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Abstract—A new iterative algorithm has been proposed in
this study for the efficient solution of the absolute value equation
(AVE). Through an equivalent transformation, the AVE has
been restructured into a two-by-two block nonlinear equation,
which led to the development of our new iteration method.
The convergence characteristics and optimal parameters of this
approach have been analyzed, and new convergence conditions,
differing from previous findings, have been introduced. Numer-
ical experiments have demonstrated that the proposed strategy
is both feasible and effective.

Index Terms—Iterative algorithm, Absolute value equation,
Convergence, Optimal parameters.

I. INTRODUCTION

IN this study, we investigate the absolute value equation
(AVE):

Ax− |x| = b, (1)

where A = (aij) ∈ Rn×n, b ∈ Rn, and let |x| represent
the absolute values of the components of vector x ∈ Rn,
that is |x| = (|x1|, |x2|, . . . , |xn|)T . The AVE of the form
(1) has garnered significant scholarly interest due to its wide
applicability across various domains. In practical and engi-
neering contexts, AVE plays an important role, particularly in
economic management, which facilitates the optimization of
resource allocation and enhances decision-making processes.
Within the mathematical discipline, the relevance of the AVE
extends to several areas, such as linear programming prob-
lems [2–5]. Furthermore, the AVE is closely related to the
computation of basis pursuit problems and the determination
of generalized inverses [7, 8].

The generalized form of the equation (1) is

Ax+B |x| = b, (2)
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where B ∈ Rn×n. In [2], the generalized absolute value
equation (GAVE) is introduced within a broader theoretical
framework, leading to a series of scholarly inquiries doc-
umented in [3, 9]. The AVE is demonstrated to be trans-
formable into an equivalent linear complementarity problem
(LCP), as indicated in [3, 6]. In [10], Bai proposed a modular
matrix splitting iterative method for solving the LCP, and
subsequent research has extended Bai’s method with various
modulus-based iteration techniques [11]. Due to its equiv-
alence with the LCP, which establishes a direct connection
between the two problems, the AVE is also classified as an
NP-hard problem.

Unique solvability criteria for both the specific AVE (1)
and its generalized version (2) have been established [2, 3].
Notably, a demonstration by Mangasarian and Meyer [3]
establishes the uniqueness of the solution to the AVE (1)
for all constant vectors, provided that the smallest singular
value of the corresponding matrix exceeds 1. Recently, the
application of feasible iterative methods to obtain numerical
solutions for the AVE (1) has been a focus of academic
research. For instance, Mangasarian introduced a variant
of the Newton method in [1] for solving the AVE, which
generates a sequence defined by

(A−H(x(k)))x(k+1) = b, (3)

where H(x) = diag(sign(x)), x ∈ Rn. Additionally,
Mangasarian provides the following sufficient conditions for
the generalized Newton iterations (3) to converge linearly:

Proposition 1.1[1] Suppose
∥∥A−1

∥∥ < 1
4 and H(x(k)) ̸= 0.

Under these conditions, for any vector b, the AVE presented
in (1) possesses a unique solution, and the generalized
Newton iteration method described in (3) is defined, this
iteration method converges linearly from any initial starting
point x(0) to the unique solution of the AVE (1).

In addition, a multitude of numerical techniques has been
developed to address both linear and nonlinear matrix equa-
tions. Because the AVE (1) exhibits weak nonlinearity, the
Picard method has attracted significant interest. Inspired by
[12], Salkuyeh proposed an iterative approach, termed the
Picard-HSS method to address the AVE [13]. Subsequently,
Miao et al. [14] introduced an iterative framework, referred
to as the Picard-SHSS approach, specifically designed for the
AVE (1). Guo [15] combined the HSS and SHSS techniques
by incorporating them into internal iterative loops, creat-
ing two residual update frameworks to address the GAVE.
The SOR-like method, as highlighted in studies [16, 17],
has been extensively used across various problem areas in
recent times. Dong et al. [18] introduced the NSOR, a
two-parameter technique, as an efficient solution for the
AVE. Recently, the solution of the AVE has emerged as
a focal point of ongoing research, evolving into an active
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area of investigation with an increasing number of scholars
contributing to the field [19–21].

In this study, the AVE (1) is transformed into a non-
linear system. An iterative solution for matrix A satisfying
the condition 0 <

∥∥A−1
∥∥ <

√
2/2 is developed, and the

effectiveness of the proposed approach is demonstrated. To
validate the feasibility of the suggested technique, various
numerical examples are provided.

Hereafter, the study is structured as follows: Section 2
presents the necessary notation and relevant lemmas. In
Section 3, we introduce a novel approach for solving the
AVE and examine its convergence. Sections 4 and 5 present
the experimental results and conclusions.

