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Abstract—Lung cancer is a leading cause of cancer-related
mortality worldwide. A comprehensive understanding of the
dynamics of lung cancer growth and its interactions with the
immune system is crucial for the development of effective
treatments. This study aims to model and analyze lung cancer
growth by considering the response of innate immune cells and
the role of mesenchymal stem cells (MSCs). A mathematical
model is developed to describe the interactions between lung
cancer cells, CD8+ T cells, dendritic cells, and MSCs. The
model employs nonlinear differential equations to represent
the growth dynamics of these cells and the factors influencing
them, such as proliferation rates, activation, and inhibition.
Subsequently, a mathematical analysis of the model is con-
ducted, including stability analysis, sensitivity analysis, and
numerical simulations. Stability analysis is used to identify the
stable cancer-free equilibrium points, while sensitivity analysis
determines the parameters that significantly affect lung cancer
growth. Numerical simulations are performed to validate the
results of the mathematical analysis. The findings of this study
demonstrate that the mathematical model accurately represents
the dynamics of lung cancer growth, including the response of
CD8+ T cells, dendritic cells, and MSCs. Furthermore, the
results highlight that dendritic cells play a critical role in
inhibiting lung cancer growth, whereas the presence of MSCs
accelerates the metastasis of lung cancer cells.

Index Terms—Lung cancer, CD8+ T, Dendritic cell, Mes-
enchymal Stem Cell, Mathematical modelling.

I. INTRODUCTION

LUNG cancer is one of the leading causes of cancer-
related deaths worldwide [1]. Lung cancer consists

of two main types: non-small cell lung cancer (NSCLC)
and small cell lung cancer (SCLC) where NSCLC, as the
most common type of lung cancer [2], accounts for 85%
of all lung cancer cases. According to Jain [3], NSCLC is
divided into three categories: Adenocarcinoma, Squamous-
cell carcinoma, and Large-cell carcinoma. The overall 5-
year survival rate for patients with lung cancer is less than
15%, and for patients with clinically diagnosed stage IV
NSCLC, it is less than 5% [4]. The main cause of lung cancer
is smoking, which involves around 93 carcinogens harm-
ful to human health, including nicotine, nitrosamines, and
benzene [5]. One of these carcinogens, polycyclic aromatic
hydrocarbon benzo[a]pyrene (B[a]P), increases the secretion
of osteopontin (OPN) from lung cancer cells through the
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JAK2/STAT3 signaling pathway. High levels of OPN in the
lung tumor microenvironment (TME) stimulate mesenchy-
mal stem cells (MSCs) to infiltrate and adhere to cancer cells,
thereby promoting tumor growth [6]. Mesenchymal Stem
Cells (MSCs) are a type of multipotent cell with the ability
to differentiate and self-renew. When properly stimulated,
MSCs can differentiate into various cell types (such as
fibroblasts, adipocytes, chondrocytes, and osteoblasts) and
perform various roles [7]. However, MSCs also experience
a decline in function, partly due to cellular aging, which
inhibits their differentiation and proliferation [8]. The pri-
mary source of MSCs is believed to be bone marrow (BM),
although their presence is minimal, only 0.001-0.01% of
the total nucleated cells [9]. MSCs can also be effectively
extracted from other tissues, such as the umbilical cord [1],
umbilical cord blood [10], amniotic membrane [11], placenta
[12], peripheral blood [13], muscle [14], and lungs [15].
MSCs derived from both lung cancer tissue and normal lung
tissue accelerate lung cancer metastasis [16]. Additionally,
MSCs suppress the activation of immune cells such as
dendritic cells (DCs) and T cells, thereby further accelerating
cancer cell growth [17]. Dendritic cells (DCs) are pro-
fessional antigen-presenting immune cells that process and
present antigens through major histocompatibility complex
molecules I and II (MHC I and II) to the innate and adaptive
immune systems [18]. DCs originate from the bone marrow,
then circulate through the blood and enter lymphoid glands
to function as lymphoid DCs or enter peripheral tissues to
differentiate into non-lymphoid DCs [19]. DCs are derived
from lymphoid and myeloid lineages in the bone marrow,
which produce conventional DCs (cDCs) and plasmacytoid
DCs (pDCs), respectively [20]. Based on their development,
DCs are categorized into mature and immature cells [21].

The mechanism of DCs as antigen presenters involves
identifying and engulfing pathogens before presenting them
to immune cells like T cells. This process involves interac-
tions between surface receptors and co-stimulatory proteins
that activate the immune response. Subsequently, DCs release
cytokines and chemokines that can influence the microen-
vironment and tumor formation [22]. Exosomes produced
by lung tumor cells efficiently transport various tumor anti-
gens to DCs, as well as signaling molecules, facilitating
intercellular contact [23]. Antigens carried by exosomes
associated with lung cancer have been shown to stimulate
DC maturation and cross-presentation of MHC, resulting in
specific cytotoxic T cell responses against the tumor [24].
In addition to presenting antigens and activating T cells,
DCs can also directly kill cancer cells [25]. One of the
T cells activated by DCs is the CD8+ T cell. Cytotoxic
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CD8+ T cells from the adaptive immune system are the
most effective effectors in the anti-cancer immune response
[26]. CD8+ T cells play a central role in mediating anti-
tumor immunity and eliminating tumor cells by recognizing
tumor-associated antigens present in major histocompatibility
complex class I [27]. There is substantial evidence of the
effect of CD8+ T cell infiltration on tumor prognosis [28].
Research indicates that CD8+ T cell infiltration is correlated
with a better prognosis in lung cancer [29]. Mathematical
modeling of lung cancer cell growth has been conducted by
several researchers. Among them, the study by Ullah [30]
models lung cancer cell growth by involving immune cells
such as dendritic cells and CD8+ T cells. Furthermore, the
study by Efti [31] discusses lung cancer cell growth by in-
volving macrophage cells. However, mathematical modeling
that involves MSCs is still rare or even nonexistent. Based on
research conducted by Jiang [6], MSCs play a very important
role in the growth of lung cancer cells. Therefore, this thesis
will discuss the formation of a mathematical model of lung
cancer cell growth that involves dendritic cells, CD8+ T cells,
and MSCs.

