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Abstract—The vulnerability concept in communication net-

work plays a prominent role when there is a disruption

in the network. Several graph parameters exist to measure

the vulnerability of a communication network. This paper

introduces a new measure of graph vulnerability: 2-domination

integrity of graphs. An algorithm to compute 2-domination

integrity of a graph and a realization result is developed. A

few bounds relating 2-domination integrity with other graph

parameters are determined. Furthermore, new theorems, and

results in the context of several graphs are obtained.

Index Terms—dominating set, integrity, 2-dominating set, 2-

domination integrity

I. INTRODUCTION

Graph Theory offers a framework for modeling the com-

munication networks as graph structures. Domination in

graphs is a renowned branch of graph theory. 2-domination

is one of the important domination parameter which was

first put up by Fink and Jacobson [5]. Any communication

network may be represented as a graph, with the vertices as

the stations (processors), and the edges as the connections

between the vertices. For network designers to rebuild a com-

munication network once certain stations or communication

links collapse, network stability is a crucial consideration.

The idea of Domination Integrity was proposed by Sun-

dareswaran and Swaminathan [13]. Connected domination

integrity [7] and paired domination integrity [1] are new

vulnerability parameters developed for measuring the vul-

nerability of communication networks. Double domination

integrity was introduced in [4] and it finds an application in

PMU placement problem [3]. A new vulnerability parameter

2-domination integrity of graphs is introduced in this atricle

by combining the concept of 2-domination and integrity. An

algorithm to find 2-domination integrity, a realization result

and the 2-domination integrity of certain graphs are obtained

in this article.

Lemma 1.1: [13] For any graph G, I(G) ≤ DI(G)

II. 2-DOMINATION INTEGRITY OF A GRAPH

Definition 2.1: [5] A dominating set S of a graph G is a

2-dominating set of G if every vertex of V − S is adjacent

to at least two vertices of S. The smallest cardinality among

all the 2-dominating sets of G is the 2-domination number

of G which is represented as γ2d(G). A 2-dominating set of

cardinality γ2d(G) is called a γ2d-set of G.

Definition 2.2: The 2-domination integrity of a connected

graph G is defined by DI2(G) = min{|S|+m(G− S) : S
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is a 2-dominating set of G} and m(G−S) is the maximum

order of the component of G− S.

Definition 2.3: A 2-dominating set S of G is called a 2-

domination integrity set or DI2-set of G if |S|+m(G− S)
is minimum.
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Fig. 1. A graph G with DI2(G) = 4

S = {v1, v2, v4} is a DI2-set of G. So, |S| = 3, m(G−S) =
1. Hence, DI2(G) = 4

Theorem 2.4: Every pendant vertex of a graph G belongs

to the DI2-set of G.

Proof: Let v be an end vertex of a graph G. Let S
represents a DI2 set of G. To prove: v belongs to S. Suppose

v /∈ S. Since S is a DI2-set of G and v ∈ V −S, v must be

adjacent to at least two vertices of S, which implies that v
cannot be an end vertex of G. This leads to a contradiction.

Therefore, v ∈ S.

Observation 2.5: DI2-set need not be unique. (i. e) For a

graph G, there may exist more than one DI2-set.

Result 2.6: DI2(H) need not be necessarily less than or

equal to DI2(G) for any subgraph H of a graph G
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Fig. 2. Cycle C4
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c4 c3
Fig. 3. A Subgraph of C4

DI2(C4) = 3 and DI2(C4 − e) = 4 for any edge e of C4

III. REALIZATION RESULT

Theorem 3.1: For any pair a, b of integers with 2 ≤ a ≤ b,
there is a connected graph G of order b such that DI2(G) =
a.

Proof: Let C : u1, u2, u3, u4 be a Cycle of length 4.

A graph G in Fig. 4 is got from C4 by adding vertices

z1, z2, ..., za−3 and connecting each zi(1 ≤ i ≤ a− 3) with
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u2 and also adding the new vertex u5 and adjoining u5 with

u1 and u3.
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Fig. 4. Graph G with DI2(G) = a

Let S = {z1, z2, ..., za−3} be the set of all end vertices of

G. By Theorem 2.4, S belongs to the DI2-set of G. But S is

not a 2-domination integrity set of G so that DI2(G) ≥ a−3.

