An Introduction to 2-Domination Integrity of Graphs

Christin Sherly J and Uma Samundesvari K

Abstract—The vulnerability concept in communication network plays a prominent role when there is a disruption in the network. Several graph parameters exist to measure the vulnerability of a communication network. This paper introduces a new measure of graph vulnerability: 2-domination integrity of graphs. An algorithm to compute 2-domination integrity of a graph and a realization result is developed. A few bounds relating 2-domination integrity with other graph parameters are determined. Furthermore, new theorems, and results in the context of several graphs are obtained.

Index Terms—dominating set, integrity, 2-dominating set, 2-domination integrity

I. INTRODUCTION

Graph Theory offers a framework for modeling the communication networks as graph structures. Domination in graphs is a renowned branch of graph theory. 2-domination is one of the important domination parameter which was first put up by Fink and Jacobson [5]. Any communication network may be represented as a graph, with the vertices as the stations (processors), and the edges as the connections between the vertices. For network designers to rebuild a communication network once certain stations or communication links collapse, network stability is a crucial consideration. The idea of Domination Integrity was proposed by Sundareswaran and Swaminathan [13]. Connected domination integrity [7] and paired domination integrity [1] are new vulnerability parameters developed for measuring the vulnerability of communication networks. Double domination integrity was introduced in [4] and it finds an application in PMU placement problem [3]. A new vulnerability parameter 2-domination integrity of graphs is introduced in this atricle by combining the concept of 2-domination and integrity. An algorithm to find 2-domination integrity, a realization result and the 2-domination integrity of certain graphs are obtained in this article.

Lemma 1.1: [13] For any graph $G, I(G) \leq DI(G)$

II. 2-DOMINATION INTEGRITY OF A GRAPH

Definition 2.1: [5] A dominating set S of a graph G is a 2-dominating set of G if every vertex of V - S is adjacent to at least two vertices of S. The smallest cardinality among all the 2-dominating sets of G is the 2-domination number of G which is represented as $\gamma_{2d}(G)$. A 2-dominating set of cardinality $\gamma_{2d}(G)$ is called a γ_{2d} -set of G.

Definition 2.2: The 2-domination integrity of a connected graph G is defined by $DI_2(G) = min\{|S| + m(G-S) : S\}$

is a 2-dominating set of G} and m(G-S) is the maximum order of the component of G-S.

Definition 2.3: A 2-dominating set S of G is called a 2-domination integrity set or DI_2 -set of G if |S| + m(G - S) is minimum.

Fig. 1. A graph G with $DI_2(G) = 4$

 $S=\{v_1,v_2,v_4\}$ is a DI_2 -set of G. So, |S|=3, m(G-S)=1. Hence, $DI_2(G)=4$

Theorem 2.4: Every pendant vertex of a graph G belongs to the DI_2 -set of G.

Proof: Let v be an end vertex of a graph G. Let S represents a DI_2 set of G. To prove: v belongs to S. Suppose $v \notin S$. Since S is a DI_2 -set of G and $v \in V - S$, v must be adjacent to at least two vertices of S, which implies that v cannot be an end vertex of G. This leads to a contradiction. Therefore, $v \in S$.

Observation 2.5: DI_2 -set need not be unique. (i. e) For a graph G, there may exist more than one DI_2 -set.

Result 2.6: $DI_2(H)$ need not be necessarily less than or equal to $DI_2(G)$ for any subgraph H of a graph G

$$DI_2(C_4) = 3$$
 and $DI_2(C_4 - e) = 4$ for any edge e of C_4

III. REALIZATION RESULT

Theorem 3.1: For any pair a, b of integers with $2 \le a \le b$, there is a connected graph G of order b such that $DI_2(G) = a$.

Proof: Let $C : u_1, u_2, u_3, u_4$ be a Cycle of length 4. A graph G in Fig. 4 is got from C_4 by adding vertices $z_1, z_2, ..., z_{a-3}$ and connecting each $z_i (1 \le i \le a-3)$ with

Manuscript received October 22, 2024; revised April 10, 2025.

Christin Sherly J is a Research Scholar at Noorul Islam Centre for Higher Education, Kumaracoil, India. (corresponding author email:christinsherly97@gmail.com)

Uma Samundesvari K is an Associate Professor at Noorul Islam Centre for Higher Education, Kumaracoil, India. (email:kuskrishna@gmail.com)

 u_2 and also adding the new vertex u_5 and adjoining u_5 with u_1 and u_3 .

Fig. 4. Graph G with $DI_2(G) = a$

Let $S = \{z_1, z_2, ..., z_{a-3}\}$ be the set of all end vertices of G. By Theorem 2.4, S belongs to the DI_2 -set of G. But S is not a 2-domination integrity set of G so that $DI_2(G) \ge a-3$. From the structure of the graph, it is obvious that $S_1 = S \cup \{u_1, u_3\}$ is a 2-dominating set of G with $|S_1| = a-3+2$ and $m(G-S_1) = 1$. Thus, $|S_1| + m(G-S_1)$ is minimum for the above mentioned set S_1 . Hence, S_1 is a DI_2 -set of G. Therefore, $DI_2(G) = |S_1| + m(G-S_1) = a-3+2+1 = a$.