II. MODEL FORMULATION

The formulation of this mathematical model is used to
describe the interactions between lung cancer cells, CD8+ T
cells, dendritic cells, and mesenchymal stem cells (MSCs).
Based on the medical explanation in the previous subsection,
let L(t) denote the concentration of lung cancer cells at
time t, C(t) denote the concentration of adaptive immune
CD8+ T cells at time t, D(t) denote the concentration of
dendritic cells at time t, and M(t) denote the concentration
of MSCs at time t. For convenience, L(t), C(t), D(t), and
M(t) will hereafter be referred to simply as L, C, D, and
M , respectively.

1) Modeling The Dynamic of Lung Cancer Cells: The
growth of cancer is assumed to follow a logistic growth
model, where α and Kl represent the growth rate and
carrying capacity of lung cancer cells, respectively. Addi-
tionally, β denotes the interaction coefficient between cancer
cells and MSCs, which is influenced by cigarette smoke.
Cigarette smoke increases the expression of osteopontin
(OPN), thereby accelerating the recruitment of MSCs into
lung cancer cells and promoting metastasis. Lung cancer
cells are also subject to reduction due to interactions with
immune cells, specifically CD8+ T cells, with a death rate
of γ. The interaction between dendritic cells and cancer cells
can further contribute to the reduction of cancer cells, with
a death rate of σ. The dynamics of tumor cells are described
by the following ordinary differential equation:

dL

dt
= αL

(
1− L

Kl

)
+ βML− γLC − σLD

2) Modeling The Dynamic of CD8+ T: The interaction
between lung cancer cells and dendritic cells activates CD8+
T cells at an activation rate of δ. Additionally, lung cancer
cells can inhibit CD8+ T cells as a form of self-defense at
a rate of φ. It is also known that the presence of MSCs
further inhibits CD8+ T cells. Moreover, µ represents the
natural death rate of CD8+ T cells. The dynamics of CD8+
T cells can be described by the following ordinary differential

Fig. 1. Flow Chart of Lung Cancer Cell Growth Dynamics

equation:

dC

dt
= δLD − ϕLC − ψMC − µC

3) Modeling The Dynamic of Dendritic Cells: The con-
stant θ represents the constant recruitment of dendritic cells
from other sources. The interaction between cancer cells
and dendritic cells leads to the maturation of dendritic cells
at a rate of τ . Additionally, some dendritic cells can be
deactivated by CD8+ T cells with a deactivation coefficient
of ε. The maturation of dendritic cells can also be inhibited
due to interactions with mesenchymal stem cells (MSCs),
represented by the coefficient η. Furthermore, κ represents
the natural death rate of dendritic cells. The dynamics of
dendritic cells can be described by the following ordinary
differential equation:

dD

dt
= θ + τLD − εCD − ηMD − κD

4) Modeling The Dynamic of MSCs: The dynamics of
MSCs growth are modeled using a logistic function, with
ω representing the natural growth rate of MSCs and Km

denoting the carrying capacity. Additionally, φ represents the
coefficient for the natural death rate of MSCs. The dynamics
of MSCs can be described by the following ordinary differ-
ential equation:

dM

dt
= ωM

(
1− M

Km

)
− φM

Based on the description above, the system of nonlinear
differential equations governing the dynamics of lung cancer
cell growth is given by the following equations. See also
Figure 1.

dL
dt = αL

(
1− L

Kl

)
+ βML− γLC − σLD

dC
dt = δLD − ϕLC − ψMC − µC
dD
dt = θ + τLD − εCD − ηMD − κD
dM
dt = ωM

(
1− M

Km

)
− φM

(1)
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III. PROPERTIES OF SOLUTION

Lemma 3.1: Suppose L(0) ≥ 0, C(0) ≥ 0, D(0) > 0,
and M(0) > 0, then L(t) ≥ 0, C(t) ≥ 0, D(t) > 0, and
M(t) > 0 for all t ∈ [0, T ] where T > 0.

Proof: It is important to note that all parameters used in
System (1) are positive. We now proceed to prove that L(t),
C(t), D(t), and M(t) remain positive for every t ∈ [0, T ]
in R4

+. Based on the first equation in System (1), we obtain:

dL

dt
= L

(
α− αL

Kl
+ βM − γC − σD

)
⇔

∫ t

0

dL

L
=

∫ t

0

(
α− αL

Kl
+ βM − γC − σD

)
dt

⇔ L(t) = L(0)e
∫ t
0

(
α−αL

Kl
+βM−γC−σD

)
dt ≥ 0.

Therefore, we have L(t) ≥ 0.
Then, based on the second equation in System (1), and
assuming A1 = τL− εC − ηM − κ, we obtain:

dD

dt
−A1D = θ

⇒
∫ t

0

d
(
e
∫
−A1dtD

)
=

∫ t

0

θe
∫
−A1dtdt > 0

⇒
∫ t

0

d
(
e
∫
−A1dtD

)
> 0.

Suppose H1(t) =
∫
−A1 dt, then we obtain

D(t) > eH1(0)D(0)e−H1(t) > 0,

Therefore, we have D(t) > 0.
Then, based on the third equation in System (1), and assum-
ing A2 = (ϕL+ ψM + µ), we obtain

dC

dt
+A2C = δLD

⇔d
(
e
∫
A2dtC

)
= δLDe

∫
A2dtdt

⇒
∫ t

0

d
(
e
∫
A2dtC

)
=

∫ t

0

δLDe
∫
A2dtdt.

Since L ≥ 0 and D > 0, we obtain∫ t

0

d
(
e
∫
A2dtC

)
=

∫ t

0

δLDe
∫
A2dtdt ≥ 0

⇔
∫ t

0

d
(
e
∫
A2dtC

)
≥ 0.