II. PRELIMINARIES

In the following, we present relevant notations and pre-
liminary results that will be utilized subsequently.

Let Rn×n represent all n × n real matrices and Rn

represent all n × 1 real matrices. For each i = 1,2, . . . ,n,
the i − th component of vector x ∈ Rn is represented by
xi. The notation In represents the identity matrix, and the
symbol ’I’ denotes the n-dimensional identity matrix. The
sign(x) function generates a vector whose components are
determined as follows: for a real number m is satisfied

sign(m) =


1, if m > 0,
0, if m = 0,
−1, if m < 0.

(4)

H(x) expresses the same meaning as (3), representing the
diagonal matrix related to sign(x). If C = (cij) ∈ Rm×n

satisfies cij ≥ 0(cij > 0) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n,
then the matrix C is said to be non-negative (positive). For
the matrix G = (gij) ∈ Rn×n, ∥G∥ represents the spectral
norm defined by ∥G∥ = max {∥Gx∥ : x ∈ Rn, ∥x∥ = 1},
where ∥G∥ is the 2-norm, and without special explanation,
∥·∥ is expressed as the 2-norm.

The following conclusions contribute to the research pre-
sented in this study.

Proposition 2.1[3] Let A is a real matrix of n dimensions,
if
∥∥A−1

∥∥ < 1, then the AVE in (1) has a unique solution for
any b ∈ Rn.

Lemma 2.1 For any vector u ∈ Rn, v ∈ Rn, the following
results hold:

(1) ∥|u| − |v|∥ ≤ ∥u− v∥;
(2) if 0 ≤ u ≤ v, then ∥u∥ ≤ ∥v∥ ;
(3) if u ≤ v and M is a nonnegative matrix, then Mu ≤

Mv.
Lemma 2.2 For any matrix P ∈ Rn×n, Q ∈ Rn×n, if

0 ≤ P ≤ Q, then ∥P∥ ≤ ∥Q∥.

III. NEW ALGORITHM

Let y = |x|, consider the equivalent of the AVE (1) to the
following equation {

Ax− y = b,

− |x|+ y = 0,
(5)

that is

K̃z =

(
A −I

−Ĥ I

)(
x
y

)
=

(
b
0

)
= ζ̃, (6)

where z = [x,y]T , Ĥ = H(x) = diag(sign(x)), ζ̃ = [b,0]T ,
x ∈ Rn. Let

K̃ =

(
A −I

−Ĥ I

)
=

(
A 0

−Ĥ αI + I

)
−
(
0 I
0 αI

)
, (7)

where α given positive constant. Consider(
A 0

−Ĥ αI + I

)(
x
y

)
=

(
0 I
0 αI

)(
x
y

)
+

(
b
0

)
, (8)

that is(
A 0

−Ĥ αI + I

)(
x(k+1)

y(k+1)

)
=

(
0 I
0 αI

)(
x(k)

y(k)

)
+

(
b
0

)
.

(9)
According to (9), Algorithm 3.1 is obtained as follows:

Algorithm 3.1
Given that A is an invertible real matrix of size Rn×n,

and b is a given n×1-dimensional matrix, select two starting
vectors x(0) and y(0) from Rn, apply (10) iteratively. This
will determine x(k+1) and y(k+1), continue this process until
the infinite sequence

{
(x(k),y(k))

}+∞
k=0

is convergent,x(k+1) = A−1(y(k) + b),

y(k+1) =
1

1 + α
(Ĥx(k+1) + αy(k)),

(10)

where α is a positive constant, k = 0,1,2, . . .

Here, we will validate the core conclusion regarding the
convergence of the iterative process of Algorithm 3.1. We
first define the iteration error: (x∗,y∗) is a pair of solutions
satisfying (6), and (x(k),y(k)) is the sequence pair of each
iteration of algorithm 3.1, where the iteration error is ex-
pressed as exk = x∗ − x(k) and eyk = y∗ − y(k).

Theorem 3.1 Assume A ∈ Rn×n be non-singular matrix,

defines
∥∥A−1

∥∥ = β and εk+1 =

(
exk+1

eyk+1

)
, if

0 < β <

√
2

2
(11)

and

0 < α <
(1− β)(1 +

√
1− β2)

β2
− 1, (12)

the inequality ∥∥εk+1
∥∥ ≤

∥∥εk∥∥ (13)

is ture for k = 0,1,2, . . . .
Proof. We first havex∗ = A−1(y∗ + b),

y∗ =
1

1 + α
(Ĥx∗ + αy∗),

(14)

where (x∗,y∗) is a pair of solutions that satisfy (6), by
subtracting (10) from (14), we can obtain

exk+1 = A−1eyk, (15)

and

eyk+1 =
1

1 + α
(Ĥexk+1 + αeyk). (16)
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From (15), we have∥∥exk+1