From the structure of the graph, it is obvious that S1 =
S∪{u1, u3} is a 2-dominating set of G with |S1| = a−3+2
and m(G−S1) = 1. Thus, |S1|+m(G−S1) is minimum for

the above mentioned set S1. Hence, S1 is a DI2-set of G.

Therefore, DI2(G) = |S1|+m(G−S1) = a−3+2+1 = a.

IV. ALGORITHM TO FIND DI2(G)

Algorithm 1 Finding 2-Domination Integrity of a Simple

Connected Graph

Require: A graph G(n ≥ 2) without isolated vertices.

Ensure: DI2(G)
1: Step:1 Determine all the 2-dominating sets of G
2: Step:2 Finding DI2(G)=min{|S|+m(G−S): S is a 2-

dominating set of G} where m(G−S) is the maximum

order of the component of G− S
3: if S is a γ2d-set of G and m(G− S) = 0 then

4: DI2(G) = γ2d(G)
5: else

6: DI2(G) = min {|S|+m(G− S)}
7: end if

V. 2-DOMINATION INTEGRITY OF STANDARD GRAPHS

Observation 5.1: For n ≥ 3,

DI2(Pn) =

{

n
2 + 2 if n is even
n+1
2 + 1 if n is odd

Observation 5.2: For n ≥ 3, the 2-domination integrity of

Cycle Cn is
{

n
2 + 1 if n is even
n+1
2 + 1 if n is odd

Theorem 5.3: For n ≥ 3, DI2(Kn) = n.

Proof: Let S = {x, y} ⊆ V (Kn) be the 2-dominating

set of Kn. Then, Kn − S is connected with one compo-

nent and so m(Kn − S) = n − |S|. Hence DI2(Kn) =

min{|S| + m(Kn − S) : S is a 2-dominating set of

Kn} = min {|S|+ n− |S|} = n.

Theorem 5.4: For n ≥ 2, the 2-domination integrity of

Star K1,n is 1 + n
Proof: Let x be the central vertex of the Star. Let X =

{u1, u2, ..., un} be the set of pendant vertices of K1,n. Let

S be the DI2-set of K1,n. By the Theorem 2.4, X ⊆ S.

Obviously, S = X itself is a DDI-set of K1,n with with

|S| = n. K1,n−S contains only one isolated vertex x. Thus,

m(K1,n−S) = 1. Therefore, DDI(K1,n) = |S|+m(K1,n−
S) = n+ 1. This completes the proof.

Theorem 5.5: For m,n ≥ 2, th 2-domination integrity

of Complete bipartite graph Km,n is DI2(Km,n) =
min {m,n}+ 1

Proof: Let V (Km,n) = V1 (Km,n) ∪ V2 (Km,n)
and V1 (Km,n) = {u1, u2, ..., um}, V2 (Km,n) =
{v1, v2, ..., vn}; where m,n ≥ 2.

Case: (i) m ≤ n
S = {u1, u2, ..., um} is a 2-dominating set of Km,n with

minimum cardinality. Then |S| = m = min{m,n}. Remov-

ing the vertices of S from Km,n results in a disconnected

graph containing n isolated vertices and so m (Km,n − S) =
1. If X is any other 2-dominating set of Km,n, then |X| +
m (Km,n − S) > |S|+m (Km,n − S). Thus, S is the DI2-

set of Km,n. Hence, DI2(Km,n) = |S| +m(Km,n − S) =
min{m,n}+ 1.

Case: (ii) m ≥ n
The proof is as in Case:(i)

VI. BOUNDS ON 2-DOMINATION INTEGRITY OF GRAPHS

Observation 6.1: A minimum of two vertices always be-

long to the 2-dominating set S since every vertex in V − S
should be adjacent to at least two vertices of S. (i.e) |S| ≥ 2.

