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Abstract—In this paper, we focus on the concept of disso-
ciation sets in a graph G = (VG, EG), we find the maximum
dissociation set by looking for a maximum subset of vertices
in the graph such that no edges are connected between any
two vertices in the subset. It is the same as the maximum
independent set in the graph, but in the definition of disso-
ciation set, it is also allowed to have edges between vertices
in the subset, provided that each vertex is connected by at
most one edge. The primary objective of this paper is to
determine the minimum values of the Wiener indices for all
connected graphs with a predetermined order and a specified
dissociation number. Specifically, we aim to establish loose lower
bounds for the Wiener index among these graphs and identify
the corresponding extremal graphs that achieve these lower
bounds. Furthermore, we also explore the graphs that attain
the maximum Wiener indices for a predetermined order n
and a given dissociation number φ ∈ {2, ⌈ 2n

3
⌉, n − 1}. These

results provide valuable insights into the structural properties
of graphs with specific dissociation characteristics and their
impact on the Wiener index.

Index Terms—Connected graphs, Predetermined order and
dissociation, Wiener index.

I. INTRODUCTION

WE start with some background information on launch-
ing the main results, and this section will also give

some of the main results.
The graphs under consideration are simple, undirected and

connected, see [1] and the references cited therein. For a
graph G = (VG, EG), VG is the vertex set and EG is the
edge set. Pn, Sn and Kn represent respectively a path, a star
and a complete graph with n vertices. The minimum distance
between vertices u and v is written dG(u, v). Diameter is the
maximum distance between any two vertices in the graph,
denoted as diam(G). And we call |VG| the order of G.

We use T denote as a tree. V (T ) and E(T ) mean the set
of vertices and edges of a tree. And a tree is a connected
acyclic graph. A pendent vertex is a vertex that is connected
to exactly one other vertex. The unique n-vertex trees with
two and n− 1 pendent vertices are called the path and star,
respectively, and are denoted by Pn and Sn.
NG(v) is usually used to represent a graph set of neighbors

of a vertex v in G. Specifically, given an undirected graph
G and a vertex v in the graph, NG(v) defined as NG(v) =
{u ∈ V |{u, v} ∈ E}. And NG[V ] := NG(v)

∪
{v} be the

closed neighborhood of v ∈ VG. We use dG(V ) = |NG(v)|

Manuscript received September 27, 2024; revised March 28, 2025. The
research is partially supported by National Science Foundation of China
(Grant No. 11671164) and Natural Science Research Project of Anhui
Educational Committee (Grant No. 2024AH040222).

R. J. Li is a postgraduate of the School of Mathematics and Big Date,
Anhui University of Science and Technology, Huainan, 232001, PR China
(e-mail: 2897807368@qq.com).

J. Z. Cui is a professor of the School of Information and Engineering,
Huainan Union University, Huainan, 232001, PR China (corresponding
author to provide e-mail: 983505198@qq.com).

to denote the degree of v. To keep things simple, G − v
means delete vertex v ∈ VG and G− uv is by deleting edge
uv ∈ EG in the graph of G. When G1 and G2 are connected,
we call G1

∪
G2 and when they are attach with each other,

we denote as G1

∨
G2. And the connection of k copies of

G is kG.
A set of vertices in a graph is termed an independent set

if there are no edges linking any two vertices within the set.
In other words, an independent set is an edge-free subgraph.
A dissociation set is a subset of vertices in a graph that
forms an induced subgraph with at most one edge between
any two vertices. Unlike an independent set, a dissociation
set allows one edge between vertices, but no more than one.
The dissociation number φ(G) of a graph G is defined as
the size of its largest dissociation set, which is a collection
of vertices such that no two are adjacent. The matter of
determining φ(G) was initially proposed by Yannakakis [2]
in 1981. Finding the maximal dissociation set is an NP-
complete problem.

The Wiener index is an important metric in chemical graph
theory for measuring the structural properties of molecules. It
is named in honor of the Austrian chemist Harold Wiener [3],
who introduced the concept in 1947 to describe the molecular
structure of hydrocarbon compounds. Wiener index exhibit-
s a broad spectrum of applications in chemoinformatics,
molecular descriptors and graph theory, see [4], [5], [6],
[7]. In a undirected and connected graph G, the Wiener
index is calculated as the aggregate of the shortest path
lengths between every pair of vertices within the graph. The
formalization is defined as follows

W (G) =
∑

{u,v}⊆VG

dG(u, v). (1)

the summation encompasses every pair of vertices in G. The
hyper-Wiener index of G, initially presented by Randić [8]
in 1993, is characterized by [9]

WW (G) =
1

2

∑
{u,v}⊆VG

dG(u, v) +
1

2

∑
{u,v}⊆VG

dG(u, v)
2.

