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An Introduction to 2-Domination Integrity of
Graphs

Christin Sherly J and Uma Samundesvari K

Abstract—The vulnerability concept in communication net-
work plays a prominent role when there is a disruption
in the network. Several graph parameters exist to measure
the vulnerability of a communication network. This paper
introduces a new measure of graph vulnerability: 2-domination
integrity of graphs. An algorithm to compute 2-domination
integrity of a graph and a realization result is developed. A
few bounds relating 2-domination integrity with other graph
parameters are determined. Furthermore, new theorems, and
results in the context of several graphs are obtained.

Index Terms—dominating set, integrity, 2-dominating set, 2-
domination integrity

I. INTRODUCTION

Graph Theory offers a framework for modeling the com-
munication networks as graph structures. Domination in
graphs is a renowned branch of graph theory. 2-domination
is one of the important domination parameter which was
first put up by Fink and Jacobson [5]. Any communication
network may be represented as a graph, with the vertices as
the stations (processors), and the edges as the connections
between the vertices. For network designers to rebuild a com-
munication network once certain stations or communication
links collapse, network stability is a crucial consideration.
The idea of Domination Integrity was proposed by Sun-
dareswaran and Swaminathan [13]. Connected domination
integrity [7] and paired domination integrity [1] are new
vulnerability parameters developed for measuring the vul-
nerability of communication networks. Double domination
integrity was introduced in [4] and it finds an application in
PMU placement problem [3]. A new vulnerability parameter
2-domination integrity of graphs is introduced in this atricle
by combining the concept of 2-domination and integrity. An
algorithm to find 2-domination integrity, a realization result
and the 2-domination integrity of certain graphs are obtained
in this article.

Lemma 1.1: [13] For any graph G,1(G) < DI(G)

II. 2-DOMINATION INTEGRITY OF A GRAPH

Definition 2.1: [5] A dominating set S of a graph G is a
2-dominating set of G if every vertex of V' — S is adjacent
to at least two vertices of S. The smallest cardinality among
all the 2-dominating sets of G is the 2-domination number
of G which is represented as v24(G). A 2-dominating set of
cardinality vy24(G) is called a ~o4-set of G.

Definition 2.2: The 2-domination integrity of a connected
graph G is defined by DI2(G) = min{|S|+m(G —S) : S
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is a 2-dominating set of G} and m(G — S) is the maximum
order of the component of G — S.

Definition 2.3: A 2-dominating set S of G is called a 2-
domination integrity set or DI5-set of G if |S|+m(G — S)

is minimum.
U1

V2 Us

U3 Vg
Fig. 1. A graph G with DI>(G) =4

S = {v1,v2,v4} is a DIy-set of G. So, |S| =3, m(G—-S5) =
1. Hence, DI5(G) =4

Theorem 2.4: Every pendant vertex of a graph G belongs
to the DIs-set of G.

Proof: Let v be an end vertex of a graph G. Let S
represents a DI, set of G. To prove: v belongs to .S. Suppose
v ¢ S. Since S is a DIs-set of G and v € V — S, v must be
adjacent to at least two vertices of S, which implies that v
cannot be an end vertex of G. This leads to a contradiction.
Therefore, v € S. |

Observation 2.5: DIs-set need not be unique. (i. e) For a
graph G, there may exist more than one DIs-set.
Result 2.6: DI>(H) need not be necessarily less than or

equal to DI5(G) for any subgraph H of a graph G
C1 C2

C4 C3
Fig. 2. Cycle Cy

C1 C2

Ca
Fig. 3. A Subgraph of Cy
DIy(C4) = 3 and DI»(Cy — ¢e) = 4 for any edge e of Cy

III. REALIZATION RESULT

Theorem 3.1: For any pair a, b of integers with 2 < a < b,
there is a connected graph G of order b such that DI>(G) =
a.

