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Abstract—This paper proposes a Sparse Online Principal
Component (SOPC) approach applied to the Laplace Factor
Model (LFM). The method integrates the strengths of Sparse
Principal Component (SPC) and Online Principal Component
(OPC) techniques, enabling real-time data updates and yielding
sparse solutions. Numerical simulations validate its stability and
accuracy under varying sample sizes and dimensions. Results
demonstrate low error rates and robust adaptability in Laplace
factor models.

Index Terms—Laplace factor model; sparse online principal
component; stability and sensitivity; real-time updating; nu-
merical simulation.

I. INTRODUCTION

THE Laplace Factor Model (LFM) is widely used for
analyzing high-dimensional multivariate data by ex-

tracting latent factors. Existing methods face limitations in
real-time updating and sparsity. This study introduces the
Sparse Online Principal Component (SOPC) method, which
supports online updates and sparse parameter estimation.
Simulations assess its sensitivity to sample size and dimen-
sionality. The findings offer a practical tool for dynamic data
analysis in complex scenarios.

II. LAPLACE FACTOR MODEL

A. Laplace distribution

The Laplace distribution encompasses three primary
forms, defined by their probability density functions.

Consider a Laplace-distributed random variable X , param-
eterized by its location parameter µ, scale parameter b, and
precision parameter τ = 1

b .
1) Univariate symmetric Laplace distribution:

fX(x; 0, b) =
1

2b
exp

(
−|x|

b

)
.

2) Precision parameterization Laplace distribution:

fX(x;µ, τ) =
τ

2
exp(−τ |x− µ|).

3) Univariate asymmetric Laplace distribution:

fx(x;µ, b1, b2) =


1
b1

exp
(
− |x−µ|

b1

)
, x < µ,

1
b2

exp
(
− |x−µ|

b2

)
, x ≥ µ.
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B. Laplace regression

We consider a distributed Laplace regression model (k =
1, . . . ,Kn):

YIk = XIkγ + ϵIk, ϵIk ∼ Laplace(µ1, b3Inik×nik
)

where
• XIk is a submatrix of the full design matrix NIk, with

nIk ≥ p;
• ϵIk is a subresidual vector, and Ink×nk

denotes the
identity matrix;

• γ = (γ1, . . . , γp)
T denotes the regression coefficient

vector;
• µ1 and b3 > 0 represent location and scale parameters,

respectively.
We notice that

Y =
(
Yl1

T , Yl2
T , · · · , YlKn

T
)T

,

X =
(
XI1

T , XI2
T , · · · , XIKn

T
)T

.

The model can also be expressed as:

Y = Xγ + ϵ, ϵ ∼ Laplace(µ1, b3),

with E(Y ) = µ1, V ar(ϵIk) = 2b23−µ2
1 and the error variance

estimator σ̂2 = ϵT ϵ
n−p .

C. Laplace factor model

The formulation of the LFM is given by

X = FA⊤ + ϵ, ϵ ∼ Laplace(µ2, b4Ip×p) (1)

where
• X ∈ Rn×p denotes the observed data matrix;
• A ∈ Rp×m constitutes the factor loading matrix;
• F ∈ Rn×m represents the matrix containing latent

common factor with m < p;
• ϵ ∈ Rn×p denotes the error matrix;
• µ2 and b4 represent location and scale parameters.

The assumptions of the model are as follows.
• The expected value of fj is zero and its variance is

Im×m.
• The expected value of ϵj is zero and its variance is a

diagonal matrix D = diag(σ2
1 , σ

2
2 , · · · , σ2

p).
• The fj and ϵj are independent, cov(fj , ϵj) = 0.

III. METHOD

A. Sparse principal component analysis

To describe the covariance structure among p correlated
variables, we use m ≪ p common factors:∑

= AAT +D
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where A denotes the factor loading matrix, and the diagonal
matrix D accounts for specific variance.

Under the Sparse Principal Component (SPC) framework,
eigendecomposition of the empirical covariance matrix S
yields

S =

p∑
i=1

λiviv
T
i

where λi and vi denote eigenvalues and their corresponding
orthogonal eigenvectors. Let Λ = diag(λ1, λ2, · · · , λp) and
V = (v1, v2, · · · , vp). Through sparsification, a sparse eigen-
vector matrix VS is obtained, which is then used to derive
the sparse loading matrix AS .

Let Vs be initialized as V . The sparse optimization crite-
rion is formulated as

VS = argmin
VS

(
n∑

i=1

∥∥Xi. −WSV
T
S Xi.