(2)
In the decades that followed, Plavs̆ić et al. [12] and

Ivanciuc et al. [13] proposed another distance-based graph
constant, named Harary index, which is is characterized by

H(G) =
∑

{u,v}⊆VG

1

dG(u, v)
. (3)

In molecular graph theory, Harary index is used to study
the structure and properties of molecules, particularly how
atoms within a molecule are connected. It can also be applied
to assess the robustness and efficiency of networks, where
a higher index may indicate a more robust and efficient
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network structure. Subsequently, this invariant has been
reformulated as half the sum of the entries within the Harary
matrix, it provides a matrix representation of the connectivity
of a graph based on the reciprocal of distances between pairs
of vertices.

Topological index is mainly used to analyze the nature
of molecular structure, to evaluate the chemical and physical
properties of compounds, and to solve optimization problems
in graph theory [17]. Wiener index is an significant topologi-
cal index, primarily used to assess molecular transitivity and
molecular similarity. The literature extensively explores the
mathematical characteristics and applications of the Wiener
index, one may be referred to [18], [20].

Numerous researchers have shown interest in determining
the loose lower bounds of the Wiener index for all connected
graphs. Gutman [21] showed Pn and Sn. Research has
demonstrated that similar bounds are applicable to vari-
ous recently introduced modifications of the Wiener index.
Božović Vladimir et al. [24] examined trees of order n with
a specified count of vertices possessing the highest degree,
and addressed the minimal extremal problem regarding the
Wiener index within that category. Shan Zhang et al. [25]
identified a subset of unicyclic graphs with a given order n
and maximum degree ∆ that achieve the minimum Wiener
index.

The present article delves into the issue of identifying
the minimum and maximum values of Wiener index and
this manuscript investigates the matter of determining the
extreme graphs that correspond to connected graphs with a
predetermined order and dissociation number.

II. KEY FINDINGS

In this segment, we establish foundational symbols and
present the key findings. Let Cn,φ (respectively. Bn,φ, Tn,φ)
represent the set of connected graphs (respectively. bipartite
graphs, trees) characterized by a predetermined order n and
dissociation number φ.

Introducing an edge to a connected graph reduces its
Wiener index. Consequently, it is evident that the minimum
Wiener index value and the associated extremal graph among
all connected graphs are straightforward.

Theorem 2.1 Let G ∈ Cn,φ. Then

W (G) ≥

{
n(n−1)

2 + φ(φ−2)
2 , if φ is even;

n(n−1)
2 + (φ−1)2

2 , if φ is odd.

with equality holds when

G ∼=

{
Kn−φ

∨
(φ2K2), if φ is even;

Kn−φ

∨
(φ−1

2 K2

∪
K1), if φ is odd.

Case 1 When n = 3, φ = 2, then W (G) ≥ 3×2
2 + 2×0

2 = 3
In the extremal graph of K1

∨
K2, W (G) = d(v1, v2) +

d(v1, v3) + d(v2, v3) = 3;
Case 2 When n = 4, φ = 3, then W (G) ≥ 3×4

2 + 2×2
2 = 8

In the extremal graph of K1

∨
(K2

∪
K1), W (G) =

d(v1, v2) + d(v1, v3) + d(v1, v4) + d(v2, v3) + d(v2, v4) +
d(v3, v4) = 8.

The subsequent finding involves determining a broad
lower bound for the Wiener index of bipartite graphs with
a predetermined order and dissociation number, with the
characterization of the corresponding extremal graph.

Theorem 2.2 Let G ∈ Bn,φ(n ≥ 3). Then W (G) ≥
n2−(φ+1)n+φ2 with equality holding when G ∼= Kφ,n−φ.
The next result characterizes all the tree T ∈ Tn,φ having
the minimum Wiener index.