IV. Algorithm to find $DI_2(G)$

Algorithm 1 Finding 2-Domination Integrity of a Simple Connected Graph

Require: A graph $G(n \ge 2)$ without isolated vertices. Ensure: $DI_2(G)$

- 1: Step:1 Determine all the 2-dominating sets of G
- Step:2 Finding DI₂(G)=min{|S|+m(G−S): S is a 2-dominating set of G} where m(G−S) is the maximum order of the component of G − S

3: if S is a
$$\gamma_{2d}$$
-set of G and $m(G-S) = 0$ then

4:
$$DI_2(G) = \gamma_{2d}(G)$$

5: **else**

- 6: $DI_2(G) = min \{ |S| + m(G S) \}$
- 7: **end if**

V. 2-DOMINATION INTEGRITY OF STANDARD GRAPHS Observation 5.1: For $n \ge 3$,

$$DI_2(P_n) = \begin{cases} \frac{n}{2} + 2 & \text{if } n \text{ is even} \\ \frac{n+1}{2} + 1 & \text{if } n \text{ is odd} \end{cases}$$

Observation 5.2: For $n \ge 3$, the 2-domination integrity of Cycle C_n is

$$\begin{cases} \frac{n}{2} + 1 & \text{if } n \text{ is even} \\ \frac{n+1}{2} + 1 & \text{if } n \text{ is odd} \end{cases}$$

Theorem 5.3: For $n \ge 3$, $DI_2(K_n) = n$.

Proof: Let $S = \{x, y\} \subseteq V(K_n)$ be the 2-dominating set of K_n . Then, $K_n - S$ is connected with one component and so $m(K_n - S) = n - |S|$. Hence $DI_2(K_n) =$

 $min\{|S| + m(K_n - S) : S \text{ is a 2-dominating set of } K_n\} = min\{|S| + n - |S|\} = n.$ *Theorem 5.4:* For $n \ge 2$, the 2-domination integrity of Star $K_{1,n}$ is 1 + n

Proof: Let x be the central vertex of the Star. Let $X = \{u_1, u_2, ..., u_n\}$ be the set of pendant vertices of $K_{1,n}$. Let S be the DI_2 -set of $K_{1,n}$. By the Theorem 2.4, $X \subseteq S$. Obviously, S = X itself is a DDI-set of $K_{1,n}$ with with |S| = n. $K_{1,n} - S$ contains only one isolated vertex x. Thus, $m(K_{1,n} - S) = 1$. Therefore, $DDI(K_{1,n}) = |S| + m(K_{1,n} - S) = n + 1$. This completes the proof.

Theorem 5.5: For $m, n \ge 2$, th 2-domination integrity of Complete bipartite graph $K_{m,n}$ is $DI_2(K_{m,n}) = min \{m, n\} + 1$

Proof: Let $V(K_{m,n}) = V_1(K_{m,n}) \cup V_2(K_{m,n})$ and $V_1(K_{m,n}) = \{u_1, u_2, ..., u_m\}, V_2(K_{m,n}) = \{v_1, v_2, ..., v_n\}$; where $m, n \ge 2$. **Case:** (i) $m \le n$

 $S = \{u_1, u_2, ..., u_m\}$ is a 2-dominating set of $K_{m,n}$ with minimum cardinality. Then $|S| = m = min\{m, n\}$. Removing the vertices of S from $K_{m,n}$ results in a disconnected graph containing n isolated vertices and so $m(K_{m,n} - S) =$ 1. If X is any other 2-dominating set of $K_{m,n}$, then |X| + $m(K_{m,n} - S) > |S| + m(K_{m,n} - S)$. Thus, S is the DI_2 set of $K_{m,n}$. Hence, $DI_2(K_{m,n}) = |S| + m(K_{m,n} - S) =$ $min\{m, n\} + 1$. **Case: (ii)** $m \ge n$

Case: (ii) $m \ge n$ The preset is as in Ca

The proof is as in Case:(i)

VI. BOUNDS ON 2-DOMINATION INTEGRITY OF GRAPHS

Observation 6.1: A minimum of two vertices always belong to the 2-dominating set S since every vertex in V - Sshould be adjacent to at least two vertices of S. (i.e) $|S| \ge 2$. Theorem 6.2: For $n \ge 2$, $I(G) \le DI(G) \le DI_2(G)$.

Proof: We have $\gamma(G) \leq \gamma_{2d}(G)$.

