalities for dual harmonic
quermassintegrals,” in Journal of the Korean Mathematical Society,
vol. 43, no. 3, pp. 593-607, 2006.

[23] W. Wang, “Lp radial Blaschke-Minkowski homomorphisms,” in Tai-
wanese Journal Of Mathematics, vol. 15, pp. 1183-1199, 2011.

[24] W. Wang, “Lp Brunn-Minkowski type inequalities for Blaschke-
Minkowski homomorphisms,” in Geometriae Dedicata, vol. 164, pp.
273-285, 2013.

[25] W. D. Wang, “Inequalities for the mixed radial Blaschke-Minkowski
homomorphisms,” in Applied Mathematics and Computation, vol. 9,
no. 1, 14-19, 2020.

[26] W. D. Wang, H. P. Chen and Y. Y. Zhang, “Busemann-Petty problem
for the i-th radial Blaschke-Minkowski homomorphisms,” in Filomat,
vol. 32, no. 19, 6819-6827, 2018.

[27] W. D. Wang and G. S. Leng, “Lp-dual mixed quermassintegrals,” in
Indian Journal of Pure and Applied Mathematics, vol.36, no. 4, pp.
177-188, 2015.

[28] W. D. Wang, W. Shi and S. Ye, “Dual mixed Orlicz-Brunn-Minkowski
inequality and dual Orlicz mixed quermassintegrals,” in Indagationes
Mathematicae, vol. 28, pp. 721-735, 2017.

[29] W. D. Wang and L. Yan, “Inequalities for dual quermassintegrals of
the p-cross-section bodies,” in Journal of Mathematica, vol. 9, no. 2,
pp. 321-330, 2015.

[30] X. Wu and S. G. Li, “The Orlicz Brunn-Minkowski inequality for dual
harmonic quermassintegrals,” in Acta Mathematica Sinica, English
Series, vol. 39, pp. 945-954, 2019.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 6, June 2025, Pages 1571-1575

 
______________________________________________________________________________________ 




