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Abstract—This paper focuses on solving a generalized
Sylvester matrix equation over a generalized quaternion skew-
field. We apply a real representation of generalized quaternion
matrices and certain vectorizations to transform the matrix
equation into a real linear system. Then, we obtain an equivalent
condition for the consistency of the matrix equation. We can de-
rive vector representations of the (minimal-norm) least-squares
(LS) solution, the (minimal-norm) pure-imaginary LS solution,
the (minimal-norm) real LS solution, and the (minimal-norm)
LS solution closet to a given matrix. Such solutions are
expressed in terms of Kronecker products and Moore-Penrose
inverses. When the matrix equation is consistent, such LS
solutions become exact solutions. This work includes Sylvester
and Stein matrix equations over generalized quaternions, and
quaternionic matrix equations. We also propose a gradient-
descent iterative (GDI) algorithm to solve the transformed
linear system. Moreover, the theory can be applied to a color
image processing model.

Index Terms—Sylvester-type matrix equation, matrix over
a generalized quaternion, least-squares solution, Kronecker
product, iterative algorithm, RGB color model

I. INTRODUCTION

THE paper focuses on matrix equations over quaternion-
like structures. Let us recall that for any pair (u, v)

of nonzero real numbers, we can associate with a four-
dimensional algebra Qu,v over the real number field R. The
algebra Qu,v of generalized quaternions is formed by its
ordered basis {1, i, j, k} where 1 acts as the multiplicative
identity. Besides the addition and the scalar multiplication
on Qu,v , the product of any two of i, j, k is defined by the
following multiplication rules:

i2 = u, j2 = v, k2 = ijk = −uv,

ij = −ji = k, jk = −kj = −vi, ik = −ki = uj.

Thus, every element of Qu,v can be represented as

q = q1 + q2i+ q3j + q4k ∈ Qu,v

where q1, q2, q3, q4 ∈ R. We call q1 the real part of q,
while the vector (q2, q3, q4) is called the imaginary part of
q. The set Qu,v , together with the addition and the above
multiplication, forms a skew field. The famous particular case
of Qu,v is when (u, v) = (−1,−1), known as the (Hamilton)
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quaternions Q. Other interesting cases of Qu,v are the split
quaternion ring (u = −1, v = 1), the nectarine quaternion
ring (u = 1, v = −1), and the conectarine quaternion ring
(u = v = 1).

Quaternionic matrix theory is an attractive area in linear
algebra; see e.g. [1]. Matrix equations over quaternion-like
structures play an important role in computer platform [2],
signal processing [3], [4], quantum mechanics [5], [6], and
image processing [7], [8], [9]. In color image processing,
a color image can be represented as a vector or matrix.
According to RGB color model, the color information of
a pixel can be represented as

q = 0 + qri+ qgj + qbk ∈ Q,

where qr, qg, qb are the red/green/blue component of the color
pixel, respectively. The addition on Q represents the addition
between different colors, so that their light spectra adds up.
An RGB color image consists of many array pixels, and can
be represented as a vector

ẏ = 0 + yri+ ygj + ybk ∈ Qa,

where yr, yg, yb ∈ Ra. A quaternion-based sparse represen-
tation model [10] says that ẏ = Ḋȧ, where

Ḋ = Ds +Dri+Dgj +Dbk ∈ Qa×b and

ȧ = a1 + a2i+ a2j + a4k ∈ Qb.

The matrix Ḋ and the vector ȧ are called a dictionary matrix
and a sparse coefficient vector.

Linear matrix equations over the field R arise naturally in
pure and applied mathematics, e.g. differential equations, and
mathematical control theory. The famous Sylvester matrix
equation:

AX +XD = E (1)

plays an important role in model reduction [11], numerical
methods for differential equations [12], [13] and control
systems [14], [15]. Besides, there are many researchers
studied a generalized Sylvester equation:

AXB + CXD = E (2)

see e.g. [16], [17], [18], [19], [20]. In particular, if C and
D are identity matrices with suitable size, Eq. (2) is reduced
to the Stein matrix equation. In the last decent, many author
investigated Sylvester-type matrix equation over Q or Qu,v .
In 2014, Shi-Fang Yuan [21] derived explicit forms of the
least-squares (LS) solution, the imaginary LS solution, and
the real solution of Eq. (2). Later, F. Zhang et al. [22]
solved Eq. (2) over Q for the minimal-norm LS solution, the
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imaginary LS solution, and the real LS solution. Furthermore,
Tian et al. [23] investigated Eq. (2) over Qu,v . Indeed, they
provided criterion for an existence of a Hermitian solution,
and derived an explicit formula of the solution. Recently, the
exact and least-squares solutions of a generalized Sylvester-
transpose matrix equation over Qu,v were studied in [24].

This paper is a continuation of the work [22]. We consider
the generalized Sylvester matrix equation (2) where the
given coefficients and the unknown are compatible rectan-
gular matrices over Qu,v . We will discuss the following
general/specific types of solutions.

Problem 1. Find the general exact/least-squares solutions
X = X1+X2i+X3j+X4k ∈ Qa×b

u,v of Eq. (2). In addition,
among the general solutions, find the minimal-norm one.