Hence, $DI(G) \leq DI_2(G)$

Using Lemma 1.1

$$I(G) \le DI(G) \le DI_2(G).$$

Theorem 6.3: $DI_2(G) \ge \gamma_{2d}(G)$

Proof: Let G be a connected graph of order n > 2. Let S be a DI_2 set of G. Hence $|S| \ge \gamma_{2d}(G)$ and $m(G - S) \ge 0$. Thus, $DI_2(G) = min\{|S| + m(G - S) : S \text{ is a 2-dominating set of } G\} \ge min\{\gamma_{2d}(G) + 0\} = \gamma_{2d}(G)$. Therefore, $DI_2(G) \ge \gamma_{2d}$.

Theorem 6.4: For $n \ge 2$, $DI_2(G) \ge \chi(G)$

Proof: Let G be a connected graph with $n \ge 2$. Since $I(G) \ge \chi(G)$ and using Theorem 6.3,

$$DI_2(G) \ge \chi(G).$$

Remark 6.5: The bound obtained for $DI_2(G)$ in the above Theorem is reachable. For example, the double domination integrity of Complete graph K_n is $DI_2(K_n) = \chi(K_n)$. By the given Theorem 5.3, $D_2I(K_n) = n$. Since all the vertices of K_n are adjacent to each other, $\chi(K_n) = n$.

VII. 2-DOMINATION INTEGRITY OF SOME SPECIAL GRAPHS

Definition 7.1: [2] A collection of t-triangles with a vertex in common is called the friendship graph $C_3^{(t)}$. Theorem 7.2: For $n \ge 2$, $DI_2(C_3^{(n)}) = n + 2$.

Volume 55, Issue 6, June 2025, Pages 1640-1645

Proof: Let $C_3^{(n)}$ be a friendship graph consisting of n triangles. Denote the central vertex of the graph as x and for each i = 1, 2, ..., n, let u_i and v_i be the other two vertices of the i^{th} triangle for $1 \le i \le n$. Let S denotes a 2-dominating set of $C_3^{(n)}$. Inorder for the set S to be minimal, it needs to contain the central vertex x, and S must contain one of the vertices u_i or v_i from each triangle. Therefore S contains x and one vertex among each pair $\{u_i, v_i\}$ for i = 1, 2, 3, ...As a result, |S| = n + 1 and in this case $m\left(C_3^{(n)} - S\right) = 1$ and so $|S| + m\left(C_3^{(n)} - S\right)$ is minimum for the above set S. Thus, S is the DI_2 -set of $C_3^{(n)}$. Therefore, $DI_2\left(C_3^{(n)}\right) =$ $|S| + m\left(C_3^{(n)} - S\right) = n + 2.$

Definition 7.3: [5] Bistar graph $B_{m,n}$ is obtained by adjoining m pendent edges to one end and n pendent edges to other end of Path P_2 . $B_{m,n}$ contains m + n + 2 vertices.

Theorem 7.4: $DI_2(B_{m,n}) = m + n + 2$.

Proof: Let $c_1, c_2, ..., c_m$ and $d_1, d_2, ..., d_n$ represent the m and n pendant vertices of $B_{m,n}$ respectively. Let x and y be the two vertices to which $c_1, c_2, ..., c_m$ and $d_1, d_2, ..., d_n$ are attached respectively. Let S be the DI_2 set of $B_{m,n}$. So, $|S| \ge m + n$. Clearly, one vertex among x and y belong to S. Hence $S = \{c_1, c_2, ..., c_m, d_1, d_2, ..., d_n, x\}$ or $S = \{c_1, c_2, ..., c_m, d_1, d_2, ..., d_n, y\}$. These two sets are DI_2 sets of $B_{m,n}$ since in both the cases, $m(B_{m,n} - S) = 1$. Thus, |S| = m + n + 1 and $m(B_{m,n} - S) = 1$. Therefore, $DI_2(B_{m,n}) = |S| + m(B_{m,n} - S) = m + n + 2.$

Definition 7.5: [2] The flower graph Fl_n is acquired by adjoining every pendant vertex of the helm graph H_n to the central vertex.

Theorem 7.6: $DI_2(Fl_n) = n + 2$.

Proof: Let x be the central vertex of Fl_n which is adjacent to all the remaining 2n vertices of Fl_n . Let $x_1, x_2, ..., x_n$ represent the inner rim vertices and $y_1, y_2, ..., y_n$ represent the outer vertices. Let S be the γ_{2d} set of Fl_n . Since x is adjacent to all the remaining vertices in Fl_n , choose x in S ensuring that every vertex in $V - Fl_n$ is adjacent to x. Also, all the $y'_i s(i = 1, 2, 3, ..., n)$ are adjacent to the corresponding $x'_i s$. By the structure of the graph, there are four possible ways to choose S.

Case:(i) Let $S = \{x, x_i/1 \le i \le n\}$. In this case, $V(Fl_n - i \le n)$. $S = \{y_i / 1 \le i \le n\}$ and so $m(Fl_n - S) = 1$. Hence, $|S| + m(Fl_n - S) = n + 2.$

Case:(ii) Suppose $S = \{x, y_i / 1 \le i \le n\}$. Then |S| = n + 1and $m(Fl_n - S) = n$ which implies that $|S| + m(Fl_n - S) =$ 2n + 1.