Theorem 6.2: For n ≥ 2, I(G) ≤ DI(G) ≤ DI2(G).
Proof: We have γ(G) ≤ γ2d(G).

Hence, DI(G) ≤ DI2(G)
Using Lemma 1.1,

I(G) ≤ DI(G) ≤ DI2(G).
Theorem 6.3: DI2(G) ≥ γ2d(G)

Proof: Let G be a connected graph of order n > 2.

Let S be a DI2 set of G. Hence |S| ≥ γ2d(G) and m(G−
S) ≥ 0. Thus, DI2(G) = min{|S| + m(G − S) : S is

a 2-dominating set of G} ≥ min {γ2d(G) + 0} = γ2d(G).
Therefore, DI2(G) ≥ γ2d.

Theorem 6.4: For n ≥ 2, DI2(G) ≥ χ(G)
Proof: Let G be a connected graph with n ≥ 2.

Since I(G) ≥ χ(G) and using Theorem 6.3,

DI2(G) ≥ χ(G).
Remark 6.5: The bound obtained for DI2(G) in the above

Theorem is reachable. For example, the double domination

integrity of Complete graph Kn is DI2(Kn) = χ(Kn). By

the given Theorem 5.3, D2I(Kn) = n. Since all the vertices

of Kn are adjacent to each other, χ(Kn) = n.

VII. 2-DOMINATION INTEGRITY OF SOME SPECIAL

GRAPHS

Definition 7.1: [2] A collection of t-triangles with a vertex

in common is called the friendship graph C
(t)
3 .

Theorem 7.2: For n ≥ 2, DI2(C
(n)
3 ) = n+ 2.
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Proof: Let C
(n)
3 be a friendship graph consisting of n

triangles. Denote the central vertex of the graph as x and for

each i = 1, 2, ..., n, let ui and vi be the other two vertices of

the ith triangle for 1 ≤ i ≤ n. Let S denotes a 2-dominating

set of C
(n)
3 . Inorder for the set S to be minimal, it needs to

contain the central vertex x, and S must contain one of the

vertices ui or vi from each triangle. Therefore S contains x
and one vertex among each pair {ui, vi} for i = 1, 2, 3, ...

As a result, |S| = n+1 and in this case m
(

C
(n)
3 − S

)

= 1

and so |S|+m
(

C
(n)
3 − S

)

is minimum for the above set S.

Thus, S is the DI2-set of C
(n)
3 . Therefore, DI2

(

C
(n)
3

)

=

|S|+m
(

C
(n)
3 − S

)

= n+ 2.

Definition 7.3: [5] Bistar graph Bm,n is obtained by ad-

joining m pendent edges to one end and n pendent edges to

other end of Path P2. Bm,n contains m+ n+ 2 vertices.

Theorem 7.4: DI2 (Bm,n) = m+ n+ 2.

Proof: Let c1, c2, ..., cm and d1, d2, ..., dn represent the

m and n pendant vertices of Bm,n respectively. Let x and y
be the two vertices to which c1, c2, ..., cm and d1, d2, ..., dn
are attached respectively. Let S be the DI2 set of Bm,n.

So, |S| ≥ m + n. Clearly, one vertex among x and y
belong to S. Hence S = {c1, c2, ..., cm, d1, d2, ..., dn, x} or

S = {c1, c2, ..., cm, d1, d2, ..., dn, y}. These two sets are DI2
sets of Bm,n since in both the cases, m (Bm,n − S) = 1.

Thus, |S| = m + n + 1 and m (Bm,n − S) = 1. Therefore,

DI2 (Bm,n) = |S|+m (Bm,n − S) = m+ n+ 2.

Definition 7.5: [2] The flower graph Fln is acquired by

adjoining every pendant vertex of the helm graph Hn to the

central vertex.

Theorem 7.6: DI2(Fln) = n+ 2.