Proof: Let C : uy,uz,us,us be a Cycle of length 4.
A graph G in Fig. 4 is got from C4 by adding vertices
21,29, ..., Za—3 and connecting each z;(1 < i < a — 3) with
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ug and also adding the new vertex us and adjoining us with

Ul and us.
zZ
zZ2 3

Z1

Uyg
Fig. 4. Graph G with DI3(G) = a

Let S = {z1, 22, ..., 24—3} be the set of all end vertices of
G. By Theorem 2.4, S belongs to the DIs-set of G. But S is
not a 2-domination integrity set of G so that DI5(G) > a—3.
From the structure of the graph, it is obvious that S; =
SU{uy,us} is a 2-dominating set of G with |S1| = a—3+2
and m(G—S1) = 1. Thus, |S1|+m(G—S1) is minimum for
the above mentioned set S;. Hence, S is a DI»-set of G.
Therefore, DI5(G) = |S1|+m(G—S1) = a—3+2+1=a. W

IV. ALGORITHM TO FIND DI5(G)

Algorithm 1 Finding 2-Domination Integrity of a Simple
Connected Graph

Require: A graph G(n > 2) without isolated vertices.
Ensure: DI>(G)
1: Step:1 Determine all the 2-dominating sets of G
2: Step:2 Finding DI5(G)=min{|S|+m(G—S5): Sis a 2-
dominating set of G} where m(G — S) is the maximum
order of the component of G — S

3: if S is a yo4-set of G and m(G — S) = 0 then
4: DIQ(G) = ’}/Qd(G)

5: else

6: DI(G) = min {|S| + m(G — S)}

7: end if

V. 2-DOMINATION INTEGRITY OF STANDARD GRAPHS

Observation 5.1: For n > 3,
DL(p) =4 22 i even
e+l if misodd

Observation 5.2:
Cycle C), is
if mis even

5+1
il if nis odd
Theorem 5.3: For n > 3, DI2(K,,) = n.
Proof: Let S = {z,y} C V(K,,) be the 2-dominating

set of K. Then, K,, — S is connected with one compo-
nent and so m(K, —S) = n —|S|. Hence DIy(K,) =

For n > 3, the 2-domination integrity of

min{|S| + m(K, — S) S is a 2-dominating set of
K.} =min{|S|+n -S|} =n. [ |

Theorem 5.4: For n > 2, the 2-domination integrity of
Star Ky, is 1 +n

Proof: Let x be the central vertex of the Star. Let X =

{u1,us,...,un} be the set of pendant vertices of K7 ,. Let
S be the DIy-set of K ,. By the Theorem 2.4, X C S.
Obviously, S = X itself is a DDI-set of K;, with with
|S| = n. K1, —S contains only one isolated vertex z. Thus,
m(K1 ,—S) = 1. Therefore, DDI (K1 ) = |S|+m (K1 n—
S) =n+ 1. This completes the proof. |

Theorem 5.5: For m,n > 2, th 2-domination integrity
of Complete bipartite graph K,,, is DIs(Kpn) =
min{m,n} +1

Proof: Let V (Kpyn) = Vi(Knn) U Va(Knn)

and Vi (Kppn) = {un,ue,ccum}ty Va(Kmn) =
{v1,va, ..., vn }; where m,n > 2.
Case: i) m<n
S = {u1,u2,...,up} is a 2-dominating set of K, , with
minimum cardinality. Then |S| = m = min{m,n}. Remov-
ing the vertices of S from K, , results in a disconnected
graph containing n isolated vertices and so m (K, , — S) =
1. If X is any other 2-dominating set of K, ,,, then | X| +

m (K —S) > |S|+m (K, —5). Thus, S is the DIs-
set of K., . Hence, DI5(Ky, ) = |S| + m(Kmn — S) =
min{m,n} + 1.

Case: (ii) m >n

The proof is as in Case:(i) |

VI. BOUNDS ON 2-DOMINATION INTEGRITY OF GRAPHS

Observation 6.1: A minimum of two vertices always be-
long to the 2-dominating set .S since every vertex in V — S
should be adjacent to at least two vertices of S. (i.e) |\S| > 2.

Theorem 6.2: For n > 2, I(G) < DI(G) < DI3(G).

Proof: We have v(G) < 724(G).
Hence, DI(G) < DI(G)
Using Lemma 1.1,
I(G) < DI(G) < DI,(G). u
Theorem 6.3: DI2(G) > v24(G)
Proof: Let G be a connected graph of order n > 2.
Let S be a DI set of G. Hence |S| > 724(G) and m(G —
S) > 0. Thus, DI3(G) = min{|S| + m(G — S) : S is
a 2-dominating set of G} > min {724(G) + 0} = 724(G).
Therefore, DI5(G) > 724 [ ]
Theorem 6.4: For n > 2, DI5(G) > x(G)
Proof: Let G be a connected graph with n > 2.