Case:(iii) S can be chosen as $\{x, x_{i-1}, y_i\}$ for i =1, 2, 3, ..., n. Then |S| = n + 1 and $m(Fl_n - S) = 1$. Hence $|S| + m(Fl_n - S) = n + 2.$

Among the above three cases, we get $|S| + m(Fl_n - S) =$ n+2 in case: (i) and (iii) and $|S|+m(Fl_n-S)=2n+1$ in case:(ii). Hence $DI_2(Fl_n) = |S| + m(Fl_n - S) = n + 2$.

Definition 7.7: [12] Coconut tree CT(m, n) is acquired by adjoining m pendant edges with an end vertex of Path P_n .

Theorem 7.8: For $m, n \geq 2$,

$$DI_2(CT(m,n)) = \begin{cases} \frac{n}{2} + m + 1 & \text{if } n \text{ is even} \\ \frac{n+1}{2} + m + 1 & \text{if } n \text{ is odd} \end{cases}$$

Proof: Let S be the 2-dominating set of CT(m, n). CT(m,n) consists of m pendant vertices each connected to an end vertex of path P_n . By Theorem 2.4, m pendant vertices and the other end vertex of Path P_n must belong to S.

Case:(i) n is odd.

Choose every alternate vertex starting from the end vertex of the path P_n , continuing until all alternative vertices are selected. This selection results in $\frac{n+1}{2}$ vertices. Hence S contains m pendant vertices and the selected $\frac{n+1}{2}$ vertices. In this case, $|S| = \frac{n+1}{2} + m + 1$ and m((CT(m, n)) - S) = 1. Thus, S is the DDI-set of G. Therefore, $DI_2(CT(m, n)) =$ $\frac{n+1}{2} + m + 1.$

Case:(ii) n is even.

As in Case:(i), select alternate vertices, but now we obtain $\frac{n}{2} + m + 1$ vertices. Thus, $|S| = \frac{n}{2} + m + 1$ and m((CT(m, n)) - S) = 1. Therefore, the result is as desired.

Definition 7.9: [10] The *n*-Sunlet graph is a graph which is obtained by attaching *n*-pendant edges to the Cycle C_n and it is denoted by S_n . S_n contains 2n vertices.

Theorem 7.10: For n-Sunlet graph S_n ,

$$DI_{2}(S_{n}) = \begin{cases} 7 & \text{if } n = 4\\ 4\left(\frac{n}{3}\right) + 2 & \text{if } n \equiv 0(mod3)\\ 4\left(\frac{n-1}{3}\right) + 4 & \text{if } n \equiv 1(mod3)\\ 4\left(\frac{n-2}{3}\right) + 5 & \text{if } n \equiv 2(mod3) \end{cases}$$

Proof: Let S be the DI_2 -set of S_n . Since S_n contains 2n vertices of which n vertices are pendant vertices, $|S| \ge n$. Let $u_1, u_2, ..., u_n$ be the *n* vertices of the Cycle and $v_1, v_2, ..., v_n$ denote the *n* pendant vertices corresponding to u_1, u_2, \dots, u_n respectively.

Case:(i)
$$n = 4$$

 $S = \{v_1, v_2, v_3, v_4, u_2, u_4\}$. Then |S| = 4 + 2 = 6 and so $m(S_n - S) = 1$. Hence, $DI_2(S_n) = 7$.

Case:(ii)
$$n \equiv 0 \pmod{3}$$

S contains the n pendant vertices and one middle vertex for every three vertices of the Cycle (i.e) u_{3i-1} for $i = 1, 2, 3, \dots$ Thus, $S = \{v_1, v_2, \dots, v_n, u_2, u_5, \dots, u_{n-1}\}.$ Then $|S| = n + \frac{n}{3} = \frac{4n}{3}$. Here, $m(S_n - S) = 2$. Thus, $DI_2(S_n) = \frac{4n}{3} + 2.$ Case: (iii) $n \equiv 1 \pmod{3}$ and n > 4

S contains the n pendant vertices. In addition to that, one middle vertex from every three vertices of Cycle and the n^{th} vertex belong to S; (i. e, u_{3i-1} for $i = 1, 2, 3, \dots$ and u_n) which implies S $\{v_1, v_2, \dots, v_n, u_2, u_5, u_8, u_{11}, \dots, u_{n-2}, u_n\}. \text{ Then } |S| = n + \frac{n-1}{3} + 1 = 4\left(\frac{n-1}{3}\right) + 2. \text{ Thus, } DI_2(S_n) = 0$ $4\left(\frac{n-1}{3}\right) + 4.$ Case: (iv) $n \equiv 2(mod3)$ $S = \{v_1, v_2, ..., v_n, u_2, u_5, ..., u_n\}$. Then $|S| = n + \frac{n+1}{3} + 2$ and $m(S_n - S) = 2$. Hence, $DI_2(S_n) = 4\left(\frac{n-2}{3}\right) + 5$.