Suppose H2(t) =
∫
A2 dt, then we obtain

C(t) ≥ eH2(0)C(0)e−H2(t) ≥ 0,

Therefore, we have C(t) ≥ 0.
Based on the fourth equation in System (1), we obtain

dM

M
=

(
ω − ωM

Km
− φ

)
dt

⇒M(t) =M(0)e
∫ t
0 (ω− ωM

Km
−φ)dt > 0,

Therefore, we have M(t) > 0.
Next, we define the feasible region Ω as follows:

Ω =
{
(L(t), C(t), D(t),M(t) ∈ R4

+|N(t) ≤ c̄
}
,

where

N(t) = L(t) + C(t) +D(t) +M(t)

c̄ =
K

φ
+
c6
µ

+
c5
κ

+ c2Km

c1 = ω − φ

c2 =
c1
ω

c4 = α+ βc2Km + φ

c5 =
αK

φ
+
βc2KmK

φ
+ θ +

κK

φ

c6 =
δc5K

φκ

K =
c24Kl

4α
+
ωKm

4
.

Theorem 3.2: If ω > φ and σ > τ , then the feasible
region Ω is a positively invariant and bounded set for System
(1).

Proof: It is important to note that, from the fourth
equation in System (1), we obtain:

dM

dt
= ωM

(
c1
ω

− M

Km

)
. (2)

Since c2 = c1
ω , Equation (2) becomes

dM

dt
= ωM

(
c2 −

M

Km

)
⇒M(t) =

M(0)

c2Km −M(0)
ec2ωt [c2Km −M(t)] . (3)

Suppose c3 = M(0)
c2Km−M(0) , then the solution to Equation (3)

is obtained as follows

M(t) =
c2Km

1
c3
e−c2ωt + 1

⇒M ≤ c2Km (4)

Next, we prove that L is bounded. To demonstrate this,
we define the following function

P1 = L+M.

Based on Lemma 3.1, L, C, D, and M are positive, and it
is known that M(t) ≤ c2Km. Therefore, we obtain:

dP1

dt
=
dL

dt
+
dM

dt

≤αL− αL2

Kl
+ βc2KmL+ ωM − ωM2

Km
− φM

dP1

dt
+ φP1 ≤− αL2

Kl
− ωM2

Km
+ c4L+ ωM, (5)

where c4 = α + βc2Km + φ. Then, we define a function
g(x, y) with (x, y) = (L,M) as follows:

g(x, y) = −αx
2

Kl
− ωy2

Km
+ c4x+ ωy.

Since the function g(x, y) is concave, it attains a unique
maximum value, which is given by:

g(x, y) ≤ K, (6)
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where K =
c24Kl

4α
+
ωKm

4
. Based on Inequality (5) and (6),

we obtain:
dP1

dt
+ φP1 ≤ K

⇔dP1

dt
≤ K − φP1.

Next, we provide the following Equation (7).

dX1

dt
= K − φX1, X1(0) = P1(0). (7)

The solution to Equation (7) is as follows.

X1(t) =
1

φ
(φP1(0)−K) e−φt +

K

φ
.

The function f1(X1) = K − φX1 is defined, where K∗ =
φ > 0. For all X11, X12 ∈ Ω, we obtain:

|f1(X11)− f1(X12)| = |(K∗ − φX11)− (K∗ − φX12)|
= |φX11 − φX12|
= φ |X11 −X12| .

This indicates that f1(X1) satisfies the Lipschitz condition.
As a result, by applying the Comparison Theorem [32] and
setting x = X1(t) and v = P1(t), we obtain:

P1(t) ≤ X1(t) =
1

φ
(φP1(0)−K) e−φt +

K

φ

⇔P1(t) ≤
1

φ
(φP1(0)−K) e−φt +

K

φ

⇒ lim
t→∞

(P1(t)) ≤ lim
t→∞

(
1

φ
(φP1(0)−K) e−φt +

K

φ

)
⇔P1(t) ≤

K

φ
. (8)

Next, we prove that D is bounded. To demonstrate this, we
define the following function:

P2 = L+D. (9)

It is important to note that, based on Lemma 3.1, L, C,
D, and M are positive. Furthermore, from Function (9), we
obtain:

dP2

dt
=
dL

dt
+
dD

dt
≤αL+ βML+ θ + (τ − σ)LD − κD.

Because M ≤ c2Km, L ≤ K

φ
, and σ > τ , we have:

dP2

dt
≤αK

φ
+
βc2KmK

φ
+ θ − κD +

κK

φ
− κL

≤c5 − κ(L+D) = c5 − κP2,

where c5 =
αK

φ
+
βc2KmK

φ
+ θ +

κK

φ
. We assume the

equation

dX2

dt
= c5 − κX2, X2(0) = P2(0). (10)

Then, the same process is applied to Equation (7), we obtain:

lim
t→∞

(P2(t)) ≤ lim
t→∞

(
1

κ
(κP2(0)− c5) e

−κt +
c5
κ

)
P2(t) ≤

c5
κ
. (11)

Next, we prove that C is bounded. It is known that L ≤ K
φ

and D ≤ c5
κ , which implies:

dC

dt
= δLD − ϕLC − ψMC − µC

≤ δLD − µC

≤ c6 − µC, (12)

where c6 =
δc5K

φκ
. We assume the equation

dX3

dt
=

c6 − µX3 with X3(0) = C(0), and by applying the same
procedure as in Equation (7), we obtain:

lim
t→∞

(C(t)) ≤ lim
t→∞

(
1

µ
(µC(0)− c6) e

−µt +
c6
µ

)
⇔C(t) ≤ c6

µ
. (13)

Next, we show that the set Ω is positively invariant and
bounded. Consider any (L(0), C(0), D(0),M(0)) ∈ Ω,
which implies that L(0) +C(0) +D(0) +M(0) ≤ c̄, where
c̄ = K

φ + c5
κ + c6

µ + c2Km. Based on Inequalities (4), (8),
(11), and (13), we have:

lim
t→∞

(L(t) + C(t) +D(t) +M(t))

≤ K

φ
+
c5
κ

+
c6
µ

+ c2Km = c̄.