∥∥2
F

+ ρ
m∑
j=1

∥VS.j∥2F + θ
m∑
j=1

∥VS.j∥1)

where WT
S WS = Im×m and n > p when ρ = 0. The sparsity

parameter θ > 0 controls eigenvector sparsity. The matrix
Âs containing sparse loading and the matrix D̂s containing
specific variance are calculated for i = 1, 2, · · · , p:

ÂS = (
√
λ1vS1,

√
λ2vS2, · · · ,

√
λmvSm) = (âSij)p×m ,

D̂S = diag
(
σ̂2
1 , σ̂

2
2 , · · · , σ̂2

p

)
, σ̂2

i = sii −
m∑
j=1

â2Sij .

B. Sparse online principal component analysis

The SOPC method introduces a sparsity parameter θ
to enable online sparse eigenvector updates. For the first
k observations Xk = (XT

1 , X
T
2 , · · · , XT

k )
T , (k < n),

the sample covariance matrix is Sk = V kΛk(V k)T , with
Λk = diag(λk

1 , λ
k
2 , · · · , λk

p), and V k = (vk1 , v
k
2 , · · · , vkp).

Upon receiving the (k + 1)-th sample Xk+1, the covariance
updates as

Sk+1 =
k

k + 1
Sk +

1

k + 1
XT

k+1

and the eigen decomposition Xk+1 = V k+1Λk+1(V k+1)T is
performed. Let WSO = V k+1[, 1 : m], and initialize V k+1

SO =
V k+1. The sparse eigenvector matrix V k+1

SO is obtained via

V k+1
SO = argmin

V k+1
S

(∥Xk+1. −WSOV
k+1T
SO Xk+1.∥2F

+ ρ
m∑
j=1

∥V k+1
SO,j∥

2
F + θ

m∑
j=1

∥V k+1
SO,j∥1),

where WT
SOWSO = Im×m. The optimization objective can

be re-expressed as

L(V k+1
SO ) = trace(XT

k+1.Xk+1.)

+

m∑
j=1

[V k+1
SO,j

T (
XT

k+1.Xk+1. + ρ
)
V k+1
SO,j

− 2wT
SO,jX

T
k+1Xk+1V

k+1
SO,j + θ∥VSO,j∥1].

The updated sparse loading matrix Âk+1
SO and specific vari-

ance matrix D̂k+1
SO are given by (i = 1, 2, . . . , p):

Âk+1
SO = (

√
λk+1
1 vk+1

SO1, . . . ,

√
λk+1
m vk+1

SOm)

= (âk+1
SOij

)p×m,

D̂k+1
SO = diag

(
σ̂2
1 , σ̂

2
2 , . . . , σ̂

2
p

)
, σ̂2

i = sii −
m∑
j=1

âk+12

soij .

(2)

C. SOPC for LFM

For the LFM in equation (1), the data matrix X is
generated with Laplace distributed errors. Using the SOPC-
derived sparse loading matrix, the updated parameters Âk+1

SO

and D̂k+1
SO follow equation (2) where

σ̂2
i = XT

k+1Xk+1, i = 1, 2, . . . , p.

This completes the integration of SOPC with the LFM.

IV. NUMERICAL ANALYSIS

A. Preparation work

1) Statistical index: The efficacy of the SOPC algo-
rithm is quantified through the Frobenius-norm-based Mean
Squared Error (MSE) between the true and estimated factor
loading matrices. In simulation studies, the true loading
matrix A is predefined, enabling direct accuracy assessment.
The MSE is defined as

MSEÂ =
1

p2
∥A− Â∥2F

where Â denotes the estimated loading matrix.
2) Parameter setting: The simulated data X is generated

according to the generative model in (1), with the following
configurations:

• Parameter ranges: Location parameter µ ∈ [0, 1000],
while factor loadings A are bounded within [−1, 1];

• Distribution specifications: Latent factors F ∼
N (0, Im×m), noise terms ϵ ∼ Laplace(0, 1), and id-
iosyncratic variances D ∈ (0, 1).

B. Simulation 1: Baseline performance

We set n = 1000, p = 10, m = 5 and generate the
data matrix X . Table I summarizes the KMO and Bartlett’s
sphericity test results.

As evidenced in Table I, all KMO values exceed 0.60,
and the sphericity hypothesis is rejected at p < 0.05. Both
statistical criteria substantiate the appropriateness of LFM
for dimensionality reduction.