Volume 55, Issue 6, June 2025, Pages 1640-1645

VIII. 2-DOMINATION INTEGRITY OF GRAPHS OBTAINED BY VERTEX SWITCHING OF SOME GRAPHS

Definition 8.1: [8] For a finite undirected graph G(V, E)and $v \in V$, the vertex switching of G by v is the graph G^{v} which is obtained from G by removing all edges incident to v and adding edges which are not adjacent to v.

Theorem 8.2: Let C_n be a Cycle of order $n \ge 3$ and let v be an arbitrary vertex of C_n . Then the value of $DI_2(C_n^v)$ is given by

$$DI_{2}(C_{n}^{v}) = \begin{cases} 5 & \text{if } n = 4\\ n & \text{if } n = 5, 6\\ \left\lfloor \frac{n}{3} \right\rfloor + 4 & \text{if } n \ge 7 \end{cases}$$

Proof: Let $v, u_1, u_2, ..., u_{n-1}$ be the vertices of the Cycle C_n . Consider the graph C_n^v , which results from switching the vertex v.

Case:(i) n = 4

Let $S = \{u_1, v, u_3\}$ be a 2-dominating set of C_4^v . The graph $C_4^v - S$ consists of a single isolated vertex, so $m(C_4^v - S) = 1$. Therefore, S is the DI_2 -set of C_4^v , and we have: $DI_2(C_4^v) = 4$.

Case:(ii) n = 5

Consider the sets $S_1 = \{v, u_1, u_4\}$ and $S_2 = \{u_1, u_2, u_3, u_4\}$, both of which are DI_2 -sets of C_5^v since $|S_1| + m(C_5^v - S_1) = 3 + 2 = 5$ and $|S_2| + m(C_5^v - S_2) = 4 + 1 = 5$. Thus, $DI_2(C_5^v) = 5$ Case:(iii) n = 6

 $S = \{v, u_1, u_3, u_5\}$ is the only DI_2 -set of C_6^v since $|S| + m(C_6^v - S) = 5 + 1 = 6$ which is minimum. Hence $DI_2(C_6^v) = 6$

Case:(iv) n > 6

By the Theorem 2.4, $\{u_1, u_{n-1}\}$ is part of any DI_2 -set of C_6^v . Additionally, since v is adjacent to $u_2, u_3, ..., u_{n-1}$, we can include v in the DI_2 -set of C_n^v as well. For $7 \le n \le 10$ and n = 12, the specific DI_2 -sets are provided in the table below.

TABLE	I
DI_2 -Sets S_1	of C_n^v

n	S_1	$ S_1 $	$m(C_n^v - S_1)$	$DI_2(C_n^v)$
7	$\{v,u_1,u_3,u_6\}$	4	2	6
8	$\{v,u_1,u_4,u_7\}$	4	2	6
9	$\{v, u_1, u_4, u_6, u_8\}$	5	2	7
10	$\{v, u_1, u_4, u_7, u_9\}$	5	2	7
12	$\{v, u_1, u_4, u_7, u_9, u_{11}\}$	6	2	8

TABLE II DI_2 -SETS S_2 of C_n^v

n	S_2	$ S_2 $	$m(C_n^v - S_2)$	$DI_2(C_n^v)$
7	$\{v, u_1, u_3, u_5, u_6\}$	5	1	6
8	$\{v, u_1, u_3, u_5, u_7\}$	5	1	6
9	$\{v, u_1, u_3, u_5, u_7, u_8\}$	6	1	7
10	$\{v, u_1, u_3, u_5, u_7, u_9\}$	6	1	7
12	$\{v, u_1, u_3, u_5, u_7, u_9, u_{11}\}$	7	1	8

For choosing the DI_2 -sets of C_n^v for n = 11 and n > 12, we consider the following cases.

 $S = \{v, u_1, u_{n-1}, u_4, u_7, u_{10}, \dots, u_{n-3}\}$ or $S = \{v, u_1, u_{n-1}, u_4, u_7, u_{10}, \dots, u_{n-2}\}$

Sub Case:(c) When $n \equiv 2 \pmod{3}$, let $S = \{v, u_1, u_{n-1}, u_4, u_7, u_{10}, ..., u_{n-3}\}$ In all the three subcases, $|S| = \lfloor \frac{n}{3} \rfloor + 2$ and $m(C_n^v - S) = 2$. Therefore, for all $n \geq 7$, $DI_2(C_n^v) = \lfloor \frac{n}{3} \rfloor + 4$

Definition 8.3: [6] The Bull graph is a graph with 5 vertices and 5 edges consisting of a triangle with two disjoint pendant edges.

Theorem 8.4: Let G be the graph obtained by switching an arbitrary vertex of the Bull graph. Then $DI_2(G) = 4$.