Proof: Let x be the central vertex of Fln which is adja-

cent to all the remaining 2n vertices of Fln. Let x1, x2, ..., xn

represent the inner rim vertices and y1, y2, ..., yn represent

the outer vertices. Let S be the γ2d set of Fln. Since x
is adjacent to all the remaining vertices in Fln, choose x
in S ensuring that every vertex in V − Fln is adjacent to

x. Also, all the y′is(i = 1, 2, 3, ..., n) are adjacent to the

corresponding x′

is. By the structure of the graph, there are

four possible ways to choose S.

Case:(i) Let S = {x, xi/1 ≤ i ≤ n}. In this case, V (Fln −
S) = {yi/1 ≤ i ≤ n} and so m(Fln − S) = 1. Hence,

|S|+m(Fln − S) = n+ 2.

Case:(ii) Suppose S = {x, yi/1 ≤ i ≤ n}. Then |S| = n+1
and m(Fln−S) = n which implies that |S|+m(Fln−S) =
2n+ 1.

Case:(iii) S can be chosen as {x, xi−1, yi} for i =
1, 2, 3, ..., n. Then |S| = n+1 and m(Fln −S) = 1. Hence

|S|+m(Fln − S) = n+ 2.

Among the above three cases, we get |S|+m(Fln − S) =
n+2 in case: (i) and (iii) and |S|+m(Fln−S) = 2n+1 in

case:(ii). Hence DI2(Fln) = |S|+m(Fln − S) = n+ 2.

Definition 7.7: [12] Coconut tree CT (m,n) is acquired

by adjoining m pendant edges with an end vertex of Path

Pn.

Theorem 7.8: For m,n ≥ 2,

DI2 (CT (m,n)) =

{

n
2 +m+ 1 if n is even
n+1
2 +m+ 1 if n is odd

Proof: Let S be the 2-dominating set of CT (m,n).
CT (m,n) consists of m pendant vertices each connected

to an end vertex of path Pn. By Theorem 2.4, m pendant

vertices and the other end vertex of Path Pn must belong to

S.

Case:(i) n is odd.

Choose every alternate vertex starting from the end vertex

of the path Pn, continuing until all alternative vertices are

selected. This selection results in n+1
2 vertices. Hence S

contains m pendant vertices and the selected n+1
2 vertices. In

this case, |S| = n+1
2 +m+1 and m((CT (m,n))−S) = 1.

Thus, S is the DDI-set of G. Therefore, DI2 (CT (m,n)) =
n+1
2 +m+ 1.

Case:(ii) n is even.

As in Case:(i), select alternate vertices, but now we ob-

tain n
2 + m + 1 vertices. Thus, |S| = n

2 + m + 1 and

m((CT (m,n))−S) = 1. Therefore, the result is as desired.

Definition 7.9: [10] The n-Sunlet graph is a graph which

is obtained by attaching n-pendant edges to the Cycle Cn

and it is denoted by Sn. Sn contains 2n vertices.

Theorem 7.10: For n-Sunlet graph Sn,

DI2(Sn) =



































7 if n = 4

4
(n

3

)

+ 2 if n ≡ 0(mod3)

4

(

n− 1

3

)

+ 4 if n ≡ 1(mod3)

4

(

n− 2

3

)

+ 5 if n ≡ 2(mod3)

Proof: Let S be the DI2-set of Sn. Since Sn con-

tains 2n vertices of which n vertices are pendant vertices,

|S| ≥ n. Let u1, u2, ..., un be the n vertices of the Cycle and

v1, v2, ..., vn denote the n pendant vertices corresponding to

u1, u2, ..., un respectively.

Case:(i) n = 4
S = {v1, v2, v3, v4, u2, u4}. Then |S| = 4 + 2 = 6 and so

m(Sn − S) = 1. Hence, DI2(Sn) = 7.

Case:(ii) n ≡ 0(mod3)
S contains the n pendant vertices and one middle ver-

tex for every three vertices of the Cycle (i.e) u3i−1 for

i = 1, 2, 3, .... Thus, S = {v1, v2, ..., vn, u2, u5, ..., un−1}.

Then |S| = n +
n

3
=

4n

3
. Here, m(Sn − S) = 2. Thus,

DI2(Sn) =
4n

3
+ 2.