Since I(G) > x(G) and using Theorem 6.3,

DIL(G) > x(G). [ ]

Remark 6.5: The bound obtained for DI5(G) in the above
Theorem is reachable. For example, the double domination
integrity of Complete graph K, is DI5(K,) = x(K,). By
the given Theorem 5.3, DoI(K,,) = n. Since all the vertices
of K, are adjacent to each other, x(K,) = n.

VII. 2-DOMINATION INTEGRITY OF SOME SPECIAL
GRAPHS

Definition 7.1: [2] A collection of ¢-triangles with a vertex
in common is called the friendship graph C’ét).
Theorem 7.2: For n > 2, DIQ(C’:g")) =n+2.
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Proof: Let 03") be a friendship graph consisting of n
triangles. Denote the central vertex of the graph as x and for
eachi=1,2,...,n, let u; and v; be the other two vertices of
the 4t triangle for 1 <4 < n. Let S denotes a 2-dominating
set of Cén). Inorder for the set S to be minimal, it needs to
contain the central vertex z, and S must contain one of the
vertices u; or v; from each triangle. Therefore S contains x
and one vertex among each pair {u;,v;} for i = 1,2,3, ...
As aresult, |S| =n+1 and in this case m (C’én) - S) =1

and so |S|+m (C:g") — S') is minimum for the above set S.
Thus, S is the DI5-set of C?(,"). Therefore, DI (Cé”)) =

|S| +m(C’§n) —S) =n+2.

Definition 7.3: [5] Bistar graph B,, , is obtained by ad-
joining m pendent edges to one end and n pendent edges to
other end of Path . B,, , contains m + n + 2 vertices.

Theorem 7.4: DIy (Bp,.n) = m+n+ 2.

Proof: Let c1,ca, ..., ¢y, and dy,do, ..., d, represent the
m and n pendant vertices of B,, ,, respectively. Let « and y
be the two vertices to which ¢y, cs, ..., ¢, and dy,do, ..., d,
are attached respectively. Let S be the DIy set of By, .
So, |S] > m + n. Clearly, one vertex among x and y
belong to S. Hence S = {c1,ca, ..., Cm, d1,da, ...;dp, 2} OF
S ={e1,ca, ..., Cm,d1,da, ..., dp, y}. These two sets are DIy

sets of B, since in both the cases, m (B, , —S) = 1.
Thus, |S| = m+n+ 1 and m (B, , — S) = 1. Therefore,
DI> (Bpmy) =S|+ m By —S)=m+n+2. [ |

Definition 7.5: [2] The flower graph Fl, is acquired by
adjoining every pendant vertex of the helm graph H,, to the
central vertex.

Theorem 7.6: DI5(Fl,) =n+2.

Proof: Let x be the central vertex of F'l,, which is adja-
cent to all the remaining 2n vertices of F'l,,. Let x1, x2, ..., Tp,
represent the inner rim vertices and y1,¥yo, ..., Yy, represent
the outer vertices. Let S be the 794 set of Fl,. Since z
is adjacent to all the remaining vertices in F'l,,, choose x
in S ensuring that every vertex in V — FJ, is adjacent to
x. Also, all the yis(i = 1,2,3,...,n) are adjacent to the
corresponding x}s. By the structure of the graph, there are
four possible ways to choose S.

Case:(i) Let S = {z,z,;/1 <i < n}. In this case, V(Fi, —
S) = {y;/1 <i<n} and so m(Fl, — S) = 1. Hence,
|S| +m(Fl, —S) =n+2.

Case:(ii) Suppose S = {z,y;/1 <i <n}. Then |S| =n+1
and m(Fl, —S) = n which implies that |S|+m(Fi,—S5) =
2n + 1.

Case:(iii) S can be chosen as {z,z;_1,y;} for i =
1,2,3,...,n. Then |S| = n+1 and m(Fl,, —S) = 1. Hence
|S| +m(Fl, —S)=n+2.

Among the above three cases, we get |S| + m(Fl, — 5) =
n+2 in case: (i) and (iii) and |S|+m(Fl, —S) = 2n+1 in
case:(ii). Hence DIy (Fl,) = |S|+m(Fi, —S)=n+2. 1

Definition 7.7: [12] Coconut tree C'T(m,n) is acquired
by adjoining m pendant edges with an end vertex of Path
P,.