Based on the above discussion, we have shown that Ω is
a positively invariant and bounded set. This completes the
proof.
By straightforward calculation, we find that System (1) has
the lung cancer-free equilibrium point.

E0 =

(
0, 0,

θω

ηKm(ω − φ) + κω
,
Km(ω − φ)

ω

)
(14)

and the others equilibria

E1i =

(
Li, Ci,

Km(ω − φ)

ω
,Di

)
, (15)

where

Li =
m1(Di)

2 +m2Di +m3

m4Di

m1 = γq3Kl − σq4Kl, m2 = bq4 − γq2Kl

m3 = γq1Kl, m4 = αq4

Ci =
q1 + q2Di − q3(Di)

2

q4Di

q1 = αωθ, q2 = bωτ + ηφKm − αωηKm − κ,

q3 = ωτσKl, q4 = ωτγKl + αωε,

and Di, i = 1, 2, 3, 4, are the solutions of the following
quartic equation.

p1D
4 + p2D

3 + p3D
2 + p4D + p5 = 0, (16)

where

p1 = r5q
2
3 − r2q3q4 − r4q

2
4 ,

p2 = r1q
2
4 + r2q2q4 + r3q3q4 − 2r5q2q3,

p3 = r2q1q4 + r5(q
2
2 − 2q1q3)− r3q2q4,

p4 = 2r5q1q2 − r3q1q4, p5 = r5q
2
1

r1 = bδω, r2 = ϕωσKl − δωγKl,

r3 = bϕω + αψKm(ω − φ) + µ,

r4 = δωσKl, r5 = ϕγωKl,
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IV. EXISTENCE AND LOCAL STABILITY OF EQUILIBRIA

In this section, we demonstrate the existence and stability
of the equilibrium points that have been obtained. It is
important to note that the lung cancer-free equilibrium point
exists when ω > φ.

A. Existence of Equiliria

Before demonstrating the existence of the lung cancer-
infected equilibrium points E1i, i = 1, 2, 3, 4, we first show
that the solution of Equation (16) is real and positive. The
solution to Equation (16) is given by:

D1 = −a1
4

+
1

2
(R+ T ) (17)

D2 = −a1
4

+
1

2
(R− T ) (18)

D3 = −a1
4

− 1

2
(R− F ) (19)

D4 = −a1
4

− 1

2
(R+ F ) (20)

where

ai =
pi+1

p1
, i = 1, 2, 3, 4

R =

√
1

4
a21 − a2 + y1 (21)

T =


√

3
4a

2
1 −R2 − 2a2 +

1
4HR

−1, ifR ̸= 0√
3
4a

2
1 − 2a2 + 2

√
y21 − 4a4, ifR = 0

(22)

F =


√

3
4a

2
1 −R2 − 2a2 − 1

4HR
−1, ifR ̸= 0√

3
4a

2
1 − 2a2 − 2

√
y21 − 4a4, ifR = 0

(23)

H = 4a1a2 − 8a3 − a31 (24)

where y1 is a real root of cubic equation

y3 − a2y
2 + (a1a3 − 4a4)y + (4a2a4 − a23 − a21a4) = 0.

For a more detailed process in determining the solutions
of cubic and quartic equations, refer to [33]. The following
presents the existence theorem for the solution of Equation
(16) for R = 0.

Theorem 4.3: Given Equations (21) to (23), pi ∈ R for
each i = 1, 2, 3, 4 and p5 > 0. If R = 0 and

(i) if p1 < 0, p2 ≤ 0, and y1 < 0, then D1 is positive,

(ii) if p1 > 0, p2 ≤ 0, y1 > 0 and y21 ≥ p23
p21

− 3p22p3
4p31

+

9p42
64p41

+
4p5
p1

, then D2 is positive,

(iii) if p1 > 0, p2 ≥ 0, y1 < 0 and y21 ≥ 4p5
p1

, then D3 is

positive,

(iv) if p1 < 0, p2 ≥ 0, y1 < 0 and y21 ≤ p23
p21

− 3p22p3
4p31

+

9p42
64p41

+
4p5
p1

, then D4 is positive,

Proof: We aim to prove that D1 is positive under the
conditions p1 < 0, p2 ≤ 0, and y1 < 0. Since R = 0, from
Equation (21), it follows that R = 0 implies y1 = − p2

2

4p2
1
+

p3

p1
. Therefore, proving that D1 is positive is equivalent to

demonstrating that −a1

4 + 1
2T > 0. After straightforward

calculations, we find that −a1

4 + 1
2T > 0 holds under the

conditions p1 < 0, p2 ≤ 0, and y1 < 0. Thus, it is established
that D1 is positive. Similar arguments can be applied to prove
conditions (ii), (iii), and (iv).
Next, we present a theorem to establish the existence of
solutions to Equation (16) for R > 0.

Theorem 4.4: Suppose G =
a21
2

− a2 − y1, H = 4a2a1 −

8a3 − a31, and R =

√
a21
4

− a2 + y1. If R > 0 and

(i) if G +
H

4R
> 0 and

√
G+

H

4R
>
a1
2

− R, then D1

exists,

(ii) if G +
H

4R
> 0 and

√
G+

H

4R
< R − a1

2
, then D2

exists,

(iii) if G − H

4R
> 0 and

√
G− H

4R
>
a1
2

+ R, then D3

exists,

(iv) if −a1 ≥ 0, G − H

4R
> 0, and

√
G− H

4R
<

−
(a1
2

+R
)

, then D4 exists.

Proof: Based on Equation (17), demonstrating the ex-
istence of D1 is equivalent to proving that −a1

4 + 1
2 (R +

T ) > 0. First, it is necessary to establish that T is a
real number. According to Equation (22), for R > 0, we
have T =

√
3
4a

2
1 −R2 − 2a2 +

1
4HR

−1. After performing
algebraic manipulations, it can be shown that T is a real
number when G + H

4R > 0. Subsequently, we demonstrate
that D1 is positive. Further algebraic analysis reveals that
D1 > 0 when

√
G+ H

4R > a1

2 −R. Therefore, D1 exists if

both conditions G + H
4R > 0 and

√
G+ H

4R > a1

2 − R are
satisfied. The proofs for conditions (ii), (iii), and (iv) follow
a similar rationale.
The existence of the lung cancer-infected equilibrium point
(15) is established in the following theorem.