Problem 2. Find all exact/least-squares solutions of Eq. (2)
that consist only of the imaginary part, i.e., X = X2i+X3j+
X4k ∈ Qa×b

u,v . Among such solutions, find the minimal-norm
one.

Problem 3. Find all exact/least-squares solutions of Eq. (2)
that consist only of the real part. Among such solutions, find
the minimal-norm one.

Problem 4. Let Y ∈ Qa×b
u,v be given.

1.4.1 Find the general exact/least-squares solution of
Eq. (2) closet to Y .

1.4.2 Find the imaginary-part exact/least-squares solu-
tion of Eq. (2) closet to Y .

1.4.3 Find the real exact/least-squares solution of Eq. (2)
closet to Y .

Problems 1-4 include both consistent and inconsistent
cases. When the associated least-squares error is zero, such
least-squares solutions become an exact solution. We use
real representations of generalized quaternion matrices and
vectorizations of real matrices to transform Eq. (2) into a
real linear system. So, we can derive the desired solutions of
Problems 1-4 in terms of the Kronecker product and Moore-
Penrose inverses; see Sections III and IV. We discuss certain
special cases of Eq. (2), namely, Eq. (1), the Stein equation
AXB +X = E, and the split quaternions case; see Section
V. In Section VI, we provide numerical examples to illustrate
the theory. In Section VII, we propose an iterative algorithm
to solve the linear system associated with Eq. (2). In Section
VIII, we apply the theory to a color image processing model.
Finally, we summarize the whole work in the last section.

Next, we prepare basic notations and recall prerequisite
results from classical and quaternionic matrix theory in
Section II. These results involve real linear systems, vec-
torizations, the Kronecker product, and real representations
for the generalized quaternion matrices.

II. PRELIMINARIES FROM CLASSICAL AND
QUATERNIONIC MATRIX THEORY

Throughout this paper, let u, v ∈ R−{0}. Denote the set of
all m-by-n real matrices and generalized quaternion matrices
by Rm×n and Qm×n

u,v , respectively. For any matrix A, its
transpose, its Moore-Penrose inverse, and its Frobenius norm
are denoted by AT , A† and ∥A∥, respectively. Let us denote
the i-th column of matrix A by coli(A). The identity matrix

of order n is denoted by In, and we define eni = coli(A).
Recall the following results.

Lemma 5. (e.g. [25]) Let A ∈ Rm×n and b ∈ Rm. Then
the linear system

Ax = b, (3)

has a solution x ∈ Rn if and only if AA†b = b, or
equivalently, rank[A b] = rank A. In both consistent
and inconsistent cases, the following statements hold:
(i) The general exact/LS solutions of Eq. (3) can be ex-

pressed by the formula

x = A†b+ (In −A†A)w, (4)

where w ∈ Rn is arbitrary.
(ii) The minimal-norm exact/LS solution of Eq. (4) is given

by the formula

x = A†b. (5)

(iii) Eq. (3) has a unique exact/LS solution given by the
formula (5) if A is of full-column rank (i. e. rank[A] =
n).

Recall that the operator Vc(·) transforms any matrix A =
(aij) ∈ Rm×n to be a column vector

Vc(A) =
(
col1(A) col2(A) . . . coln(A)

)T ∈ Rmn.

The Kronecker product of A = (aij) ∈ Rm×n and B ∈ Rs×t

is defined as

A⊗B =


a11B a12B . . . a1jB
a21B a22B . . . a2jB

...
...

. . .
...

am1B am2B . . . amnB

 ∈ Rms×nt.

Lemma 6. (e.g. [26]) For any A ∈ Rm×n, X ∈ Rn×p and
B ∈ Rp×q , we have

Vc(AXB) = (BT ⊗A)Vc(X).

For any generalized quaternion matrix A ∈ Qm×n
u,v , we can

write

A = A1 +A2i+A3j +A4k

with real coefficients A1, A2, A3, A4 ∈ Rm×n. We denote
the column block of real coefficients by

Γ1(A) =


A1

A2

A3

A4

 ∈ R4m×n.

Now, consider X = X1+X2i+X3j+X4k ∈ Qn×p
u,v , where

X1, X2, X3, X4 ∈ Rn×p. A direct computation reveals that

Γ1(AX) =


A1X1 + uA2X2 + vA3X3 − uvA4X4

A1X2 +A2X1 − vA3X4 + vA4X3

A1X3 + uA2X4 +A3X1 − uA4X2

A1X4 +A2X3 −A3X2 +A4X1


= R(A)Γ1(X), (6)

where

R(A) =


A1 uA2 vA3 −uvA4

A2 A1 vA4 −vA3

A3 −uA4 A1 uA2

A4 −A3 A2 A1

 .
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We call R(A) a real-matrix representation of A. We define
the following representations of A :

Γ2(A) =


uA2

A1

−uA4

−A3

 ,

Γ3(A) =


vA3

vA4

A1

A2

 , and

Γ4(A) =


−uvA4

−vA3

uA2

A1

 ∈ R4m×n.