Case: (iii) n ≡ 1(mod3) and n > 4
S contains the n pendant vertices. In addition to that,

one middle vertex from every three vertices of Cy-

cle and the nth vertex belong to S; (i. e, u3i−1

for i = 1, 2, 3, ... and un) which implies S =
{v1, v2, ..., vn, u2, u5, u8, u11, ..., un−2, un}. Then |S| =

n +
n− 1

3
+ 1 = 4

(

n− 1

3

)

+ 2. Thus, DI2(Sn) =

4

(

n− 1

3

)

+ 4.

Case: (iv) n ≡ 2(mod3)

S = {v1, v2, ..., vn, u2, u5, ..., un}. Then |S| = n+
n+ 1

3
+2

and m(Sn − S) = 2. Hence, DI2(Sn) = 4

(

n− 2

3

)

+ 5.
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VIII. 2-DOMINATION INTEGRITY OF GRAPHS OBTAINED

BY VERTEX SWITCHING OF SOME GRAPHS

Definition 8.1: [8] For a finite undirected graph G(V,E)
and v ∈ V , the vertex switching of G by v is the graph Gv

which is obtained from G by removing all edges incident to

v and adding edges which are not adjacent to v.

Theorem 8.2: Let Cn be a Cycle of order n ≥ 3 and let

v be an arbitrary vertex of Cn. Then the value of DI2(C
v
n)

is given by

DI2(C
v
n) =















5 if n = 4

n if n = 5, 6
⌊n

3

⌋

+ 4 if n ≥ 7

Proof: Let v, u1, u2, ..., un−1 be the vertices of the

Cycle Cn. Consider the graph Cv
n, which results from

switching the vertex v.

Case:(i) n = 4
Let S = {u1, v, u3} be a 2-dominating set of Cv

4 . The

graph Cv
4 − S consists of a single isolated vertex, so

m(Cv
4 −S) = 1. Therefore, S is the DI2-set of Cv

4 , and we

have: DI2(C
v
4 ) = 4.

Case:(ii) n = 5
Consider the sets S1 = {v, u1, u4} and S2 =
{u1, u2, u3, u4}, both of which are DI2-sets of

Cv
5 since |S1| + m(Cv

5 − S1) = 3 + 2 = 5 and

|S2|+m(Cv
5 − S2) = 4 + 1 = 5. Thus, DI2(C

v
5 ) = 5

Case:(iii) n = 6
S = {v, u1, u3, u5} is the only DI2-set of Cv

6 since

|S| + m(Cv
6 − S) = 5 + 1 = 6 which is minimum. Hence

DI2(C
v
6 ) = 6

Case:(iv) n > 6
By the Theorem 2.4, {u1, un−1} is part of any DI2-set of

Cv
6 . Additionally, since v is adjacent to u2, u3, ..., un−1, we

can include v in the DI2-set of Cv
n as well. For 7 ≤ n ≤ 10

and n = 12, the specific DI2-sets are provided in the table

below.

TABLE I
DI2-SETS S1 OF Cv

n

n S1 |S1| m(Cv

n
− S1) DI2(Cv

n
)

7 {v, u1, u3, u6} 4 2 6
8 {v, u1, u4, u7} 4 2 6
9 {v, u1, u4, u6, u8} 5 2 7
10 {v, u1, u4, u7, u9} 5 2 7
12 {v, u1, u4, u7, u9, u11} 6 2 8

TABLE II
DI2-SETS S2 OF Cv

n

n S2 |S2| m(Cv

n
− S2) DI2(Cv

n
)

7 {v, u1, u3, u5, u6} 5 1 6
8 {v, u1, u3, u5, u7} 5 1 6
9 {v, u1, u3, u5, u7, u8} 6 1 7
10 {v, u1, u3, u5, u7, u9} 6 1 7
12 {v, u1, u3, u5, u7, u9, u11} 7 1 8

For choosing the DI2-sets of Cv
n for n = 11 and n > 12,

we consider the following cases.