Theorem 4.5: Given E1i as the equilibrium points for
lung cancer from the system (1) and Di for i =
1, 2, 3, 4 as solutions of Equation (16). If Di ex-
ists and is positive, and if

(
γq3Kl(Di)

2 + bq4Di

)
>(

σq4Kl(Di)
2 + γq2KlDi + γq1Kl

)
and q1 + q2Di >

q3(Di)
2, then the equilibrium points E1i exist for each

i = 1, 2, 3, 4.

B. Basic Reproduction Number (R0)

The basic reproduction number of the System (1) can be
found using the next generation matrix method by having to
fulfill some assumptions of the method [34]. Based on the
Cancer Differential System, the lung cancer-free equilibrium
point is E02 =

(
0, 0, θω

ηKm(ω−φ)+κω ,
Km(ω−φ)

ω

)
. In system

(1) there is a disease cell compartment, which is the lung
cancer cell compartment (L) and non-lung cancer cell com-
partments, which are the CD8 + T cell compartment (C),
dendritic cells (D) and MSC cells (M ). Suppose x is the
disease cell compartment and y is the non-lung cancer cell
compartment, so it can be written as follows.

x = L
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and

y =

CD
M

 .
Then, find the function F(x,y) and V(x,y) obtained from
ẋ = F(x,y)− V(x, y).

ẋ =
dL

dt

=αL

(
1− L

Kl

)
+ βML− γLC − σLD

=

[
αL

(
1− L

Kl

)
+ βML

]
− [γLC + σLD]

=F(x,y)− V(x,y).

We obtain F(x,y) and V(x,y) as follows.

F(x, y) = αL

(
1− L

Kl

)
+ βML (25)

and

V(x,y) = γLC + σLD. (26)

The system (1) satisfies all the assumptions of the Next
Generation Matrix method. Therefore, the basic reproduction
number can be calculated using the Next Generation Matrix
method. Next, matrices F and V will be constructed, which
correspond to the Jacobian matrices of F and V at the cancer-
free equilibrium point E0 for lung cancer. Based on Equation
(25), the matrix F at the lung cancer-free equilibrium point
E0 is obtained as follows.

F =

[
∂F(E02)

∂x

]
=

[
∂F(E02)

∂L

]
=

[
α− 2α.0

Kl
+ β

(
Km(ω − φ)

ω

)]
=

[
α+

(
βKm(ω − φ)

ω

)]
.

Then, based on Equation (26), the matrix V at the lung
cancer-free equilibrium point E0 is obtained as follows.

V =

[
∂V(E02)

∂x

]
=

[
∂V(E02)

∂L

]
=

[
γ.0 + σ

(
θω

ηωKm − ηφKm + κω

)]
=

[(
σθω

ηωKm − ηφKm + κω

)]
.

Then, we find V −1 as follows.

V −1 =

[
ηKm(ω − φ) + κω

σθω

]
.

Subsequently, the basic reproduction number (R0) is ob-
tained as follows.

R0 =FV −1

=
βηK2

m(ω − φ)2 + (αη + βκ)ωKm(ω − φ) + ακω2

ω2σθ
.

C. The Stability of Equilibria

In this section, the local stability of the equilibrium points
is analyzed by examining the eigenvalues of the Jacobian
matrix associated with System (1). The stability of each
equilibrium point is determined by the sign of the real parts
of its eigenvalues. The Jacobian matrix for System (1) is
presented as follows:

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

0 0 0 A44

 (27)

where

A11 = α− 2αL

Kl
+ βM − γC − σD, A12 = −γL,

A13 = −σL, A14 = βL, A21 = δD

A22 = −ϕL− ψM − µ, A23 = δL,

A24 = −ψC, A31 = τD

A32 = −εD, A33 = τL− εC − ηM − κ,

A44 = ω − 2ωM

Km
− φ.

To evaluate the stability of the lung cancer-free equilibrium
point, we use the basic reproduction number (R0) obtained
in the previous section. A theorem is presented to establish
the stability of the lung cancer-free equilibrium point.

Theorem 4.6: If R0 < 1, then the equilibrium point
E0 =

(
0, 0, θω

ηKm(ω−φ)+κω ,
Km(ω−φ)

ω

)
is locally asymptoti-

cally stable.
Proof: The eigenvalues of the Jacobian matrix of the

System (1) at the equilibrium point E0 are

λ1 = − σθω

ηKm(ω − φ) + κω
+
βKm(ω − φ)

ω
+ α (28)

λ2 = −Km(ω − φ)ψ

ω
− µ (29)

λ3 = −Km(ω − φ)η

ω
− κ (30)

λ4 = −ω + φ. (31)

Since each parameter in System (1) is positive and ω > φ,
the eigenvalues λ2, λ3, and λ4 are negative. The equilibrium
point E0 is locally asymptotically stable if λ1 is negative.
Given that R0 < 1, we have:[

α+

(
βKm(ω − φ)

ω

)][
ηKm(ω − φ) + κω

σθω

]
< 1

⇔
[
α+

(
βKm(ω − φ)

ω

)]
<

[
σθω

ηKm(ω − φ) + κω

]
⇔

[
α+

(
βKm(ω − φ)

ω

)]
−

[
σθω

ηKm(ω − φ) + κω

]
< 0

⇔λ1 < 0.