The representations Vc,Γ1,Γ2,Γ3 and Γ4 are clearly one-
to-one. Moreover, A and Γ1(A) have the same (Frobenius)
norm:

∥A∥ =
√

∥A1∥2 + ∥A2∥2 + ∥A3∥2 + ∥A4∥2

= ∥Γ1(A)∥ . (7)

Proposition 7. ( [1]) The following properties hold:
(i) Γ1(A+B) = Γ1(A) + Γ1(B), Γ1(kA) = kΓ1(A)

for any A,B ∈ Qm×n
u,v and k ∈ R.

(ii) R(A+B) = R(A) +R(B), R(kA) = kR(A)
for any A,B ∈ Qm×n

u,v and k ∈ R.
(iii) R(AB) = R(A)R(B) for any A ∈ Qm×n

u,v

and B ∈ Qn×p
u,v .

III. GENERAL SOLUTIONS OF THE GENERALIZED
SYLVESTER MATRIX EQUATION

In this section, we investigate Problem 1. From now on, we
are given A ∈ Qm×a

u,v , B ∈ Qb×p
u,v , C ∈ Qm×a

u,v , D ∈ Qb×p
u,v ,

and E ∈ Qm×p
u,v . In order to find the general solutions of

Eq. (2), the following lemma will be used in a calculation.

Lemma 8. For any X ∈ Qa×b
u,v , we have

Vc(Γ1(X))
Vc(Γ2(X))
Vc(Γ3(X))
Vc(Γ4(X))

 = Mu,v Vc(Γ1(X)), (8)

where Mu,v =


I4ab

Ib ⊗N ⊗ Ia
Ib ⊗K ⊗ Ia
Ib ⊗ T ⊗ Ia

 ∈ R16ab×4ab.

Here, N =
(
e42 ue41 − e44 − ue43

)
,

K =
(
e43 e44 ve41 ve42

)
, and

T =
(
e44 ue43 − ve42 − uve41

)
,∈ R4×4.

Proof: A direct computations reveals that

Vc(Γ2(X)) =



u col1(X2)
col1(X1)

−u col1(X4)
− col1(X3)

...
u colb(X2)
colb(X1)

−u colb(X4)
− colb(X3)



=



0 uIa 0 0 . . . 0 0 0 0
Ia 0 0 0 . . . 0 0 0 0
0 0 0 −uIa . . . 0 0 0 0
0 0 −Ia 0 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 0 uIa 0 0
0 0 0 0 . . . Ia 0 0 0
0 0 0 0 . . . 0 0 0 −uIa
0 0 0 0 . . . 0 0 −Ia 0



×



col1(X1)
col1(X2)
col1(X3)
col1(X4)

...
colb(X1)
colb(X2)
colb(X3)
colb(X4)


= Ib ⊗

[(
e42 ue41 −e44 −ue43

)
⊗ Ia

]
Vc(Γ1(X))

= (Ib ⊗N ⊗ Ia)Vc(Γ1(X)). (9)

Similarly, we obtain

Vc(Γ3(X))

= Ib ⊗
[(
e43 e44 ve41 ve42

)
⊗ Ia

]
Vc(Γ1(X))

= (Ib ⊗K ⊗ Ia)Vc(Γ1(X)) (10)

and

Vc(Γ4(X))

= Ib ⊗
[(
e44 ue43 −ve42 −uve41

)
⊗ In

]
Vc(Γ1(X))

= (Ib ⊗ T ⊗ Ia)Vc(Γ1(X)). (11)

From Eqs. (9), (10) and (11), we arrive at Eq. (8).

Theorem 9. Consider Eq. (2). Let us denote

F =
(
Γ1(B)T ⊗R(A)

)
+
(
Γ1(D)T ⊗R(C)

)
. (12)

Then Eq. (2) is consistent if and only if the following rank
condition holds:

rank[FMu,v Vc(Γ1(E))] = rank[FMu,v]. (13)

In both consistent and inconsistent cases, we have the
following:
(i) Problem 1 has the general exact/LS solutions repre-

sented by

Vc(Γ1(X))

= (FMu,v)
† Vc(Γ1(E))

+
[
I4mp − (FMu,v)

†(FMu,v)
]
w, (14)

where w ∈ R4mp is arbitrary.
(ii) Among the general solutions (14), the minimal-norm

one is given by

Vc(Γ1(X)) = (FMu,v)
† Vc(Γ1(E)). (15)

(iii) Problem 1 has a unique exact/LS solution given by (15)
if FMu,v is of full-column rank.

Proof: From Eqs. (2) and (7), we consider the associated
norm-error

∥AXB + CXD − E∥ = ∥Γ1(AXB + CXD − E)∥ .
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Now, Lemma 6 and Proposition 7 imply that

Γ1(AXB + CXD − E)

= Γ1(AXB) + Γ1(CXD)− Γ1(E)

= R(A)R(X)Γ1(B) +R(C)R(X)Γ1(D)− Γ1(E)

= Vc [R(A)R(X)Γ1(B) +R(C)R(X)Γ1(D)− Γ1(E)]

=
[(
Γ1(B)T ⊗R(A)

)
+
(
Γ1(D)T ⊗R(C)

)]
Vc (R(X))

−Vc(Γ1(E)).