∥∥ =
∥∥A−1eyk

∥∥
≤
∥∥A−1

∥∥ ∥eyk∥
= β ∥eyk∥ . (17)

According to (16) and Lemma 2.1, we obtain∥∥eyk+1

∥∥ =

∥∥∥∥ 1

1 + α
(Ĥexk+1 + αeyk)

∥∥∥∥
≤
∥∥∥∥ 1

1 + α
Ĥexk+1

∥∥∥∥+ ∥∥∥∥ α

1 + α
eyk

∥∥∥∥
=

1

1 + α

∥∥∥Ĥexk+1

∥∥∥+ α

1 + α
∥eyk∥

≤ 1

1 + α

∥∥∥Ĥ∥∥∥∥∥exk+1

∥∥+ α

1 + α
∥eyk∥

≤ 1

1 + α

∥∥exk+1

∥∥+ α

1 + α
∥eyk∥ . (18)

We get(
1 0

− 1
1+α 1

)(∥∥exk+1

∥∥∥∥eyk+1

∥∥) ≤
(
0 β
0 α

1+α

)(
∥exk∥
∥eyk∥

)
. (19)

Further, let

M =

(
1 0
1

1+α 1

)
> 0, (20)

and then let’s consider it(∥∥exk+1

∥∥∥∥eyk+1

∥∥) ≤ W

(
∥exk∥
∥eyk∥

)
, (21)

where

W =

(
1 0

− 1
1+α 1

)−1(
0 β
0 α

1+α

)
= M

(
0 β
0 α

1+α

)
=

(
0 β

0 α+β
1+α

)
, (22)

we can obtain

WTW =

(
0 0

β α+β
1+α

)(
0 β

0 α+β
1+α

)
=

(
0 0

0 β2 +
(

α+β
1+α

)2) . (23)

Also, according to the Proposition 2.1, we consider

∥W∥ < 1 ⇔ β2 +

(
α+ β

1 + α

)2

< 1

⇔ β2α2 + 2(β2 + β − 1)α+ 2β2 − 1 < 0.
(24)

If 0 < β < 1, then the two roots of the quadratic function is
first given by the following equation

α1 =
1

2β2

[
h(β) +

√
h2(β)− 4β2(2β2 − 1)

]
, (25)

α2 =
1

2β2

[
h(β)−

√
h2(β)− 4β2(2β2 − 1)

]
, (26)

where h(β) = 2(1− β − β2).
Obviously, we can obtain

α1 =
(1− β)(1 +

√
1− β2)

β2
− 1, (27)

α2 =
(1− β)(1−

√
1− β2)

β2
− 1, (28)

then, if 0 < β < 1, clearly α2 < 0, this is a contradictory
inequality.

We now need to discuss the range of α1, given the range
of β established above.

Situation 1: If 0 < α1 ≤ 1, that is

0 <
(1− β)(1 +

√
1− β2)

β2
− 1 ≤ 1, (29)

we get
3

5
≤ β <

√
2

2
. (30)

Therefore, if 3
5 ≤ β <

√
2
2 and 0 < α <

(1−β)(1+
√

1−β2)

β2 −1,
it is ture that ∥W∥ < 1.

Situation 2: If α1 > 1, that is

(1− β)(1 +
√

1− β2)

β2
− 1 > 1, (31)

we get

0 < β <
3

5
. (32)

Therefore, if 0 < β < 3
5 and 0 < α <

(1−β)(1+
√

1−β2)

β2 − 1,
it is ture that ∥W∥ < 1.

Combining these two situations, if 0 < β <
√
2
2 and 0 <

α < α1 , we obtain ∥W∥ < 1.
Clearly, if the stipulations of Theorem 3.1 are fulfilled,

then

0 ≤
∥∥εk∥∥ ≤ W

∥∥εk−1
∥∥ ≤ · · · ≤ W k

∥∥ε0∥∥ . (33)

□
If ∥W∥ < 1, we can get lim

k→∞

∥∥εk∥∥ = 0, lim
k→∞

∥exk∥ = 0

and lim
k→∞

∥eyk∥ = 0 is given by the definition of the 2-norm.

Based on Proposition 2.1, the sequence
{
x(k)

}
, derived from

(10), will converge to the unique solution of the AVE (1).
The description has been completed.