Proof: Let u_1 and u_2 be the pendant vertices of the Bull graph. The structure of the Bull graph is shown in the Fig.5

Fig. 5. Bull graph

Case:(i) Switch vertex u_1

Fig. 6. Graph obtained by switching the vertex u_1 of Bull graph

In this case, the set $S = \{u_1, u_3, u_4\}$ forms the DI_2 -set of G as it minimizes |S| + m(G - S). Therefore, $DI_2(G) = 3 + 1 = 4$.

Case: (ii) Switch vertex u_2

Switching u_2 results in a graph with a structure similar to the one obtained in Case: (i). Here, the DI_2 -set of G is $S = \{u_1, u_3, u_5\}$ with |S| = 3 and m(G - S) = 1. Therefore $DI_2(G) = 4$

Case: (iii) Switch vertices u_3 or u_4

Switching either u_3 or u_4 in the Bull graph leads to a disconnected graph.

Case:(iv) Switch vertex u_5

Switching u_5 transforms the Bull graph into a Cycle C_5 . Hence, by the corresponding theorem, $DI_2(G) = 4$.

In all the above four cases, we find that $DI_2(G) = 4$. Therefore, the theorem is proven.

Definition 8.5: [11] The *n*-Pan graph is obtained by connecting a Cycle C_n with a singleton graph by an edge.

Theorem 8.6: Let G be the graph obtained by switching the pendant vertex of the n-Pan graph. Then

$$DI_{2}(G) = \begin{cases} n & \text{if } n = 3, 4\\ \frac{n}{3} + 3 & \text{if } n \equiv 0 \pmod{3}; n \neq 6\\ \frac{n-1}{3} + 4 & \text{if } n \equiv 1 \pmod{3}; n \neq 7\\ \frac{n-2}{3} + 4 & \text{if } n \equiv 2 \pmod{3}; n \neq 8 \end{cases}$$

Proof: Let $u_1, u_2, u_3, ..., u_n$ be the vertices of the Cycle C_n and let x be the pendant vertex of the n-Pan graph. Let G be the graph that results from switching the vertex x. **Case:(i)** n = 3.

Clearly, $S = \{u_2, u_3\}$ is a 2-dominating set of G with minimum cardinality. In this case, G - S contains two isolated vertices. Thus, |S| = 2 and m(G - S) = 1. Hence |S| + m(G - S) is minimized. Therefore, $DI_2(G) = |S| + m(G - S) = 3$

Case:(ii) n = 4. Obviously, $S = \{u_2, u_3, u_4\}$ is a DI_2 -set of G since |S| + m(G - S) is minimized. Therefore, $DI_2(G) = 4$

Case:(iii) $n \equiv 0 \pmod{3}; n > 3$

Subcase:(a) For n = 6, there are two possible DI_2 -sets: $S_1 = \{x, u_2, u_4, u_6\}$ with $|S_1| = 4$ and $m(G - S_1) = 1$. $S_2 = \{x, u_1, u_4\}$ with $|S_2| = 3$ and $m(G - S_2) = 2$. Both sets give $|S_1| + m(G - S_1) = |S_2| + m(G - S_2) = 5$. Hence, $DI_2(G) = 5$

Subcase:(b) n > 6. For n > 6, choose $S = \{x, u_1, u_4, u_7, u_10, ..., u_{n-2}\}$ as a 2-dominating set of G. The order of S is $|S| = \frac{n}{3} + 1$ and G - S consists of $\frac{n}{3}$ components, each of order 2 (i.e., a Path P_2). Therefore, m(G - S) = 2 and the minimized value is $|S| + m(G - S) = \frac{n}{3} + 3$. Thus, S becomes the DI_2 -set of G. Hence $DI_2(G) = |S| + m(G - S) = \frac{n}{3} + 3$ **Case:(iv)** $n \equiv 1 \pmod{3}; n > 4$. There are

Case:(iv) $n \equiv 1 \pmod{3}; n > 4$. There are two ways of choosing the DI_2 -sets of G. $S_1 = \{x, u_1, u_4, u_7, u_{10}, ..., u_{n-2}\}$ or $S_1 = \{x, u_1, u_4, u_7, u_{10}, ..., u_{n-1}\}$. Then $|S_1| = \frac{n-1}{3} + 2$ and $G - S_1$ contains components of order 1 and 2, so $m(G - S_1) = 2$. Therefore, $|S_1| + m(G - S_1) = \frac{n-1}{3} + 2 + 2 = \frac{n-1}{3} + 4$(1). Now $S_2 = \{x, u_n, u_2, u_5, u_8, u_{11}, ..., u_{n-2}\}$. So, $|S_2| = \frac{n-1}{3} + 2$ and $m(G - S_2) = 2$. Thus, $|S_2| + m(G - S_2) = \frac{n-1}{3} + 4$ (2). From (1) and (2), $|S_1| + m(G - S_1) = |S_2| + m(G - S_2)$. Thus, both S_1 and S_2 are DI_2 -sets of G. Hence $DI_2(G) = \frac{n-1}{3} + 4$. **Case:**(v) $n \equiv 2 \pmod{3}; n \ge 5$