Using Lemma 8, we obtain

∥AXB + CXD − E∥
= ∥F Vc (R(X))−Vc(Γ1(E))∥
= ∥FMu,v Vc(Γ1(X))−Vc(Γ1(E))∥.

Thus, the matrix equation (2) is equivalent to a real linear
system

FMu,v Vc(Γ1(X)) = Vc(Γ1(E)). (16)

According to Lemma 5, the system (16) is consistent if and
only if the rank condition (13) holds. In both consistent and
inconsistent cases, the same lemma allows us to express the
formula of the general exact/LS solution to be Eq. (14). The
statements (ii) and (iii) now follow from Lemma 5.

IV. SPECIFIC SOLUTIONS OF THE GENERALIZED
SYLVESTER MATRIX EQUATION

In this section, we investigate Problems 2-4. Indeed,
we would like to find imaginary (LS) solutions, real (LS)
solutions, and solutions closet to a given matrix. The next
lemma provides a real-vector representation of a generalized
quaternion matrix.

Lemma 10. Suppose X = X2i+X3j+X4k ∈ Qa×b
u,v where

X2, X3, X4 ∈ Ra×b. Then

Vc(Γ1(X)) = KVc

X2

X3

X4

 ,

where

K = Ib ⊗ Ja ∈ R4ab×3ab and

Ja =
(
e42 e43 e44

)
⊗ Ia ∈ R4a×3a.

Proof: A direct computations reveals that

Vc(Γ1(X)) =



col1(0)
col1(X2)
col1(X3)
col1(X4)

...
colb(0)
colb(X2)
colb(X3)
colb(X4)



=



0 0 0 . . . 0 0 0
Ia 0 0 . . . 0 0 0
0 Ia 0 . . . 0 0 0
0 0 Ia . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 0 0
0 0 0 . . . Ia 0 0
0 0 0 . . . 0 Ia 0
0 0 0 . . . 0 0 Ia



×



col1(X2)
col1(X3)
col1(X4)

...
colb(X2)
colb(X3)
colb(X4)


= Ib ⊗

[(
e42 e43 e44

)
⊗ Ia

]
Vc

X2

X3

X4


= (Ib ⊗ Ja)Vc

X2

X3

X4

 = KVc

X2

X3

X4

 .

Theorem 11. Consider Eq. (2). Let us denote F as in Eq.
(12). Then Eq. (2) is consistent if and only if

rank[FMu,vK Vc(Γ1(E))] = rank[FMu,vK].

Moreover,
(i) Problem 2 has the imaginary-part exact/LS solutions

X = X2i+X3j +X4k expressed as

Vc

X2

X3

X4


= (FMu,vK)† Vc(Γ1(E))

+
[
I4mp − (FMu,vK)†(FMu,vK)

]
w, (17)

where w ∈ R4mp is arbitrary.
(ii) The minimal-norm exact/LS solution (17) is given by

same formula:

Vc

X2

X3

X4

 = (FMu,vK)† Vc(Γ1(E)). (18)

(iii) Problem 2 has a unique exact/LS solution given by the
formula (18) if FMu,vK is of full-column rank.

Proof: From the proof Theorem 9 and Lemma 10, we
obtain

∥AXB + CXD − E∥
= ∥FMu,v Vc(Γ1(X))−Vc(Γ1(E))∥

=

∥∥∥∥∥∥∥∥FMu,v Vc


0
X2

X3

X4

−Vc(Γ1(E))

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥FMu,vKVc

X2

X3

X4

−Vc(Γ1(E))

∥∥∥∥∥∥ .
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Thus, Eq. (2) is equivalent to a real linear system

FMu,vKVc

X2

X3

X4

 = Vc(Γ1(E)). (19)

By Lemma 5, the Eq. (19) is consistent if and only if

rank[FMu,vK Vc(Γ1(E))] = rank[FMu,vK].

The same lemma implies that the matrix equation (19) has
the general exact/LS solutions

Vc

X2

X3

X4


= (FMu,vK)† Vc(Γ1(E))

+
[
I4mp − (FMu,vK)†(FMu,vK)

]
w,

where w ∈ R4mp is arbitrary. The statements (ii) and (iii)
now follow from Lemma 5.

The next lemma will be used in a calculation involving
Problem 3.

Lemma 12. For any X ∈ Ra×b, we have

Vc(Γ1(X)) = K̃Vc(X)

where K̃ = Ib ⊗ e41 ⊗ Ia ∈ R4ab×ab.

Proof: Since X = X + 0i+ 0j + 0k, we have

Vc(Γ1(X)) =



col1(X)
col1(0)
col1(0)
col1(0)

...
colb(X)
colb(0)
colb(0)
colb(0)



=



Ia . . . 0
0 . . . 0
0 . . . 0
0 . . . 0
...

. . .
...

0 . . . Ia
0 . . . 0
0 . . . 0
0 . . . 0



col1(X)
...

colb(X)



= (Ib ⊗ e41 ⊗ Ia)Vc(X)

= K̃Vc(X).