Sub Case:(a) When n ≡ 0(mod3) and n ≥ 12,

let S = {v, u1, un−1, u4, u7, u10, ..., un−3} or

S = {v, u1, un−1, u4, u7, u10, ..., un−2}
Sub Case:(b) When n ≡ 1(mod3), let

S = {v, u1, un−1, u4, u7, u10, ..., un−3} or

S = {v, u1, un−1, u4, u7, u10, ..., un−2}
Sub Case:(c) When n ≡ 2(mod3), let S =
{v, u1, un−1, u4, u7, u10, ..., un−3}

In all the three subcases, |S| =
⌊n

3

⌋

+2 and m(Cv
n−S) = 2.

Therefore, for all n ≥ 7, DI2(C
v
n) =

⌊n

3

⌋

+ 4

Definition 8.3: [6] The Bull graph is a graph with 5
vertices and 5 edges consisting of a triangle with two disjoint

pendant edges.

Theorem 8.4: Let G be the graph obtained by switching

an arbitrary vertex of the Bull graph. Then DI2(G) = 4.

Proof: Let u1 and u2 be the pendant vertices of the Bull

graph. The structure of the Bull graph is shown in the Fig.5

b

b

b

b

b
u1

u3

u5

u4

u2

Fig. 5. Bull graph

Case:(i) Switch vertex u1

b

bbb

b

u1

u2
u4

u5

u3

Fig. 6. Graph obtained by switching the vertex u1 of Bull graph

In this case, the set S = {u1, u3, u4} forms the

DI2-set of G as it minimizes |S| + m(G − S). Therefore,

DI2(G) = 3 + 1 = 4.

Case: (ii) Switch vertex u2

Switching u2 results in a graph with a structure similar to

the one obtained in Case: (i). Here, the DI2-set of G is

S = {u1, u3, u5} with |S| = 3 and m(G − S) = 1.

Therefore DI2(G) = 4
Case: (iii) Switch vertices u3 or u4

Switching either u3 or u4 in the Bull graph leads to a

disconnected graph.

Case:(iv) Switch vertex u5

Switching u5 transforms the Bull graph into a Cycle C5.

Hence, by the corresponding theorem, DI2(G) = 4.

In all the above four cases, we find that DI2(G) = 4.

Therefore, the theorem is proven.

Definition 8.5: [11] The n-Pan graph is obtained by con-

necting a Cycle Cn with a singleton graph by an edge.
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Theorem 8.6: Let G be the graph obtained by switching

the pendant vertex of the n-Pan graph. Then

DI2(G) =































n if n = 3, 4
n

3
+ 3 if n ≡ 0(mod 3);n 6= 6

n− 1

3
+ 4 if n ≡ 1(mod 3);n 6= 7

n− 2

3
+ 4 if n ≡ 2(mod 3);n 6= 8

Proof: Let u1, u2, u3, ..., un be the vertices of the Cycle

Cn and let x be the pendant vertex of the n-Pan graph. Let

G be the graph that results from switching the vertex x.

Case:(i) n = 3.

Clearly, S = {u2, u3} is a 2-dominating set of G with

minimum cardinality. In this case, G − S contains two

isolated vertices. Thus, |S| = 2 and m(G − S) = 1.

Hence |S| + m(G − S) is minimized. Therefore,

DI2(G) = |S|+m(G− S) = 3
Case:(ii) n = 4. Obviously, S = {u2, u3, u4} is a DI2-set

of G since |S| + m(G − S) is minimized. Therefore,

DI2(G) = 4
Case:(iii) n ≡ 0(mod 3);n > 3
Subcase:(a) For n = 6, there are two possible DI2-sets:

S1 = {x, u2, u4, u6} with |S1| = 4 and m(G − S1) = 1.

S2 = {x, u1, u4} with |S2| = 3 and m(G − S2) = 2. Both

sets give |S1| + m(G − S1) = |S2| + m(G − S2) = 5.