Theorem 7.8: For m,n > 2,

5+m+1
2l +m+1

if niseven

DI, (CT(m,n)) = { if nis odd

Proof: Let S be the 2-dominating set of CT'(m,n).
CT(m,n) consists of m pendant vertices each connected
to an end vertex of path P,. By Theorem 2.4, m pendant
vertices and the other end vertex of Path P,, must belong to
S.

Case: (i) n is odd.
Choose every alternate vertex starting from the end vertex
of the path P, continuing until all alternative vertices are
selected. This selection results in L vertices. Hence S
contains m pendant vertices and the selected ”TH vertices. In
this case, |S| = 2 + m+1 and m((CT(m,n)) — S) = 1.
Thus, S is the DDI-set of G. Therefore, DI (CT(m,n)) =
2l m+ L
Case:(ii) n is even.
As in Case:(i), select alternate vertices, but now we ob-
tain g + m + 1 vertices. Thus, |S| = % +m + 1 and
m((CT(m,n)) —S) = 1. Therefore, the result is as desired.
|
Definition 7.9: [10] The n-Sunlet graph is a graph which
is obtained by attaching m-pendant edges to the Cycle C,,
and it is denoted by S,,. S, contains 2n vertices.

Theorem 7.10: For n-Sunlet graph S,,,

7 if n=4
n , B
4(§) —&-12 if m=0(mod3)
DI(Sn) =94 (222 ) 14 if n=1(mod3)
2 ("= 45 if n=2(mod3)

Proof: Let S be the DIs-set of S,. Since S,, con-
tains 2n vertices of which n vertices are pendant vertices,
|S| > n. Let uy, us, ..., u, be the n vertices of the Cycle and
v1, Ve, ..., Uy denote the n pendant vertices corresponding to
Uy, Ug, ..., Uy respectively.

Case:(i) n =4

S = {v1,v2,v3,v4,u2,us}. Then |S| =4+ 2 = 6 and so
m(Sy, —S) = 1. Hence, DI5(S,) = 7.

Case:(ii) n = 0(mod3)

S contains the n pendant vertices and one middle ver-
tex for every three vertices of the Cycle (i.e) wug;—1 for
i =1,2,3,.... Thus, S = {v1, V2, ..., Un, U2, Us, ..., Up—1 }-
Then |S| = n —&—g = 4?” Here, m(S, — S) = 2. Thus,
DI, (S,) = 4?” + 2.

Case: (iii) n = 1(mod3) and n > 4

S contains the n pendant vertices. In addition to that,
one middle vertex from every three vertices of Cy-
cle and the nt" vertex belong to S; (i. e, wusg;—1
for ¢ = 1,2,3,... and u,) which implies S =
{1, U2y ooy Un, U2, U5, U, UT1y ooy Up—2, Up }. Then |S| =

21
n + 2. Thus, DIy(S,) =

1
n+”T+1:4

n—1

4 +4.
Case: (iv) n = 2(mod3)

1
S = {v1,v2, ..., Up, Us, Us, ..., Up }. Then | S| = n—l—n *

+2

and m(S, — S) = 2. Hence, DI5(S,) =4 (n ; 2) +5m
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VIII. 2-DOMINATION INTEGRITY OF GRAPHS OBTAINED
BY VERTEX SWITCHING OF SOME GRAPHS

Definition 8.1: [8] For a finite undirected graph G(V, E)
and v € V, the vertex switching of G by v is the graph G*
which is obtained from G by removing all edges incident to
v and adding edges which are not adjacent to v.

Theorem 8.2: Let C,, be a Cycle of order n > 3 and let
v be an arbitrary vertex of C,,. Then the value of DIy(CY)
is given by

5 if n=4
DL(CYy=(n if n=5,6

n

{3J+4 if n>7

Proof: Let v,uq,us9,...,u,—1 be the vertices of the
Cycle C,,. Consider the graph C, which results from
switching the vertex v.

Case:(i) n =4

Let S = {u1,v,u3} be a 2-dominating set of C§. The
graph Cj — S consists of a single isolated vertex, so
m(C§ — S) = 1. Therefore, S is the DI5-set of C}, and we
have: DI>(CY) = 4.