Theorem 13. Consider Eq. (2). Let us denote F as in Eq.
(12). Then Eq. (2) is consistent if and only if

rank[FMu,vK̃ Vc(Γ1(E))] = rank[FMu,vK̃].

Morever,
(i) Problem 3 has the real exact/LS solutions X ∈ Ra×b

expressed as

Vc(X)

= (FMu,vK̃)† Vc(Γ1(E))

+
[
I4mp − (FMu,vK̃)†(FMu,vK̃)

]
y, (20)

where y ∈ R16bp is an arbitrary vector.
(ii) The minimal-norm exact/LS solution (20) is given by the

same formula:

Vc(X) = (FMu,vK̃)† Vc(Γ1(E)). (21)

(iii) Problem 3 has a unique exact/LS solution given by the
formula (21) if FMu,vK̃ is of full-column rank.

Proof: Since X = X+0i+0j+0k and from the proof
Theorem 9 and Lemma 12, we obtain

∥AXB + CXD − E∥
= ∥FMu,v Vc(Γ1(X))−Vc(Γ1(E))∥

=

∥∥∥∥∥∥∥∥FMu,v Vc


X1

0
0
0

−Vc(Γ1(E))

∥∥∥∥∥∥∥∥
=

∥∥∥FMu,vK̃Vc(X)−Vc(Γ1(E))
∥∥∥ .

Thus, Eq. (2) is equivalent to a real linear system

FMu,vK̃Vc(Γ1(X)) = Vc(Γ1(E)). (22)

By Lemma 5, Eq. (22) is consistent if and only if

rank[FMu,vK̃ Vc(Γ1(E))] = rank[FMu,vK̃].

The assertions (i)− (iii) now follow from Lemma 5.
Now, we investigate Problem 4.

Theorem 14. Consider Eq. (2). Let Y ∈ Qa×b
u,v be given.

(i) Problem 4.1 has the solution X = Y + Z ∈ Qn×p
u,v ,

where Z is the general exact/LS solution of the associ-
ated matrix equation

AZB + CZD = E − (AY B + CY D). (23)

(ii) Problem 4.2 has the solution X = Y + Z, where Z is
the imaginary-part exact/LS solution of Eq. (23).

(iii) Problem 4.3 has the solution X = Y + Z, where Z is
the real exact/LS solution of Eq. (23).

Proof: Denote Ě = E− (AY B+CY D). Let us denote
by GS the set of general exact/LS solutions of the equation
AXB + CXD = E. Consider the following error

AXB + CXD − E

= AXB + CXD − E −AY B

− CY D +AY B + CY D

= A(X − Y )B + C(X − Y )D

− E +AY B + CY D

= AZB + CZD − Ě. (24)

By letting Z = X − Y , we have that the Problem 4.1 is
equivalent to the following minimization

min
X∈GS

∥X − Y ∥ = min
∥AXB+CXD−E∥ = min

∥X − Y ∥

= min
∥AXB+CXD−E∥ = min

∥Z∥

= min
∥AZB+CZD−Ě∥ = min

∥Z∥ .

Similarly, we obtain the statements (ii) and (iii).
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V. SYLVESTER AND STEIN MATRIX EQUATIONS, AND
QUATERNIONIC MATRIX EQUATIONS

The generalized Sylvester equation (2) includes the fol-
lowing special cases.

Corollary 15. Consider the Sylvester matrix equation

AX +XD = E (25)

in an unknown X ∈ Qa×b
u,v . Here, the matrices A ∈

Qm×a
u,v , D ∈ Qb×p

u,v , and E ∈ Qm×p
u,v are given. Then the

conclusions of Theorems 9, 11, 13, and 14 hold, where the
matrix F is given by

F =
(
(e41)

T ⊗ Ib ⊗R(A)
)
+
(
Γ1(D)T ⊗ I4a

)
. (26)

Proof: We set B = Ib and C = Ia in those theorems.
Note that Γ1(Ib) = e41 ⊗ Ib. So, the matrix F in (12) is
reduced to (26).

In the next corollary, we consider the Stein matrix equa-
tion.

Corollary 16. Consider the Stein matrix equation

AXB +X = E

in an unknown X ∈ Qn×p
u,v . Here, A ∈ Qm×a

u,v , B ∈ Qb×p
u,v ,

and E ∈ Qm×p
u,v are given. Then the conclusions of Theorems

9, 11, 13, and 14 hold, where the matrix F is given by

F =
(
Γ1(B)T ⊗R(A)

)
+
(
(e41)

T ⊗ I4ab
)
.

Proof: We set C = Ia and D = Ib in those theorems.

In particular when u = v = −1, the previous results
in Sections III and IV become those for matrices over the
Hamilton quaternions Q.