Subcase:(a) n = 5. $S_1 = \{x, u_2, u_5\}$ and $S_2 = \{x, u_1, u_3\}$ are 2-dominating sets of G with minimum cardinality. The largest component in $G - S_1$ and $G - S_2$ are a Path P_2 . Both sets give $m(G - S_1) = m(G - S_2) = 2$ and $|S_1| + m(G - S_1) = |S_2| + m(G - S_2) = 5$. Now, $S_3 = \{u_2, u_3, u_4, u_5\}$ is a 2-dominating set of G with $|S_3| = 4$; which is greater than S_1 and S_2 . But $G - S_3$ contains two isolated vertices and so $m(G - S_3) = 1$. Hence $|S_3| + m(G - S_3) = 5$. Thus S_1 , S_2 and S_3 are DDI-sets of G. Therefore, $DI_2(G) = 5$

Subcase:(b) n > 5. For n > 5, there are two ways of choosing the DI_2 -set of G. $S_1 = \{x, u_1, u_4, u_7, u_{10}, ..., u_{n-1}\}$ or $S_1 = \{x, u_1, u_4, u_7, u_{10}, ..., u_{n-2}\}$ with $|S_1| = \frac{n-2}{3} + 2$ and $m(G - S_1) = 2$. Also, $S_2 = \{x, u_2, u_5, u_8, u_{11}, u_{14}, ..., u_n\}$ with $|S_2| = \frac{n-2}{3} + 2$ and $m(G - S_2) = 2$. o other 2-dominating set S_3 of G satisfies $|S_3| + m(G - S_3) < |S_1| + m(G - S_1)$ and $|S_3| + m(G - S_3) < |S_2| + m(G - S_2)$. Thus, both S_1 and S_2 are DI_2 -sets of G. Hence $DI_2(G) = |S_1| + m(G - S_1) = |S_2| + m(G - S_2) = \frac{n-2}{3} + 4$.

Definition 8.7: [9] The Double Fan graph Df_n is obtained by $P_n + 2K_1$

Theorem 8.8: $DI_2(Df_n^u) =$

$$\begin{cases} 4 & for \quad n=3\\ \left\lfloor \frac{n}{3} \right\rfloor + 4 & for \quad 4 \le n \le 6\\ \left\lceil \frac{n}{3} \right\rceil + 4 & forn > 6 \end{cases}$$

where u is an apex vertex of Double Fan graph.

Proof: Let $v_1, v_2, ..., v_n$ represent the vertices of the Path P_n and let x and u be the apex vertices of Df_n . Let the vertex u be switched to form the graph Df_n^u .

Case:(i)n = 3.

Clearly, $S = \{x, u, v_2\}$ is a 2-dominating set of Df_3^u with the minimum cardinality. In this case, $Df_3^u - S$ contains two isolated vertices. Therefore, $m(Df_n^u - S) = 1$. For any other 2-dominating set X of Df_3^u , we have $|X| + m(Df_3^u - X) >$ $|S| + m(Df_3^u - S)$. Thus, S is the DI_2 -set of Df_3^u . Hence $DI_2(Df_3^u) = |S| + m(G - S) = 3 + 1 = 4$. **Case: (ii)** $4 \le n \le 6$.

We consider three subcases for n = 4, 5, 6 separately. **Subcase:(a)** n = 4.

The 2-dominating sets of Df_4^u with cardinality 4 are $S_1 = \{x, u, v_1, v_3\}, S_2 = \{x, u, v_2, v_4\}$ and $S_3 = \{x, u, v_2, v_3\}$. For each of these sets, $V(Df_4^u - S_1) = \{v_2, v_4\}, V(Df_4^u - S_2) = \{v_1, v_3\}$ and $V(Df_4^u - S_3) = \{v_1, v_4\}$. Thus, $m(Df_4^u - S_1) = m(Df_4^u - S_2) = m(Df_4^u - S_3) = 1$. Hence $|S_1| + m(Df_4^u - S_1) = |S_2| + m(Df_4^u - S_2) = |S_3| + m(Df_4^u - S_3)$ is minimized. Thus, S_1, S_2 and S_3 are DI_2 -sets of Df_4^u . Therefore, $DI_2(Df_4^u) = 5$ **Subcase:(b)** n = 5.

The unique DI_2 -set of Df_5^u is $S = \{x, u, v_2, v_4\}$ since there does not exist any other DI_2 -set S_1 of Df_5^u that satisfies the condition $|S_1| + m(Df_5^u - S_1) < |S| + m(Df_5^u - S)$. We have |S| = 4 and $Df_5^u - S$ contains three isolated vertices v_1 , v_3 and v_5 . Hence, $m(Df_5^u - S) = 1$. Therefore $DI_2(Df_5^u) = |S| + m(Df_5^u - S) = 5$.