Let S∗
n,φ be a tree with n vertices, constructed by ap-

pending two pendent edges to each leaf of Sn−φ and adding
3φ − 2n + 2 pendent edges to the center vertex of Sn−φ.
Denote Sn,φ as the set of trees with n vertices, where two
pendent edges or a pendent path of length two are attached
to each leaf of Sn−φ and 3φ − 2n + 2 pendent edges are
attached to the central vertex of Sn−φ. Clearly, S∗

n,φ ∈ Sn,φ.
Fig. 1 gives an example of S∗

n,φ and Sn,φ, where each ellipse
signifies the addition of two pendent edges or a pendent path
of length two to vertices v1, v2, · · · , vn−φ−1.

1
v ...

...

...

...

v
1

v v

Fig. 1. Trees S∗
n,φ (left) and S∗n,φ (right)

Theorem 2.3 Let T ∈ Tn,φ(n ≥ 3). Then W (T ) ≥ 1
2n

2−
2n+ 1

2φ
2 + φ+ 3

2 with equality holds when T ∼= S∗
n,φ.

Theorem 2.4 Consider a graph G in Cn,φ, where φ ∈
{2, ⌈ 2n

3 ⌉, n− 1}.

(i) If φ = ⌈ 2n
3 ⌉, then W (G) ≤

(
n+ 1
3

)
= n3−n

6 with

equality holds when G ∼= Pn.
(ii) If φ = 2, then

W (G) ≤

{
2n2−3n

4 , if n is even;
2n2−3n+4

4 , if n is odd.

with equality holds when G ∼= Kn−M(Kn), where M(Kn)
is a maximum matching of Kn.

(iii) If n ≥ 3 and φ = n− 1, then

W (G) ≤

{
3n2−9n+8

2 , if n is even;
3n2−8n+7

2 , if n is odd.

with equality holds when

G ∼=

{
S(1, n−2

2 ), if n is even;

S(0, n−1
2 ), if n is odd.

III. INITIAL FINDINGS

In this section, we give few preparatory results for proving
the key findings. The subsequent finding is directly inferred
from the definition of the dissociation number.

Lemma 3.1 For a simple graph G. It holds that φ(G)−1 ≤
φ(G− v) ≤ φ(G) for any vertex v ∈ VG.

Bres̆ar et al.[26] established a lower bound for the disso-
ciation number in trees, as described subsequently.

Lemma 3.2 ([26]) Consider a tree T with n vertices. It
follows that φ(T ) ≥ 2n

3 .
For a graph G, denote P(G) and Q(G) as the set of all

pendent vertices and quasi-pendent vertices of G. Let Q2(G)
as the set of all quasi-pendent vertices of degree two in G.
The next result by Jing Huang et al. [33] is crucial for proving
Theorem 2.3.
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Lemma 3.3 ([33]) Consider a graph G of order n ≥ 5. It
is then possible to identify a maximum dissociation set S(G)
that encompasses P(G)

∪
Q2(G) ⊆ S(G).

The next result involve the change of the Wiener index
after some graph transformations.

Lemma 3.4 Let G be a simple and connected graph. Then
W (G+ uv) < W (G) for any uv /∈ EG.

Lemma 3.5 Let G1 and G2 be two separate connected
graphs with vertex sets VG1 and VG2 , respectively. Denote
G as the graph obtained from G1

∪
G2 by joining an edge

between v1 and v2, and G′ as the graph obtained from
G1

∪
G2 by identifying vertices v1 and v2 and adding a

pendent edge at v. Then W (G) > W (G′).
The subsequent corollary is derived from Lemma 3.5.
Corollary 3.6 Consider a connected graph G that has

|VG| ≥ 4. Suppose v ∈ Q2(G) with N(v) = {w, u} and
w ∈ P(G). Then W (G) > W (G− vw + uw).

IV. PROOF OF THEOREM 2.2

Now we present the proof for Theorem 2.2, which we
carve all connected bipartite graphs with predetermined order
and dissociation number with minimal Wiener index.
Proof. Assuming that G⋆ = (X,Y ) is a connected bipartite
graph with minimal Wiener index in Bn,φ. Without prejudice
to generality, suppose that |X| ≥ |Y |. Suppose S is a maxi-
mal dissociation set for G⋆. Afterwards φ = |S| ≥ |X|. By
Lemma 3.4, it follows that if φ = |X|, then G⋆ ∼= Kφ,n−φ.
Next suppose that φ > |X|. Then S can be categorized as
S = X1

∪
Y2, where X1 ⊆ X and Y2 ⊆ Y . Let X2 = X\X1

and Y1 = Y \Y2, and let |X1| = a, |Y1| = b, |X2| = c,
|Y2| = d. Recognizes that |X1

∪
Y2| > |X| ≥ |Y |, then

a > b and c < d. Since G⋆ is a bipartite graph with a
minimal Wiener index. So we known that every vertex in
X1 is connected to every vertex in Y1, every vertex in X2

is connected to every vertex in Y , and there are as many
matching edges as possible between X1 and Y2. If d ≥ a,
there will be a set Y21 ⊆ Y2 with |Y21| = a such that
G⋆[X1

∪
Y21] is a perfect matching.