Corollary 17. Consider the matrix equation

AXB + CXD = E,

where A,C ∈ Qm×a, B,D ∈ Qp×b, and E ∈ Qm×p are
given. Then the conclusions of Theorems 9, 11, 13, and 14
hold, where the matrix Mu,v is given explicitly by

M−1,−1 =


I4ab

Ib ⊗ N̂

Ib ⊗ K̂

Ib ⊗ T̂

 ∈ R16ab×4ab

and

N̂ =


0 −Ia 0 0
Ia 0 0 0
0 0 0 Ia
0 0 −Ia 0

 ,

K̂ =


0 0 −Ia 0
0 0 0 −Ia
Ia 0 0 0
0 Ia 0 0

 ,

T̂ =


0 0 0 −Ia
0 0 Ia 0
0 −Ia 0 0
Ia 0 0 0

 .

Proof: Set u = v = −1 in those theorems. The
conclusions of Theorems 9, 11, and 13 were investigated in
[22].

VI. NUMERICAL EXAMPLES

In this section, we provide numerical examples to illustrate
our results.

Example 18. Consider the generalized Sylvester matrix
equation AXB + CXD = E over the split quaternions
(i.e., (u, v) = (−1, 1)), where

A =
(
1 −j + 2k

)
1×2

, C =
(
i− j − k 2

)
1×2

,

B =

(
j − k
3− i

)
2×1

, D =

(
3k

2− j

)
2×1

,

E =
(
−2 + i− 4j + k

)
1×1

.

Then we have

R(A) =


1 0 0 0 0 −1 0 2
0 0 1 0 0 2 0 1
0 −1 0 2 1 0 0 0
0 2 0 1 0 0 1 0

 ,

R(C) =


2 0 −1 0 −1 0 −1 0
1 0 0 2 −1 0 1 0
−1 0 −1 0 0 2 −1 0
−1 0 1 0 1 0 0 0

 ,

Γ1(B)T =
(
0 3 0 −1 1 0 −1 0

)
,

Γ1(D)T =
(
0 2 0 0 0 −1 3 0

)
,

Γ1(E) =
(
−2 1 −4 1

)T
,

and

F =
(
Γ1(B)T ⊗R(A)

)
+

(
Γ1(D)T ⊗R(C)

)
.

We see that

rank [FM−1,1 Vc(Γ1(E))] = rank [FM−1,1] = 4,

thus Eq. (2) is consistent. According to Theorem 9, the
matrix equation has a minimal-norm solution, computed via
MATLAB as follows:

X =

(
0.0919 −0.0157
0.0815 0.1384

)
+

(
−0.0595 0.0449
0.1372 −0.0747

)
i

+

(
−0.1335 −0.0537
−0.0325 −0.0181

)
j +

(
0.0809 0.0804
−0.1514 −0.0696

)
k.

Example 19. Consider the generalized Sylvester matrix
equation AXB + CXD = E over the split quaternions
(i.e., (u, v) = (−1, 1)), where

A =

(
2i 1 + j

i− k 0

)
2×2

, C =

(
i+ 3k −k
1 + j 0

)
2×2

,

B =

(
1

−2j

)
2×1

, D =

(
−1
−k

)
2×1

, E =

(
−1
−2i

)
2×1

.
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Then we have

R(A) =



0 1 −2 0 0 1 0 0
0 0 −1 0 0 0 −1 0
2 0 0 1 0 0 0 −1
1 0 0 0 −1 0 0 0
0 1 0 0 0 1 −2 0
0 0 −1 0 0 0 −1 0
0 0 0 −1 2 0 0 1
−1 0 0 0 1 0 0 0


,

R(C) =



0 0 −1 0 0 0 3 −1
1 0 0 0 1 0 0 0
1 0 0 0 3 −1 0 0
0 0 1 0 0 0 −1 0
0 0 3 −1 0 0 −1 0
1 0 0 0 1 0 0 0
3 −1 0 0 1 0 0 0
0 0 −1 0 0 0 1 0


,

Γ1(B)T =
(
1 0 0 0 0 −2 0 0

)
,

Γ1(D)T =
(
−1 0 0 0 0 0 0 −1

)
,

Γ(E) =
(
−1 0 0 2 0 0 0 0

)T
,

and

F =
(
Γ1(B)T ⊗R(A)

)
+
(
Γ1(D)T ⊗R(C)

)
.

We see that

rank [FM−1,1K Vc(Γ1(E))] = 7 and

rank [FM−1,1S] = 6,

thus Eq. (2) is inconsistent. According to Theorem 11, the
matrix equation has a minimal-norm LS solution, computed
via MATLAB as follows:

X =

(
0.0139 −0.0765
−0.1781 0.0084

)
i+

(
0.0551 0.0575
0.0007 −0.3225

)
j

+

(
−0.2938 −0.3269
0.2865 −0.0352

)
k.

Example 20. Consider the matrix equation AXB+CXD =
E over the split quaternions, i.e., (u, v) = (−1, 1). Here, we
are given the matrices A,B,C,D,E as in Example 6.1, and
we will find a solution X closest to a given matrix

Y =

(
−i 1
0 j

)
.

We obtain

Ě = E − (AY B + CY D) =
(
1 + i+−3j

)
.

and

rank [FM−1,1 Vc(Γ1(Ě))] = rank [FM−1,1] = 4.