Case:(ii) n =5

Consider the sets S; = {v,uj,us} and Sy =
{u1,us,uz,us}, both of which are DlIs-sets of
CY since |Si| + m(C¢ — S1) = 3+ 2 = 5 and
|SQ| + m(C’g — SQ) =4+ 1 = 5. Thus, DIQ(C%J) =5
Case:(iii) n =6

S = {v,u1,us,us} is the only DIy-set of C¥ since
|S| +m(C¢ — S) =5+ 1 = 6 which is minimum. Hence
DI, (C¥) =6

Case:(iv) n > 6

By the Theorem 2.4, {uj,u,—1} is part of any DI5-set of
Cg. Additionally, since v is adjacent to usz, us, ..., Up—1, We
can include v in the DIy-set of C! as well. For 7 < n <10
and n = 12, the specific DI,-sets are provided in the table
below.

TABLE I
D1I5-SETS S1 OF C}

n S1 [Si] | m(C? —S1) | DI>(CY)
7 {v,u1,us3, ue} 4 2 6

8 {v,u1,us,ur} 4 2 6

9 U, UL, Ud, UG, US } 5 2 7

10 U, UL, Ud, UT, UQ } 5 2 7

12 | {v,u1,u4,ur,ug,u11} | 6 2 8

TABLE 11
D1I5-SETS S2 OF C

n Sa |5'2‘ m(CY — S2) DI>(CY)
7 {v,u1,us,us, us} 5 1 6
8 {v,u1,us3,us,uy} 5 1 6
9 {v, u1,us, us, u7, ug 6 1 7
10 {v,u1,us, us, uy, ug 6 1 7
12 [ {v,u1,us,us, ur,ug,uir} | 7 1 8

For choosing the DIs-sets of C for n = 11 and n > 12,
we consider the following cases.

Sub Case:x(a) When n = 0(mod3) and n > 12,
let S = {V, U1, Un—1,Uq, U7, U1Qy ey Up—3}  OF
S = {U,ul7un_1,U4,U77U10, ...,’Um_g}

Sub  Case:(b) When n = 1(mod3), let

S = {V, U1, Up—1, U, U7, U0y ooy Up—3 } or
S = {v,u1, Up—1,Usgy U7, ULQy ey Up—2 }

Sub Case:(c) When n = 2(mod3), let
{v, ur, Un—1,us,u7,u10, ..., Un—3}

In all the three subcases, |S| = {%J +2and m(CY—S) = 2.

Therefore, for all n > 7, DI5(CP) = LgJ +4 [ ]
Definition 8.3: [6] The Bull graph is a graph with 5
vertices and 5 edges consisting of a triangle with two disjoint
pendant edges.
Theorem 8.4: Let G be the graph obtained by switching
an arbitrary vertex of the Bull graph. Then DI5(G) = 4.
Proof: Let u1 and uo be the pendant vertices of the Bull

graph. The structure of the Bull graph is shown in the Fig.5
Uy Uz

S =

us Ugq

Us

Fig. 5. Bull graph

Case:(i) Switch vertex uq

Uy

Uy

u3

Fig. 6. Graph obtained by switching the vertex w1 of Bull graph

In this case, the set S = {uj, uz, uy4} forms the
DIs-set of G as it minimizes |S| + m(G — S). Therefore,
DI, (G)=3+1=4.

Case: (ii) Switch vertex us

Switching us results in a graph with a structure similar to
the one obtained in Case: (7). Here, the DIz-set of G is
S = {uy, us, us} with |[S| = 3 and m(G — S5) = 1.
Therefore DI>(G) =4

Case: (iii) Switch vertices ug or uy

Switching either us or us in the Bull graph leads to a
disconnected graph.

Case:(iv) Switch vertex us

Switching wus transforms the Bull graph into a Cycle Cs.
Hence, by the corresponding theorem, DI5(G) = 4.