Thus, the equilibrium point E0 is locally asymptotically
stable when R0 < 1.
Next, we perform stability analysis for the equilibrium points
E1i, where i = 1, 2, 3, 4. First, we define the following

IAENG International Journal of Applied Mathematics

Volume 55, Issue 6, June 2025, Pages 1576-1587

 
______________________________________________________________________________________ 



variables:

C11 = α− 2αLi

Kl
+
βKm(ω − φ)

ω
− γCi − σDi,

C12 = −γLi, C13 = −σLi, C14 = βLi, C21 = δDi,

C22 = −ϕLi −
ψKm(ω − φ)

ω
− µ,C23 = δLi,

C24 = −ψCi, C31 = τDi, C32 = −εDi,

C33 = τLi − εCi −
ηKm(ω − φ)

ω
− κ, C44 = −ω + φ.

The characteristic equation of the system (1) corresponding
to the equilibrium point E1i =

(
Li, Ci, Di,

Km(ω−φ)
ω

)
is as

follows.

λ4 + h1λ
3 + h2λ

2 + h3λ+ h4 = 0, (32)

where

h1 =− C11 − C22 − C33 − C44

h2 =C11C44 + C22C44 + C33C44 + C11C22 + C11C33

+ C22C33 − C32C23 − C12C21 − C13C31

h3 =− C11C22C44 − C11C33C44 + C32C23C44

+ C12C21C44 + C13C31C44 − C11C22C33

+ C11C32C23 + C12C21C33 − C12C31C23

− C13C21C32 + C13C31C22

h4 =C11C22C33C44 − C11C32C23C44 − C12C21C33C44

+ C12C31C23C44 + C13C21C32C44 − C13C31C22C44.

According to the Routh-Hurwitz criterion, all solutions of
the characteristic equation (32) are negative if the following
conditions are satisfied: hj > 0, for j = 1, 2, 3, 4, h1h2 −
h3 > 0, and h3(h1h2 − h3) − h21h4 > 0. Based on these
conditions, the stability criteria for the equilibrium point E1i

are given in Theorem 4.7.
Theorem 4.7: If the equilibrium point E1i exists and if

h1 > 0, h4 > 0 , h1h2−h3 > 0, and h3(h1h2−h3)−h21h4 >
0, then the equilibrium point E1i is locally asymptotically
stable.

V. SIMULATION RESULTS

In this section, we present numerical simulations to illus-
trate the stability and existence of the equilibrium points,
as analyzed in the previous section. The parameter values
employed in the simulations are provided in Table I. These
parameters were sourced from various references, including
[31], [30], [35], [36], and [37].

The numerical simulations to be conducted will include
a sensitivity analysis, simulations of the cancer-free equilib-
rium point, simulations of the lung cancer equilibrium point,
and simulations of R0 as a function of the parameters β and
θ.

A. Sensitivity Analysis

In this subsection, we perform a sensitivity index analysis
of the basic reproduction number (R0) with respect to
the parameters employed in the model. The objective of
this analysis is to identify the parameters that significantly

TABLE I
MATHEMATICAL MODEL PARAMETERS

Parameter Values Unit Description
α 0.23 day−1 [31]
Kl 1.02× 109 cells.mm−3.day−1 [30]
β 10−8 cells−1.mm3.day−1 Estimated
γ 10−7 cells−1.mm3.day−1 [30]
σ 1.1× 10−5 cells−1.mm3.day−1 Estimated
δ 0.01 cells−1.mm3.day−1 [30]
ϕ 3.40× 10−10 cells−1.mm3.day−1 [30]
ψ 10−8 cells−1.mm3.day−1 Estimated
µ 2× 10−2 day−1 [30]
θ 5.8× 102 cells.mm−3.day−1 [30]
τ 10−7 cells−1mm3day−1 [30]
ε 10−8 cells−1.mm3.day−1 [30]
η 10−6 cells−1.mm3.day−1 Estimated
κ 2.4× 10−2 day−1 [30]
ω 0.77 day−1 [35]
Km 762.922 cells.mm−3.day−1 [36]
φ 0.18 day−1 [37]

influence variations in the value of R0. The formula used for
the sensitivity analysis is provided in [38].

Υv
p =

∂v

∂p
× p

v
,

where v being the variable to be analyzed and p the parame-
ter. Based on the analysis results using the formula above, the
sensitivity indices of R0 with respect to several parameters
can be either positive or negative. These sensitivity values
are presented in Table II below.

TABLE II
THE SENSITIVITY INDICES OF R0

Parameter Sensitivity Index
α 0.9999745837
β 0.2541573× 10−4

η 0.2435143× 10−3

Km 0.2689299× 10−3

κ 0.9997564860
φ −0.8204644× 10−4

σ −1
θ −1
ω 0.8204683× 10−4

The sensitivity indices with positive values include the
parameters α, β, η, Km, κ, and ω. This indicates that an
increase in any of these parameters, while holding the others
constant, results in an increase in R0, thereby promoting
higher endemicity of lung cancer cells. Conversely, the pa-
rameters with negative sensitivity indices are φ, σ, and θ. An
increase in any of these parameters, while the others remain
constant, leads to a decrease in R0, which corresponds to a
reduction in the endemicity of lung cancer cells. As shown in
Table II, the parameters σ and θ play a particularly significant
role in reducing the value of R0. From a medical perspective,
this underscores the critical importance of dendritic cells in
the treatment of lung cancer.

B. Numerical Simulation of the Lung Cancer-Free Equilib-
rium Point

In the case of the lung cancer-free equilibrium point, the
parameter values used are those presented in Table I, which
satisfy the conditions specified in Theorem 4.6. With these
parameter values, the conditions in Theorem 4.6 are satisfied,
resulting in R0 = 0.8863003657 < 1. The system described
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by equation (1) has a lung cancer-free equilibrium point at
(0, 0, 23592.02721, 584.5765974).

Figure 2 illustrates the behavior of the system using
the initial values (100, 0, 1000, 100). The concentrations of
lung cancer cells, CD8+ T cells, dendritic cells, and MSCs
converge to the lung cancer-free equilibrium point as t→ ∞.
Medically, this indicates that, over time, the lung cancer
cells will be eliminated. Additionally, Figure 2 shows that
the CD8+ T cells also approach zero. From a medical
perspective, this occurs because CD8+ T cells identic are
active only in the presence of lung cancer cells.