By some direct computation, we get

W (G⋆) =(ab+ bc+ cd+ a) + 2[

(
a
2

)
+

(
b
2

)
+

(
c
2

)
+

(
d
2

)
+ ac+ bd] + 3[a(a− 1) + a(d− a)]

=a2 + b2 + c2 + d2 − 1

3
(9a+ 3b+ 3c+ 3d)

+
1

6
(6ab+ 6bc+ 6cd+ 12bc+ 12bd+ 18ad).

Another aspect, this is a way to check that

W (Ka+d,b+c) =(a+ d)(b+ c) + 2[

(
a+ d
2

)
+

(
b+ c
2

)
]

=a2 + b2 + c2 + d2 − (a+ b+ c+ d)

+
1

2
(2ab+ 4bc+ 2cd+ 2ac+ 2bd+ 4ad).

Then

W (Ka+d,b+c)−W (G⋆) = 2a+ (bc− ac− bd− ad). (4)

Observe that n ≥ 3 and G⋆ is connected, implying that
the maximum of b and c is at least 1.
In view of (4), we get that W (Ka+d,b+c)−W (G⋆) < 0. If
c ≥ 1, then d ≥ 2 and thus W (Ka+d,b+c) − W (G⋆) < 0
immediately follows from (4). All the possible scenarios are
generated that W (Ka+d,b+c) < W (G⋆), this contradicts the
selection of G⋆, as φ(Ka+d,b+c) = φ(G⋆). Similarly, there
is a paradox when d < a. Hence, G⋆ ∼= Kφ,n−φ. Through
simple calculations, we know that

W (Kφ,n−φ) =φ(n− φ) + φ(φ− 1) + (n− φ)(n− φ− 1)

=n2 − (φ+ 1)n+ φ2.

So we have W (Kφ,n−φ) = n2 − (φ+ 1)n+φ2 and we are
done.

V. PROOF OF THEOREM 2.3

Now we give the proof of Theorem 2.3, we establish a
loose lower bound on the Wiener index of a tree with pre-
determined order and dissociation number and the extremal
tree which satisfy the upper bound is also characterized. We
complete this proof by first giving some key conclusions.

Gutman [21] gave that if G is an acyclic molecular graph
with n vertices, then it follows W (Sn) ≤ W (G) ≤ W (Pn).
And Dobrynin et al. [27] shown that the best known of a
large number of trees close combinatorial expressions for

W are W (Pn) =

(
n+ 1
3

)
and W (Sn) = (n − 1)2. These

formulas have been first reported in [29] in 1976.
Lemma 5.1 ([21],[27]) Let T ∈ Tn. Then (n − 1)2 ≤

W (T ) ≤
(
n+ 1
3

)
. The left-hand equivalence is true ex-

clusively when T is isomorphic to Sn, and the right-hand
equivalence is true exclusively when T is isomorphic to Pn.

Lemma 5.2 ([33]) Let T ∈ Tn,φ(n ≥ 3) and △(T ) be
the maximum degree of T . Then △(T ) ≤ 2φ− n+ 1.

Now we will give the proof of Theorem 2.3. In this
Theorem, we determine the loose lower bound of the Wiener
index in Tn,φ and give the corresponding extremal tree.
Proof of Theorem 2.3 We continue the proof using math-
ematical induction on the variable n. If φ = n − 1, then
Lemma 5.1 gives W (T ) ≥ (n − 1)2 with equality holds
when T ∼= Sn

∼= S∗
n,n−1. When 3 ≤ n ≤ 9, it is obviously

that W (T ) ≥ 1
2n

2−2n+ 1
2φ

2+φ+ 3
2 and the equality holds

if and only if T ∼= S∗
n,φ. Subsequently, we presume that the

outcome is valid for every tree of order smaller than n and
dissociation number φ ≤ n− 2.