In all the above four cases, we find that DI>(G) = 4.
Therefore, the theorem is proven. [ |

Definition 8.5: [11] The n-Pan graph is obtained by con-
necting a Cycle C,, with a singleton graph by an edge.
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Theorem 8.6: Let G be the graph obtained by switching
the pendant vertex of the n-Pan graph. Then

n if n=3,4
g+3 if n=0(mod 3);n#6
DI (G) = n;1+4 if n=1(mod 3);n #7
-2
n3 +4 if n=2(mod 3);n#8

Proof: Let uq, uo, us, ..., 4, be the vertices of the Cycle
C,, and let = be the pendant vertex of the n-Pan graph. Let
G be the graph that results from switching the vertex x.
Case:(i) n = 3.
Clearly, S = {uz,u3} is a 2-dominating set of G with
minimum cardinality. In this case, G — S contains two
isolated vertices. Thus, |[S| = 2 and m(G — S) = 1.
Hence |S| + m(G — S) is minimized. Therefore,
DI,(G) =|S|+m(G—-5)=3
Case:(ii) n = 4. Obviously, S = {ug, us,us} is a DIs-set
of G since |S| + m(G — S) is minimized. Therefore,
DI (G) =4
Case:(iii) n = 0(mod 3);n > 3
Subcase:(a) For n = 6, there are two possible DIs-sets:
S1 = {x,ug, uq,ug} with |S1] = 4 and m(G — S1) = 1.
Sy = {x,u17u4} with |SQ| = 3 and m(G — 52) = 2. Both
sets give |S1]| + m(G — S1) = |Se] + m(G — S) = 5.
Hence, DI>(G) =5
Subcase:(b) 7 > 6. For n > 6, choose
S = {z,ui,ug,ur,u10,...,u,—2} as a 2-dominating
set of G. The order of S is |S| = %4—1 and G — §

. n .
consists of — components, each of order 2 (i.e., a Path

P,). Therefore, m(G — S) = 2 and the minimized value is
n
|S|+m(G—S) = 3 + 3. Thus, S becomes the DI5-set of

G. Hence DI, (G) = |S| 4+ m(G — S) = g 43

Case:(iv) n 1(mod 3);n > 4. There are

two ways of choosing the DIs-sets of G.
S1 = {z,uy, ug, wr, U109y ooy Up—2} or Sy =
{z,u1, uq, uz, 10, ..., un—1}. Then |S1| = n- + 2
and G — S; contains components 013 order
1 and 2, so m(G - S) = 2.  Therefore,
1Sy +m(G=5y) = "L poqo =Ly (1)
Now SS9 = {Z, Up, U2, U5, U8, UL, -y Up—2}. SO,
|S2] = n_l + 2 and m(G — S3) = 2. Thus,
1S +m(G = S2) = "= 44 o (2). From (1)
and (2), |S1| +m(G — S1) = |S2| + m(G — Sz). Thus, both
Sy and Sy are DIy-sets of G. Hence DI5(G) = ity

Case:(v) n = 2(mod 3);n > 5

Subcase:(a) n = 5. S1 = {z,u,us} and So = {x,u1,us}
are 2-dominating sets of G with minimum cardinality.
The largest component in G — S; and G — S, are a
Path P,. Both sets give m(G — S1) = m(G — S2) = 2
and |51| + m(G — Sl) = |SQ| + m(G — SQ) = 5. Now,
S3 = {ug,us,ug,us} is a 2-dominating set of G with
|S3] = 4; which is greater than S; and S3. But G — S3
contains two isolated vertices and so m(G —S3) = 1. Hence
|S3| + m(G — S3) = 5. Thus Sy, Sy and S3 are DDI-sets
of G. Therefore, DI5(G) =5

Subcase:(b) n > 5. For n > 5, there are two ways of choos-
ing the DIy-set of G. Sy = {x, u1, uyg, w7, u10, .., Up—1} OF
Sy = {z,u1, ug, uz, u1p, .., Up_o } with |S1| = n%—lﬂ and
m(G — Sl) =2 AISO, Sg = {%,Ug,’u,5, ug, 11, U14, ,un}
with |So] = 222 4+ 2 and m(G — S) = 2
o other 2-dominating set S3 of G satisfies
|53| + m(G - 53) < |Sl| + m(G — Sl) and
|S3]+m(G—S3) < |Sa2|+m(G—Sz). Thus, both S; and Sy
are DIy-sets of G. Hence DI5(G) = |S1| + m(G — S1) =
1Ss] +m(G — Sp) = 22 4. n

Definition 8.7: [9] The Double Fan graph D f,, is obtained
by P, + 2K,

Theorem 8.8: DIy(Df¥) =

4 for n=3
{gJ%—él for 4<n<6

514

where u is an apex vertex of Double Fan graph.