Hence, DI2(G) = 5
Subcase:(b) n > 6. For n > 6, choose

S = {x, u1, u4, u7, u10, ..., un−2} as a 2-dominating

set of G. The order of S is |S| =
n

3
+ 1 and G − S

consists of
n

3
components, each of order 2 (i.e., a Path

P2). Therefore, m(G − S) = 2 and the minimized value is

|S|+m(G− S) =
n

3
+ 3. Thus, S becomes the DI2-set of

G. Hence DI2(G) = |S|+m(G− S) =
n

3
+ 3

Case:(iv) n ≡ 1(mod 3);n > 4. There are

two ways of choosing the DI2-sets of G.

S1 = {x, u1, u4, u7, u10, ..., un−2} or S1 =

{x, u1, u4, u7, u10, ..., un−1}. Then |S1| =
n− 1

3
+ 2

and G − S1 contains components of order

1 and 2, so m(G − S1) = 2. Therefore,

|S1|+m(G−S1) =
n− 1

3
+2+2 =

n− 1

3
+4................(1).

Now S2 = {x, un, u2, u5, u8, u11, ..., un−2}. So,

|S2| =
n− 1

3
+ 2 and m(G − S2) = 2. Thus,

|S2|+m(G− S2) =
n− 1

3
+ 4 .................... (2). From (1)

and (2), |S1|+m(G−S1) = |S2|+m(G−S2). Thus, both

S1 and S2 are DI2-sets of G. Hence DI2(G) =
n− 1

3
+ 4.

Case:(v) n ≡ 2(mod 3);n ≥ 5
Subcase:(a) n = 5. S1 = {x, u2, u5} and S2 = {x, u1, u3}
are 2-dominating sets of G with minimum cardinality.

The largest component in G − S1 and G − S2 are a

Path P2. Both sets give m(G − S1) = m(G − S2) = 2
and |S1| + m(G − S1) = |S2| + m(G − S2) = 5. Now,

S3 = {u2, u3, u4, u5} is a 2-dominating set of G with

|S3| = 4; which is greater than S1 and S2. But G − S3

contains two isolated vertices and so m(G−S3) = 1. Hence

|S3| +m(G − S3) = 5. Thus S1, S2 and S3 are DDI-sets

of G. Therefore, DI2(G) = 5

Subcase:(b) n > 5. For n > 5, there are two ways of choos-

ing the DI2-set of G. S1 = {x, u1, u4, u7, u10, .., un−1} or

S1 = {x, u1, u4, u7, u10, .., un−2} with |S1| =
n− 2

3
+2 and

m(G− S1) = 2. Also, S2 = {x, u2, u5, u8, u11, u14, ..., un}

with |S2| =
n− 2

3
+ 2 and m(G − S2) = 2.

o other 2-dominating set S3 of G satisfies

|S3| + m(G − S3) < |S1| + m(G − S1) and

|S3|+m(G−S3) < |S2|+m(G−S2). Thus, both S1 and S2

are DI2-sets of G. Hence DI2(G) = |S1| +m(G − S1) =

|S2|+m(G− S2) =
n− 2

3
+ 4.

Definition 8.7: [9] The Double Fan graph Dfn is obtained

by Pn + 2K1

Theorem 8.8: DI2(Dfu
n ) =















4 for n = 3
⌊n

3

⌋

+ 4 for 4 ≤ n ≤ 6
⌈n

3

⌉

+ 4 forn > 6

where u is an apex vertex of Double Fan graph.

Proof: Let v1, v2, ..., vn represent the vertices of the

Path Pn and let x and u be the apex vertices of Dfn. Let

the vertex u be switched to form the graph Dfu
n .

Case:(i)n = 3.

Clearly, S = {x, u, v2} is a 2-dominating set of Dfu
3 with

the minimum cardinality. In this case, Dfu
3 −S contains two

isolated vertices. Therefore, m(Dfu
n −S) = 1. For any other

2-dominating set X of Dfu
3 , we have |X|+m(Dfu

3 −X) >
|S|+m(Dfu

3 − S). Thus, S is the DI2-set of Dfu
3 . Hence

DI2(Dfu
3 ) = |S|+m(G− S) = 3 + 1 = 4.

Case: (ii) 4 ≤ n ≤ 6.

We consider three subcases for n = 4, 5, 6 separately.

Subcase:(a) n = 4.