Using Theorem 14 and MATLAB, we obtain:

Z =

(
0.0329 0.0573
−0.0002 0.1340

)
+

(
0.0132 0.0298
0.1151 −0.0503

)
i

+

(
−0.0260 −0.0834
−0.0462 −0.0356

)
j +

(
0.0609 0.0406
−0.0197 0.0325

)
k.

Thus, we get the desire exact solution X = Z + Y :

X =

(
0.0329 1.0573
−0.0002 0.1340

)
+

(
−0.9868 0.0298
0.1151 −0.0503

)
i

+

(
−0.0260 −0.0834
−0.0462 0.9644

)
j +

(
0.0609 0.0406
−0.0197 0.0325

)
k.

VII. GRADIENT-DESCENT ITERATIVE (GDI) ALGORITHM
FOR THE ASSOCIATED LINEAR SYSTEM

From the discussion in Section VII, we see that the LS
solution of Eq. (2) is equivalent to a real linear system (16).
In order to resolve this system, we utilize a technique for
enhancing the gradient descent optimization, as described
in [27]. The core concept is to reduce the residual error
∥FMu,v Vc(Γ1(X))−Vc(Γ1(E))∥ at each interation. Con-
sequently, we derive the following gradient-descent iterative
(GDI) algorithm:

Algorithm 1: GDI Algorithm for system (16)

A ∈ Qm×a
u,v ,B ∈ Qb×p

u,v ,C ∈ Qm×a
u,v , D ∈ Qb×p

u,v ,
and E ∈ Qm×p

u,v . ;
Set i = 0. Choose x(0) ∈ R4ab. Compute
Â = FMu,v , f̂ = Vc(Γ1(E)), P̂ = ÂÂT .

for i = 0, 1, 2, 3, . . . do
r(i) = f̂ − Âx(i);
if ∥r(i)∥ ⩽ ϵ then

x(i) is a solution; break;
else

mi = P̂ r(i);
αi+1 = mT

i r
(i)/(2mT

i mi) ;
x(i+1) = x(i) + αi+1Â

T r(i) ;
end
update i;

end

We implement all simulations using MATLAB R2017a
on the same PC environment: AMD A9-9425 RADEON R5
@3.10GHz with RAM 4 GB.

Example 21. Let (u, v) = (−1,−1). Consider the general-
ized Sylvester matrix equation AXB + CXD = E, where
A,B,C,D,E ∈ Q2×2

u,v are given randomly as follows:

A =

(
0.8147 0.1270
0.9058 0.9134

)
+

(
0.6324 0.2785
0.0975 0.5469

)
i

+

(
0.9575 0.1576
0.9649 0.9706

)
j +

(
0.9572 0.8003
0.4854 0.1419

)
k,

B =

(
0.4218 0.7922
0.9157 0.9595

)
+

(
0.6557 0.8491
0.0357 0.9340

)
i

+

(
0.6787 0.7431
0.7577 0.3922

)
j +

(
0.6555 0.7060
0.1712 0.0318

)
k,

C =

(
0.2769 0.0971
0.0462 0.8235

)
+

(
0.6948 0.9502
0.3171 0.0344

)
i

+

(
0.4387 0.7655
0.3816 0.7952

)
j +

(
0.1869 0.4456
0.4898 0.6463

)
k,

D =

(
0.7094 0.2760
0.7547 0.6797

)
+

(
0.6551 0.1190
0.1626 0.4984

)
i

+

(
0.9597 0.5853
0.3404 0.2238

)
j +

(
0.7513 0.5060
0.2551 0.6991

)
k,

E =

(
0.8909 0.5472
0.9593 0.1386

)
+

(
0.1493 0.8407
0.2575 0.2543

)
i

+

(
0.8143 0.9293
0.2435 0.3500

)
j +

(
0.1966 0.6160
0.2511 0.4733

)
k.
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We would like to find an LS solution

X = X1 +X2i+X3j +X4k.

We apply Algorithm 1 with an intial guess X(0) is a zero
matrix and a tolerance error ϵ = 0.005. The relative error
∥r(i)∥ at each iteration is illustrate in Figure 1.

Fig. 1: The relative error at each iteration for Example 20.

It turns out that Algorithm 1 requires 267 iterations and
an approximate times of 0.161798 seconds to arrive a desire
solution.

X(267) =

(
0.4155 −0.0476
−0.2244 −0.1754

)
+

(
−0.0331 −0.7911
0.1011 0.3502

)
i

+

(
−0.3315 0.5111
0.0976 −0.6186

)
j +

(
−0.0077 0.5213
−0.0355 −0.3490

)
k.

VIII. APPLICATION TO COLOR IMAGE PROCESSING

In color image processing, a color image can be repre-
sented by a vector. According to RGB color model, the color
information of a pixel can be represented as

w = 0 + wri+ wgj + wbk ∈ Q,

where wr, wg, wb are the red/green/blue component of the
color pixel, respectively. We can see that wr, wg and wb

are the imaginary part of w. In [28], the general image
degradation model is provided by

Aw + b = f, (27)

where f is the observation, w is the desired image, b is the
additive noise. The matrix A acts as a linear operator related
to the task. For example, A is the an identity matrix for the
image denoising task, A is a projection matrix for image
inpainting, A is the blur matrix related to the blur kernel for
the image deblurring task. Our task is to restore the desired
image w from the observation f .