IV. NUMERICAL EXPERIMENTS

Within this segment, we conduct computational trials to
evaluate the effectiveness of Algorithm 3.1 in numerically
deriving solutions for the AVE (1). We compare Algorithm
3.1 with the SOR-like method from [21] based on the itera-
tion count (IT), the CPU processing time (in seconds), and
the residual value, where αopt and ωopt denote the optimal
parameter values for synthesis, which are not unique. Among
the two test methods, the zero vector was selected as the
universal starting point for each algorithm. The termination
of the algorithm is triggered when the RES drops below
10−8 or upon the iteration count exceeds 1000, where ‘RES’
represents the relative residual, that is

RES =

∥∥Axk −
∣∣xk
∣∣− b

∥∥
∥b∥

. (34)

The complete set of numerical experiments was conducted on
a personal computer with a 2.11 GHz Intel Core i5-10210U
CPU and 16 GB of RAM, using MATLAB R2016b.

Example 4.1 Assume the AVE as presented in (1) to be

A = tridiag(−1,4, − 1) ∈ Rn×n,x∗ = (−1,1, − 1,1, . . . )T ,
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TABLE I: Example 4.1 comparison of numerical experiments

methed n 4000 5000 6000 7000 8000
IT 15 15 15 15 15

SOR-like CPU 0.675436 1.021782 1.395192 1.919032 2.427777
RES 5.127488e-09 5.127915e-09 5.128200e-09 5.128403e-09 5.128556e-09
ωopt 1 1 1 1 1

IT 15 15 15 15 15

Algorithm 3.1 CPU 0.251175 0.384724 0.573639 0.747655 0.972328
RES 8.220838e-09 8.221484e-09 8.221914e-09 8.222222e-09 8.222452e-09
αopt 0.03 0.03 0.03 0.03 0.03

TABLE II: Example 4.2 comparison of numerical experiments

methed n 20 40 60 80 100
IT 12 11 11 11 11

SOR-like CPU 0.025303 0.102873 0.411722 1.507890 3.398229
RES 9.408834e-09 7.446191e-09 7.848378e-09 8.049501e-09 8.170183e-09
ωopt 1.02 1.04 1.04 1.04 1.04

IT 14 14 15 15 15

Algorithm 3.1 CPU 0.018020 0.051341 0.239054 0.619304 1.660181
RES 8.478112e-09 9.771834e-09 7.726037e-09 7.886917e-09 7.983477e-09
αopt 0.03 0.03 0.06 0.06 0.06

and b = Ax∗ − |x∗| in [16].
Table I presents the numerical results of the two test meth-

ods, including IT, CPU, and RES. Under the corresponding
experimental optimal parameters, both test methods exhibit
rapid convergence. The numerical results in Table I indicate
that Algorithm 3.1 demonstrates superior computational ef-
ficiency compared to the SOR-like method, as evidenced by
lower CPU usage and residual values.

Example 4.2 Assume the AVE as presented in (1) to be
A = Â+ 4In2 and

Â =



−Sn −In 0 · · · 0 0
−In −Sn −In · · · 0 0
0 −In −Sn · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −Sn −In
0 0 0 · · · −In −Sn


∈ Rn2×n2

,

where

Sn = tridiag(−1,4, − 1)

=



4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −1
0 0 0 · · · −1 4


∈ Rn×n,

and b = ones(n2,1).
Table II presents the numerical results obtained from the

two test methods. In this case, the optimal experimental
parameters were selected following a comprehensive analysis
of the numerical results. The data in Table II indicate that
both methods converge quickly. Although Algorithm 3.1
requires more iterative steps, it achieves a higher convergence
rate. Overall, the performance of Algorithm 3.1 is superior
to that of the SOR-like method.

Example 4.3 Assume the AVE as presented in (1) to be

A = Ã+ δIn2(δ > 0) and

Ã =



−Zn −In 0 · · · 0 0
−In −Zn −In · · · 0 0
0 −In −Zn · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −Zn −In
0 0 0 · · · −In −Zn


∈ Rn2×n2

,

where

Zn = tridiag(−1,8, − 1)

=



8 −1 0 · · · 0 0
−1 8 −1 · · · 0 0
0 −1 8 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 8 −1
0 0 0 · · · −1 8


∈ Rn×n,

x∗ = (−1,1, − 1, . . . )T ∈ Rn2

and b = Ax∗ − |x∗| ∈ Rn2

.
As shown in Table I, the numerical results of Example 4.3

are presented in Tables III and IV, these results are consistent
with those reported in Tables I and II. Under specific
conditions, compared to the SOR-like method, Algorithm
3.1 demonstrates exceptional computational performance,
enhancing time efficiency by nearly fifty percent.

V. CONCLUSIONS

In this paper, AVE (1) has been restructured into a non-
linear equation represented by 2-by-2 block matrix, and sub-
sequently simplified to derive a new iterative algorithm. The
convergence conditions for the proposed iterative method
are examined in detail. Through numerical simulations, we
illustrate the efficacy of our method, particularly in com-
parison to conventional methods like the SOR-like method.
Furthermore, the selection of specific optimal parameters in
theory, as well as the application of the proposed algorithm
to practical problems, warrants further study.
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