The 2-dominating sets of Dfu
4 with cardinality 4 are S1 =

{x, u, v1, v3}, S2 = {x, u, v2, v4} and S3 = {x, u, v2, v3}.

For each of these sets, V (Dfu
4 −S1) = {v2, v4}, V (Dfu

4 −
S2) = {v1, v3} and V (Dfu

4 − S3) = {v1, v4}. Thus,

m(Dfu
4 − S1) = m(Dfu

4 − S2) = m(Dfu
4 − S3) = 1.

Hence |S1| + m(Dfu
4 − S1) = |S2| + m(Dfu

4 − S2) =
|S3|+m(Dfu

4 −S3) is minimized. Thus, S1, S2 and S3 are

DI2-sets of Dfu
4 . Therefore, DI2(Dfu

4 ) = 5
Subcase:(b) n = 5.

The unique DI2-set of Dfu
5 is S = {x, u, v2, v4} since there

does not exist any other DI2-set S1 of Dfu
5 that satisfies

the condition |S1| + m(Dfu
5 − S1) < |S| + m(Dfu

5 − S).
We have |S| = 4 and Dfu

5 − S contains three isolated

vertices v1, v3 and v5. Hence, m(Dfu
5 −S) = 1. Therefore

DI2(Dfu
5 ) = |S|+m(Dfu

5 − S) = 5.

Subcase:(c) n = 6.

We have S1 = {x, u, v2, v5} is a 2-dominating set of

Dfu
6 with minimum cardinality. Now, Dfu

6 − S1 contains

two components: one of order 1 and other of order 2. So,

m(Dfu
6 − S1) = 2. Hence |S1|+m(Dfu

6 − S1) = 6. Also,

S2 = {x, u, v1, v3, v5}, S3 = {x, u, v2, v4, v6} and

S4 = {x, u, v2, v4, v5} are 2-dominating sets of Dfu
6

with cardinality |S2| = |S3| = |S4| = 5. Then Dfu
6 − S2,

Dfu
6 −S3 and Dfu

6 −S4 contain two isolated vertices. Thus,

m(Dfu
6 − S2) = m(Dfu

6 − S3) = m(Dfu
6 − S4) = 1.

Hence |S2| + m(Dfu
6 − S2) = |S3| + m(Dfu

6 − S3) =
|S4|+m(Dfu

6 − S4) = 6. Therefore, S1, S2, S3 and S4 are
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DI2-sets of Dfu
6 . Thus, DI2(Dfu

6 ) = 6.

Hence from all the above three subcases, we get

DI2(Dfu
n ) =

⌊n

3

⌋

+ 4 for 4 ≤ n ≤ 6.

Case:(iii) n > 6.

When n ≡ 0(mod 3), S can be chosen as {x, u, ui+1/i =
3m + 1 for m = 0, 1, 2, ...and i + 1 ≤ n}. When

n ≡ 1(mod 3) and n ≡ 2(mod 3), the DI2-set can be

chosen as either S = {x, u, un, ui+1/i = 3m+ 1 for m =
0, 1, 2, ... and i + 1 ≤ n} or S = {x, u, un−1, ui+1/i =
3m+ 1 for m = 0, 1, 2, ...and i+ 1 ≤ n}

From the above two subcases, |S| =
⌈n

3

⌉

+2 and m(Dfu
n −

S) = 2. Thus, the above described sets S form the DI2-set

of Dfu
n . Hence, DI2(Dfu

n ) = |S|+m(Dfu
n−S) =

⌈n

3

⌉

+4.

IX. CONCLUSION

This article introduces the concept of 2-domination in-

tegrity as a new measure of vulnerability in graphs. Also,

an algorithm to find DI2 of a graph is developed. This

vulnerability parameter is determined for standard graphs and

for certain special graphs, friendship graph, bistar, flower and

coconut tree. Further, some theorems in determining the 2-

domination integrity of graphs obtained by vertex switching

of few graphs are included. Studying various graph vulnera-

bility parameters is of great significance to network designers

in order to construct a stable network where reconstruction

occurs even after the disruption.
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