TABLE I: KMO and Bartlett’s test results

Laplace
Distribution KMO χ2 df P-value Suitable

Univariate
Symmetric 0.69 1739.30 45 0 YES

Precision
Parameterization 0.62 1649.50 45 1.42e−316 YES

Univariate
Asymmetric 0.70 2679.67 45 0 YES
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C. Simulation 2: Sensitivity analysis

1) Impact of sample size (n): We set p = 10, m = 5, and
varying n ∈ {2000, 3000, 4000, 5000, 6000}.

Fig. 1: MSEÂ values of SOPC for univariate symmetric
model as n varies.

Fig. 2: MSEÂ values of SOPC for precision parameteriza-
tion model as n varies.

Fig. 3: MSEÂ values of SOPC for univariate asymmetric
model as n varies.

• As shown in Fig. 1, the MSEÂ curve demonstrates
strong stability, with values ranging from 0.17 to 0.29.
The minimum is achieved at n = 5000 (MSEÂ =
0.17), followed by a slight increase at n = 6000
(MSEÂ = 0.23).

• Fig. 2 shows that MSEÂ values remain consistently
stable within the range of 0.12 to 0.27, with the best
performance observed at n = 5000 (MSEÂ = 0.12).

• In Fig. 3, moderate fluctuations are observed, with
values ranging from 0.14 to 0.38. Notably, there is a
significant increase in error at n = 6000, suggesting a
sensitivity to larger sample sizes.

2) Impact of sample dimension (p): We set n = 2000,
m = 5, and varying p ∈ {10, 11, 12, 13, 14}.

Fig. 4: MSEÂ values of SOPC for univariate symmetric
model as p varies.

Fig. 5: MSEÂ values of SOPC for precision parameteriza-
tion model as p varies.

Fig. 6: MSEÂ values of SOPC for univariate asymmetric
model as p varies.
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• As shown in Fig. 4, MSEÂ peaks at p = 12 (MSEÂ =
0.34) before sharply declining to near-zero values at
p = 14, suggesting a risk of overfitting with higher
dimensions.

• Fig. 5 demonstrates that MSEÂ gradually decreases
from 0.26 to 0.22, but exhibits negative values at p =
13, indicating instability in the estimation process at this
point.

• In Fig. 6, MSEÂ fluctuates moderately within the range
of 0.14 to 0.38, with the best performance observed at
mid-range dimensions, specifically at p = 12.

D. Simulation 3: Comparative analysis

We compare the SOPC method against four alterna-
tives: SPC, Projection Principal Component (PPC), Incre-
mental Principal Component (IPC) and Stochastic Approx-
imate Principal Component (SAPC). Parameters are fixed
as p = 10, m = 5, µ ∈ [0, 1000], A ∈ [−1, 1], F ∼
Nm(0, Im×m), ε ∼ Laplace(0, 1), and D ∈ (0, 1), with
n ∈ {2000, 3000, 4000, 5000, 6000}.

Fig. 7: Comparison of MSEÂ performance of SOPC, PPC,
IPC, SPC, and SAPC methods for univariate symmetric
model with the change of n–value.

Fig. 8: Comparison of MSEÂ performance of SOPC, PPC,
IPC, SPC, and SAPC methods for precision parameterization
model with the change of n–value.

Fig. 9: Comparison of MSEÂ performance of SOPC, PPC,
IPC, SPC, and SAPC methods for univariate asymmetric
model with the change of n–value.

• As shown in Fig. 7, SOPC achieves the lowest MSEÂ

values in the range of 0.19–0.24, outperforming SAPC
(0.22–0.37) and all other methods.

• Fig. 8 demonstrates SOPC’s superior robustness, with
its MSEÂ ranging from 0.16 to 0.28. In contrast, PPC
shows considerable instability, with MSEÂ fluctuating
between 0.19 and 0.40.

• In Fig. 9, SOPC consistently achieves the lowest error
rates (0.15–0.20), while PPC exhibits the largest fluctu-
ations, with MSEÂ spanning from 0.20 to 0.42.

These results underscore SOPC’s superior adaptability to
variations in sample size compared to the other methods.

V. CONCLUSIONS AND SUGGESTIONS

The SOPC method exhibits high precision and stability in
LFM, outperforming traditional principal component anal-
ysis. While sample size variations minimally affect perfor-
mance, higher dimensions may increase estimation errors.
Future work should integrate distributed computing for ef-
ficiency and extend the method to nonlinear models. This
approach provides an effective solution for real-time analysis
of complex datasets.
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