C. Numerical Simulation of Lung Cancer-infected Equilib-
rium Points in Lung Cancer

Case (i) There is one equilibrium point, E1i, in this
case. The parameters are chosen to satisfy the conditions
in Theorem 4.4 and Theorem 4.5. The selected parameter
values are β = 10−6, σ = 10−6, ϕ = 3 × 10−8,
θ = 2 × 102, τ = 5 × 10−7, ε = 10−7, and η = 10−8,
while the other parameters not mentioned are taken from
Table I. With these parameter values, the conditions in
Theorem 4.4 are satisfied, yielding four positive D values:
D1 = 2.53856 × 105, D2 = 797.02, D3 = 6.577208, and
D4 = 0.252652. Among these, only D2 satisfies the condi-
tions in Theorem 4.5. Thus, the equilibrium point is E12 =
(5818.16, 2.29786247 × 106, 797.02, 584.58). Furthermore,
at the equilibrium point E12, h1 = 0.8611173479 > 0, h4 =
0.6923514607× 10−3 > 0, h1h2 − h3 = 0.1434460188 > 0
and h3(h1h2 −h3)−h21h4 = 0.4400738769× 10−3 > 0 are
obtained so that the conditions in Theorem 4.7 are fulfilled.
Thus, the equilibrium point E12 is locally asymptotically
stable as shown in Figure 3.

Figure 3 illustrates the dynamics of the concentrations of
lung cancer cells, CD8+ T cells, dendritic cells, and MSCs.
With initial values of (1000, 100, 10, 100), the figure shows
that the concentration of each cell type converges to the
equilibrium point E12 over time. Medically, this suggests that
lung cancer cells persist in the body. This condition is further
supported by the presence of CD8+ T cells, which remain
active. It is well-known that CD8+ T cells are activated in
response to disturbances, such as the presence of lung cancer
cells. The asymptotically stable equilibrium point indicates
that, over time, the lung cancer cells cease to spread or their
progression does not worsen, suggesting that the growth of
lung cancer cells can be controlled.

Case (ii) There are two equilibrium points, E1i. The
parameter values are selected to satisfy the conditions in
Theorem 4.4 and Theorem 4.5. The chosen parameters are
β = 10−6, γ = 10−9, σ = 10−4, ϕ = 3× 10−10, ψ = 10−5,
θ = 2 × 102, ε = 10−7, and η = 10−8. For parameters not
explicitly mentioned, the values listed in Table I are used.
With these parameter values, the conditions in Theorem 4.4
(i)−(iii) are satisfied. As a result, three positive solutions are
obtained from the quartic Equation (16): D1 = 2299.540282,
D2 = 14.099074, and D3 = 4.369612452. Among these, D1

and D2 satisfy the conditions in Theorem 4.5, leading to the
identification of two equilibrium points.

E11 = (708.5339, 6.303886× 105, 2299.540282, 584, 5766),

E12 = (7.1450135× 107, 2.13063364× 108, 14.099, 584.577).

Fig. 2. Cell Concentrations at the Lung Cancer-Free Equilibrium Point
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Fig. 3. Cell Concentrations at the Lung Cancer-infected Equilibrium Point

(a)

(b)

Fig. 4. Cell Concentration at the Equilibrium Point of Lung Cancer
Infection

At the equilibrium point E11, it is determined that h4 =
−0.2199746117 × 10−3 < 0, which does not satisfy the
conditions in Theorem 4.7. Furthermore, calculations per-
formed using MAPLE software reveal that the Jacobian
matrix at E11 has one positive eigenvalue and three nega-
tive eigenvalues, indicating that the equilibrium point E11

is unstable. Conversely, at the equilibrium point E12, the
following conditions are satisfied: h1 = 14.83872085 > 0,
h4 = 0.1421721317 > 0, h1h2 − h3 = 152.3648957 > 0,
and h3(h1h2−h3)−h21h4 = 118.3942590 > 0. These results
confirm that the conditions in Theorem 4.7 are met. There-
fore, the equilibrium point E12 is locally asymptotically
stable. The trajectory plots for the equilibrium points E11 and
E12 are presented in Figure 4. In Figure 4 (a), it is observed
that with initial values of (808.5339736, 6.302891368 ×
105, 2399.540277, 584.5765974), which are sufficiently
close to the equilibrium point E11, the trajectory does
not converge to E11. This behavior indicates that E11

is unstable. In contrast, Figure 4 (b) shows that with
initial values of (7.145113516 × 107, 2.130643641 ×
108, 1014.099074, 594.5765974), the trajectory converges to
the equilibrium point E12, indicating that E12 is locally
asymptotically stable. Medically, the instability of the equi-
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librium point suggests that the growth of lung cancer cells
is likely to be uncontrolled, preventing the cessation of their
spread. This implies a high risk of increased lung cancer cell
proliferation over time.

D. Simulation of R0 with Respect to the Parameter β

The sensitivity of R0 with respect to β is used to assess the
influence of MSC cells on the growth of lung cancer cells.
Using the parameter values listed in Table I, the function R0

with respect to the parameter β is obtained as follows.

Ro = 2252.596886β + 0.8862778398.

Below is the graph of the function Ro with respect to the
parameter β.

Fig. 5. Simulation of Ro with respect to the parameter β

Based on Figure 5, it is observed that R0 exceeds one
when β > 0.5048491406× 10−4, and falls below one when
β < 0.5048491406× 10−4. Since β is the contribution rate
of MSCs cells to the growth of lung cancer cells, medically
it suggests that if each MSCs cell increases the lung cancer
volume by more than 0.5048491406×10−4 mm3 day−1, lung
cancer will progress and persist in the body.

E. Simulation of Ro with Respect to The parameter θ

The sensitivity of R0 with respect to θ is employed to
evaluate the impact of dendritic cells on lung cancer cell
proliferation. Using the parameter values from Table I, the
function R0 with respect to the parameter θ is given by the
following expression.