Note that Eq. (27) can be written as Aw = f−b. Thus, Eq.
(27) is a special case of Eq. (2) when E = f−b, B = I1, C =
0 and X = w. We can solve for a minimal-norm least-

squares solution solution by using Theorem 11 as follows:

Vc

wr

wg

wb

 = (FM−1,−1K)† Vc(Γ1(f − b))

=
[(
Γ1(I1)

T ⊗R(A)
)
M−1,−1K

]†
×Vc(Γ1(f − b))

=
[(
(e14)

T ⊗R(A)
)
M−1,−1Ja

]†
×Vc(Γ1(f − b)). (28)

We then get wr, wg and wb due to the injectivity of the
operator Vc.

We summarize the process of image deblurring as in the
following algorithm.

Algorithm 2: Algorithm for image deblurring
(1) Import an original image.
(2) Blur the image using the option in MATLAB

R2019b, namely,
f = fspecial(’motion’, len, theta)

where the parameters len and theta indicate the
length and the angle of motion in degrees in a
counter-clockwise direction, respectively.

(3) Determine the value of A from image bluring.
(4) Calculate w according to Eq. (28).

Note that to simplify computations on a small-scale com-
puter, an original image could be resized to a smaller
dimension.

Example 22. Given an original color image of size 100×100
pixels. In order to reduce time and memory for computations,
we modify the pixels of the image to a smaller dimension
80 × 80, as in Fig. 2. We represent the image Fig. 2 as
a 3-tuples of vector w = (wr, wg, wb). Then, we blur this
image using len = 10 and theta = 40 to get the image f =
(fr, fg, fb) as in Fig. 3. The image Fig. 2 can be recovered as
the minimal-norm least-squares solution of the model (27).
Indeed, by using (28), we get the restored image as shown
in Fig. 4.

Fig. 2: The (80× 80)-pixels image.
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Fig. 3: The blurred image.

Fig. 4: The restored image.

Example 23. Given an original color image of size 350×350
pixels. In order to reduce time and memory for compu-
tations, we modify the pixels of the image to a smaller
dimension 80 × 80, as in Fig. 5. We apply the command
fspecial(’motion’, len, theta) where len = 30 and theta = 11
to disturb Fig. 5. So, we get the blurred image as in Fig. 6.
From the color model (27), we can restore the image Fig.
7 as the minimal-norm least-squares solution given by (28).
Indeed, the restored image is shown in Fig. 7.

Fig. 5: The (80× 80)-pixels image.

Fig. 6: The blurred image.

Fig. 7: The restored image.

Example 24. Given an original color image of size 3000×
3000 pixels. In order to reduce time and memory for com-
putations, we modify the pixels of the image to a smaller
dimension 80 × 80, as in Fig. 8. We apply the command
fspecial(’motion’, len, theta) to disturb Fig. 8. So, we get the
blurred image as in Fig. 9 and Fig. 10. The image Fig. 2 can
be recovered as the minimal-norm least-squares solution of
the model (27).

Fig. 8: The (80× 80)-pixels image.
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Fig. 9: The blurred image using len = 10 and theta = 40.

Fig. 10: The restored image.

Fig. 11: The blurred image using len = 30 and theta = 11.

Fig. 12: The restored image.

TABLE I: The LS errors of the restored the image and
CPU times

∥fr − wr∥2 ∥fr − wr∥2 ∥fr − wr∥2 CPU times
Fig. 4 6.3029e-13 6.2912e-13 2.0018e-13 8549.952s
Fig. 7 2.2437e-12 3.5017e-13 4.2708e-13 7937.218s

Fig. 10 3.7830e-13 5.2965e-13 5.4408e-13 8584.374s
Fig. 12 4.7741e-13 7.0398e-13 5.3691e-13 8404.744s

IX. CONCLUSION

We investigate Problems 1-4 to find general and spe-
cific exact/LS solutions of the generalized Sylvester matrix
equation (2). All matrices considered here are rectangular
compatible matrices over a generalized quaternion. We apply
the techniques of real representations and vectorizations
of generalized quaternion matrices to reduce the matrix
equation (2) to a real linear system. Thus, we can extract
a solvability criterion for the matrix equation. Moreover, we
can derive formulas of the (minimal-norm) exact/LS solution,
the (minimal-norm) pure-imaginary exact/LS solution, the
(minimal-norm) real exact/LS solution, and the (minimal-
norm) exact/LS solution closet to a given matrix. Such
solutions are expressed in terms of Kronecker products and
Moore-Penrose inverses. This work includes the studies of
Sylvester and Stein equations over generalized quaternions,
quaternionic matrix equations, and particularly the work
[22]. Moreover, we propose gradient-descent iterative (GDI)
algorithm to solve the linear system associated with Eq. (2).
In color image processing, we can apply our theory to get
an algorithm for image deblurring.
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