Choose T ∈ Tn,φ(n ≥ 10, φ ≤ n − 2) where W (T ) is
maximized to its greatest extent. Let Pk = v1v2v3v4 · · · vk be
a diametral path of T . Consequently, according to Lemma
3.1, it can be deduced that φ(T − v1) ∈ {φ,φ − 1}. We
continue the proof by considering the following cases.

Case 1 φ(T − v1) = φ − 1. As a result of Lemma 5.2,
we have that △(T − v1) ≤ 2φ− n. Then∑

v∈VT−v1

dT−v1(v, v2) + 1 ≤1 + 2dT−v1(v2) + 3(n−

dT−v1(v2)− 2)

=3n− dT−v1(v2)− 5

≥4n− 2φ− 5.

(5)
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The equality in (5) holds when dT−v1(v2) = △(T−v1) =
2φ − n and dT−v1(v, v2) = 2 for any v /∈ NT−v1 [v2]. By
Lemma 5.2, we have (5) holds when T − v1 ∼= S∗

n−1,φ−1

with dT−v1(v2) = 2φ− n.
The induction hypothesis together with (5) yields

W (T ) =W (T − v1) +
∑

v∈VT−v1

dT (v, v1)

=W (T − v1) +
∑

v∈VT−v1

dT−v1(v, v2) + 1

≥1

2
(n− 1)2 − 2(n− 1) +

1

2
(φ− 1)2

+ (φ− 1) +
3

2
+ 4n− 2φ− 5

≥1

2
n2 − 2n+

1

2
φ2 + φ+

3

2
.

(6)

The equality in (6) holds when T − v1 ∼= S∗
n−1,φ−1 with

dT−v1(v2) = △(T − v1) = 2φ − n. According to Lemma
3.2, we know that φ(T ) ≥ 2n

3 . Then 2φ − n ≥ n
3 > 3,

implying (6) holds with equality if and only if T ∼= S∗
n,φ.

There exist at least two pendent vertices when φ ≤ n− 3,
and the distance between them is 4, contradicting to the fact
that v1 lies on a diameter path of T . So T � S∗

n,φ and then
W (T ) > 1

2n
2−2n+ 1

2φ
2+φ+ 3

2 = W (S∗
n,φ), this leads to

a contradiction with the selection of T . Therefore, φ = n−2
and W (T ) ≥ n2 − 3n+ 3

2 with equality when T ∼= S∗
n,n−2.

Case 2 φ(T − v1) = φ. Consequently, there is a maximal
dissociation set, denoted as S(T ), for which v1 /∈ S(T ).
According to Lemma 3.3, we get d(v2 ≤ 3) and thus d(v2 =
3) by Corollary 3.6. Suppose that w is the sole vertex within
N(v2)\{v1, v3}. Put T ′ := T − v1 − v2 − w. Then T ′ ∈
Tn−3,φ−2. In the same way as Case 1, we get

∑
v∈VT ′

dT ′(v, v3) + 2 ≤2 + 3dT ′(v3) + 4(n− dT ′(v3)− 4)

=4n− dT ′(v3)− 12

≥5n− 2φ− 12.∑
v∈VT ′

dT ′(v, v3) + 1 ≤1 + 2dT ′(v3) + 3(n− dT ′(v3)− 4)

=3n− dT−v1(v2)− 5

≥4n− 2φ− 11.
(7)

Each equality in (7) holds when T ′ ∼= S∗
n−3,φ−2 with

dT ′(v3) = △(T ′) = 2φ− n and dT ′(v, v3) = 2 for any v /∈
NT ′ [v3]. The induction hypothesis together with (7) yields

W (T ) =W (T ′) +
∑

v∈VT ′

dT (v, v1) +
∑

v∈VT ′

dT (v, v2)

=W (T ′) +
∑

v∈VT ′

dT ′(v, v3) +
∑

v∈VT ′

dT ′(v, v3) + 3

≥1

2
(n− 3)2 − 2(n− 3) +

1

2
(φ− 2)2 + (φ− 2)

+
3

2
+ (5n− 2φ− 12) + (4n− 2φ− 11)

≥1

2
n2 − 2n+

1

2
φ2 + φ+

3

2
.