Proof: Let vq,ve,...,v, represent the vertices of the
Path P, and let x and u be the apex vertices of D f,. Let
the vertex u be switched to form the graph Df".

Case:(i)n = 3.

Clearly, S = {x,u,v2} is a 2-dominating set of D f3 with
the minimum cardinality. In this case, D f5' — S contains two
isolated vertices. Therefore, m(D f%—S) = 1. For any other
2-dominating set X of DfY, we have | X|+m(Df3}—X) >
|S|+m(Df3 —S). Thus, S is the DIs-set of D fi. Hence
DL(Dfiy=|S|+m(G—-S)=3+1=4.

Case: (ii) 4 < n <6.

We consider three subcases for n = 4, 5, 6 separately.
Subcase:(a) n = 4.

The 2-dominating sets of D fj' with cardinality 4 are S; =
{z,u,v1,v3}, So = {x,u,v9,v4} and S5 = {x,u,va,v3}.
For each of these sets, V(D fi — S1) = {ve,va}, V(Dfi —
Sg) = {1]1,1}3} and V(Dfo — 53) = {U17U4}. ThllS,
m(Dff — S1) = m(Df — $5) = m(Df} — Ss) = 1.
Hence |S1| + m(Dfjt — S1) = |Se| + m(Dfj — Sa) =
|S3| +m(Df}* — Ss) is minimized. Thus, S7, S and S are
D1Is-sets of D f}'. Therefore, DIo(Df}') =5

Subcase:(b) n = 5.

The unique DIy-set of D f2 is S = {x, u, va,v4} since there
does not exist any other DIy-set S; of D f that satisfies
the condition |S1| + m(Df¥ — S1) < |S| + m(Df¥ — S).
We have |S| = 4 and Dff — S contains three isolated
vertices vy, v3 and vs. Hence, m(D f¥ — S) = 1. Therefore
DI (Df¥)=|S|+m(Df¥ —S) =5.

Subcase:(c) n = 6.

We have S7 = {z,u,ve,vs} is a 2-dominating set of
Dfg with minimum cardinality. Now, D f§ — S; contains
two components: one of order 1 and other of order 2. So,
m(Dfg — S1) = 2. Hence |S1| + m(Df¥ — S1) = 6. Also,
So = {x, u, vy, vs, vs}, S3 = {x, u, vy, vy, vg} and
Sy = {z, u, vy, v4, vs} are 2-dominating sets of D f¥
with cardinality |S2| = |S3| = |S4| = 5. Then Df¥ — So,
Dfg—Ss and D f§ — Sy contain two isolated vertices. Thus,
m(Dfg — S2) = m(Df§ — S3) = m(Df§ — S1) = 1.
Hence |Sa| + m(Df¥ — S2) = |Ss| + m(Dfg — S3) =
|S4] +m(Df¥ — S4) = 6. Therefore, Sy, So, S3 and Sy are

forn > 6
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DIy-sets of Df§. Thus, DIo(Dfg) = 6.

Hence from all the above three subcases, we get
DIL(Df¥) = {%J tdford<n<6.

Case:(iii) n > 6.

When n = 0(mod 3), S can be chosen as {x,u,u;y1/i =
3m 4+ 1 for m = 0,1,2,..and i + 1 < n}. When
n = 1l(mod 3) and n = 2(mod 3), the DIy-set can be
chosen as either S = {x, u, up,u;11/i =3m+1 for m =
0,1,2,...and i +1 < n}or S = {z,u,up_1,u;41/i =
3m+1 form=0,1,2,..and i+ 1 < n}

From the above two subcases, |S| = [E-‘ +2and m(DfY—
S) = 2. Thus, the above described sets S form the DI5-set

of Dfy'. Hence, DI(Dfy) = |S|+m(Df—$) = | 5| +4

IX. CONCLUSION

This article introduces the concept of 2-domination in-
tegrity as a new measure of vulnerability in graphs. Also,
an algorithm to find DIy of a graph is developed. This
vulnerability parameter is determined for standard graphs and
for certain special graphs, friendship graph, bistar, flower and
coconut tree. Further, some theorems in determining the 2-
domination integrity of graphs obtained by vertex switching
of few graphs are included. Studying various graph vulnera-
bility parameters is of great significance to network designers
in order to construct a stable network where reconstruction
occurs even after the disruption.
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