Ro =
514.0542121

θ
.

Figure 6 is the graph of the function Ro with respect to the
parameter θ.

Based on Figure 6, it is observed that R0 exceeds one
when θ < 514.0542121, and falls below one when θ >
514.0542121. Since θ is the production rate of dendritic cells,
medically it shows that if the production rate of dendritic
cells is more than 514.0542121 cells/mm3 per day and other
parameters have fixed values according to Table I then the
growth of lung cancer can be prevented.

Fig. 6. Simulation of Ro with respect to the parameter θ”

VI. CONCLUSION

The mathematical model (1) provides a good represen-
tation of the dynamics of lung cancer growth, considering
the response of innate immune cells such as CD8+ T cells
and dendritic cells, as well as the role of MSCs. Based on
this model, a lung cancer-free equilibrium point E0 and four
non-cancer-free equilibrium points E1i for i = 1, 2, 3, 4 are
obtained. The lung cancer-free equilibrium point is locally
asymptotically stable when the basic reproduction number
R0 < 1. Conversely, the lung cancer-infected equilibrium
points are asymptotically stable when the conditions in
Theorem 4.7 are satisfied.

Based on the sensitivity analysis, the parameters that have
the most significant influence in reducing the risk of lung
cancer cell growth are the parameters σ and θ. The parameter
σ represents the mortality rate of lung cancer cells due
to interaction with dendritic cells, while the parameter θ
represents the production rate of dendritic cells, which is
assumed to be constant. This highlights the important role of
dendritic cells in the process of managing lung cancer. On
the other hand, one of the parameters that most significantly
accelerates lung cancer growth is the parameter β, which
represents the interaction rate between MSCs and lung cancer
cells.

Therefore, the analysis conducted in this study suggests
that efforts to prevent the growth of lung cancer cells can
be made by increasing the production of dendritic cells.
Additionally, another approach that can be taken is to prevent
the recruitment of MSCs into lung cancer cells.

Based on the explanation above, the parameters that play a
significant role in reducing the value of R0 are the parameters
σ and θ. The parameter σ represents the mortality rate of lung
cancer cells due to interaction with dendritic cells, while the
parameter θ represents the production rate of dendritic cells,
which is assumed to be constant. This highlights the crucial
role of dendritic cells in the management of lung cancer.

Therefore, it can be concluded that efforts to prevent the
growth of lung cancer cells can be undertaken by increasing
the production of dendritic cells. This is because, based on
medical evidence and the results of the analysis conducted
in this study, dendritic cells have been found to be effective
in inhibiting the growth of lung cancer cells. Additionally,
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another measure that can be taken is to prevent the recruit-
ment of MSCs (Mesenchymal Stem Cells) into lung cancer
cells.

Furthermore, numerical simulations of the lung cancer-free
equilibrium point show that when it is asymptotically stable,
lung cancer cells will disappear over time. Conversely, when
the non-cancer-free equilibrium points are asymptotically
stable, lung cancer cells will persist in the body.
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[16] G. Fregni, M. Quinodoz, E. Möller, J. Vuille, S. Galland, C. Fusco,
P. Martin, I. Letovanec, P. Provero, C. Rivolta et al., “Reciprocal
modulation of mesenchymal stem cells and tumor cells promotes lung
cancer metastasis,” EBioMedicine, vol. 29, pp. 128–145, 2018.

[17] N. Li and J. Hua, “Interactions between mesenchymal stem cells and
the immune system,” Cellular and Molecular Life Sciences, vol. 74,
pp. 2345–2360, 2017.

[18] S. K. Wculek, F. J. Cueto, A. M. Mujal, I. Melero, M. F. Krummel, and
D. Sancho, “Dendritic cells in cancer immunology and immunother-
apy,” Nature Reviews Immunology, vol. 20, no. 1, pp. 7–24, 2020.

[19] R. Ruez, J. Dubrot, A. Zoso, M. Bacchetta, F. Molica, S. Hugues,
B. R. Kwak, and M. Chanson, “Dendritic cell migration toward ccl21
gradient requires functional cx43,” Frontiers in physiology, vol. 9, p.
288, 2018.

[20] K. Gwin, J. J. Dolence, M. B. Shapiro, and K. L. Medina, “Differential
requirement for hoxa9 in the development and differentiation of b,
nk, and dc-lineage cells from flt3+ multipotential progenitors,” BMC
immunology, vol. 14, pp. 1–9, 2013.

[21] D. Benteyn, C. Heirman, A. Bonehill, K. Thielemans, and K. Breck-
pot, “mrna-based dendritic cell vaccines,” Expert review of vaccines,
vol. 14, no. 2, pp. 161–176, 2015.

[22] C. E. Bryant, S. Sutherland, B. Kong, M. S. Papadimitrious, P. D.
Fromm, and D. N. Hart, “Dendritic cells as cancer therapeutics,” in
Seminars in Cell & Developmental Biology, vol. 86. Elsevier, 2019,
pp. 77–88.

[23] P. Zhao, X. Bu, X. Wei, W. Sun, X. Xie, C. Li, Q. Guo, D. Zhu, X. Wei,
and D. Gao, “Dendritic cell immunotherapy combined with cytokine-
induced killer cells promotes skewing toward th2 cytokine profile
in patients with metastatic non-small cell lung cancer,” International
immunopharmacology, vol. 25, no. 2, pp. 450–456, 2015.

[24] D. Stevens, J. Ingels, S. Van Lint, B. Vandekerckhove, and K. Vermae-
len, “Dendritic cell-based immunotherapy in lung cancer,” Frontiers
in immunology, vol. 11, p. 620374, 2021.

[25] N. Larmonier, J. Fraszczak, D. Lakomy, B. Bonnotte, and E. Katsanis,
“Killer dendritic cells and their potential for cancer immunotherapy,”
Cancer Immunology, Immunotherapy, vol. 59, pp. 1–11, 2010.

[26] H. Raskov, A. Orhan, J. P. Christensen, and I. Gögenur, “Cytotoxic
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