(8)

The equality in (8) holds when T ′ ∼= S∗
n−3,φ−2 with

dT ′(v3) = 2φ − n > 3, which means (8) holds when
T ∼= S∗

n,φ.
That is the end of proof.

VI. PROOF OF THEOREM 2.4

Now we present the proof for Theorem 2.4, by which
we characterize all the graphs with order n and dissociation
number φ ∈ {2, ⌈ 2n

3 ⌉, n − 1} having the maximum Wiener
indices.

The following result shows as the preliminary to show
Theorem 2.4.

Lemma 6.1 ([27]) Consider G as a connected graph
comprising n vertices. Then

W (G) ≤
(
n+ 1
3

)
with equality holds when G ∼= Pn.

Now we will give the proof for Theorem 2.4.
Proof of Theorem 2.4.

(i) Based on Lemma 6.1, we know that W (G) ≤
(
n+ 1
3

)
with equality holds when G ∼= Pn, and φ(Pn) = ⌈ 2n

3 ⌉.

...

...

Fig. 2. Graphs S(l1, l2)

(ii) Let G ∈ Cn,2 be the graph having the maximum
Wiener index. When G lacks 3K1 or K2

∪
K1 as its inducer

graph, it follows that dG(v) ≤ 1 for all v ∈ VG, with
G being the complement of G. Thus, EG constitutes a
matching in Kn. By integrating Lemma 3.4, we deduce
that G ∼= Kn − M(Kn), which M(Kn) represents the
maximum matching in Kn. By some direct calculations, we
get that W (Kn − M(Kn)) = 2n2−3n

4 if n is even, while
W (Kn −M(Kn)) =

2n2−3n+4
4 if n is odd.

(iii) Let G ∈ Cn,n−1(n ≥ 3) be the graph with the
maximal Wiener index, and let S be a maximal dissociation
set of G partitioned into S = S1 ∪ S2, such that G[S1]
forms a perfect matching and S2 is an independent set.
Suppose that VG = {v1, v2, · · · , vn} and S = VG\{v1}.
Then S2 ⊆ N(v1) ∩ P(G).
Denote vn−1 and vn as two vertices, such that {vn−1, vn} ⊆
S2, then put G′ = G − v1vn−1 + vnvn−1 and thus G′ ∈
Cn,n−1 by Lemma 3.3. According to Corollary 3.6, we
have W (G′) > W (G), contradicting to the choice of G.
Therefore, |S2| ≤ 1. Then we can know that

G ∼=

{
S(1, n−2

2 ), if n is even;

S(0, n−1
2 ), if n is odd.

where S(l1, l2) is the graph as shown in Figure 2. Now
we will give a simple calculation about W (S(1, n−2

2 )) and
W (S(0, n−1

2 )).
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W (S(1,
n− 2

2
)) =1 + 2 · n− 2

2
+ 3 · n− 2

2
+

n− 2

2

+ 2 · n− 2

2
+

n− 2

2

+ (2 + 3 + 3 + 4)(
n− 4

2
+

n− 6

2
+ · · ·+ 1)

=1 + 9 · n− 2

2
+ 12 · n

2 − 6n+ 8

8

=
3n2 − 9n+ 8

2
.

W (S(0,
n− 1

2
)) =

n− 1

2
+ 2 · n− 1

2
+

n− 1

2

+ (2 + 3 + 3 + 4)(
n− 3

2
+

n− 5

2
+ · · ·+ 1)

=4 · n− 1

2
+ 12 · n

2 − 4n+ 3

8

=
3n2 − 8n+ 7

2
.

VII. FINAL OBSERVATIONS

Brualdi and Solheid [10] introduced a renowned question
that has since become a classic in the field of spectral graph
theory.

In this paper, we focus on a specific set of graphs G within
the collections Cn,φ, Bn,φ and Tn,φ that satisfy certain
criteria. Our primary goal is to determine the minimum and
maximum Wiener indices for these graphs and to identify
the extremal graphs that achieve these values.

The first three theorems provide a comprehensive charac-
terization of all connected graphs with the minimal Wiener
indices among those with a predetermined order and dis-
sociation number. The final theorem addresses the graph-
s with a predetermined order n and dissociation number
φ ∈ {2, ⌈ 2n

3 ⌉, n−1} that attain the maximal Wiener indices.
Overall, our work provides a detailed analysis of the

Wiener indices for graphs within these specific sets, offering
insights into both the minimal and maximal values and the
corresponding extremal structures.
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