Subcase:(c) n = 6.

We have $S_1 = \{x, u, v_2, v_5\}$ is a 2-dominating set of Df_6^u with minimum cardinality. Now, $Df_6^u - S_1$ contains two components: one of order 1 and other of order 2. So, $m(Df_6^u - S_1) = 2$. Hence $|S_1| + m(Df_6^u - S_1) = 6$. Also, $S_2 = \{x, u, v_1, v_3, v_5\}$, $S_3 = \{x, u, v_2, v_4, v_6\}$ and $S_4 = \{x, u, v_2, v_4, v_5\}$ are 2-dominating sets of Df_6^u with cardinality $|S_2| = |S_3| = |S_4| = 5$. Then $Df_6^u - S_2$, $Df_6^u - S_3$ and $Df_6^u - S_4$ contain two isolated vertices. Thus, $m(Df_6^u - S_2) = m(Df_6^u - S_3) = m(Df_6^u - S_4) = 1$. Hence $|S_2| + m(Df_6^u - S_2) = |S_3| + m(Df_6^u - S_3) =$ $|S_4| + m(Df_6^u - S_4) = 6$. Therefore, S_1, S_2, S_3 and S_4 are DI_2 -sets of Df_6^u . Thus, $DI_2(Df_6^u) = 6$. Hence from all the above three subcases, we get $DI_2(Df_n^u) = \lfloor \frac{n}{3} \rfloor + 4$ for $4 \le n \le 6$. **Case:(iii)** n > 6.

When $n \equiv 0 \pmod{3}$, S can be chosen as $\{x, u, u_{i+1}/i = 3m + 1 \text{ for } m = 0, 1, 2, \dots and i + 1 \leq n\}$. When $n \equiv 1 \pmod{3}$ and $n \equiv 2 \pmod{3}$, the DI_2 -set can be chosen as either $S = \{x, u, u_n, u_{i+1}/i = 3m + 1 \text{ for } m = 0, 1, 2, \dots and i + 1 \leq n\}$ or $S = \{x, u, u_{n-1}, u_{i+1}/i = 3m + 1 \text{ for } m = 0, 1, 2, \dots and i + 1 \leq n\}$ From the above two subcases, $|S| = \left\lceil \frac{n}{3} \right\rceil + 2$ and $m(Df_n^u - S) = 2$. Thus, the above described sets S form the DI_2 -set of Df_n^u . Hence, $DI_2(Df_n^u) = |S| + m(Df_n^u - S) = \left\lceil \frac{n}{3} \right\rceil + 4$.

IX. CONCLUSION

This article introduces the concept of 2-domination integrity as a new measure of vulnerability in graphs. Also, an algorithm to find DI_2 of a graph is developed. This vulnerability parameter is determined for standard graphs and for certain special graphs, friendship graph, bistar, flower and coconut tree. Further, some theorems in determining the 2domination integrity of graphs obtained by vertex switching of few graphs are included. Studying various graph vulnerability parameters is of great significance to network designers in order to construct a stable network where reconstruction occurs even after the disruption.

REFERENCES

- Annie Clare Antony and V. Sangeetha, "Paired Domination Integrity of Graphs,"*International Journal of Foundations of Computer Science*, 1-21, Jun. 2024.
- [2] B. Basavanagoud and S. Policepatil, "Integrity of wheel related graphs," *Punjab University Journal of Mathematics*, 53(5), 2021.
- [3] J. Christin Sherly and K. Uma Samundesvari, "Application of double domination integrity in PMU placement problem," *Discrete Mathematics, Algorithms and Applications*, (2025): 2550001.
- [4] J. Christin Sherly and K. Uma Samundesvari, "Some results on double domination integrity of graphs," in Proc. ICTPMAM (Holy Cross College(Autonomous), Nagercoil, 2023), pp. 85-90.
- [5] J. F. Fink, and M. S. Jacobson, n-Domination in graphs, in: Graph Theory with Application to Algorithms and Computer Science. John Wiley and Sons, New York, 282-300, 1985.
- [6] M. Ganeshan, "Prime Labeling of Bull Graph," Communications on Applied Nonlinear Analysis, 32(3), 2025.
- [7] G. Harisaran, G. Shiva, R. Sundareswaran and M. Shanmugapriya, "Connected Domination Integrity in Graphs," *Indian Journal of Natural Sciences*, vol. 12, no. 65, pp. 30271-30276, 2021.
- [8] A. Jancy Vini and C. Jayasekaran, "Results on Relatively Prime Domination Number of Vertex Switching of Some Graphs," *Ratio Mathematica*, 48, 2023.
- [9] M. V. Modha and K. K. Kanani, "k-cordial labeling of fan and double fan," *International Journal of Applied Mathematical Research*, 4(2), 362-369, 2015.
- [10] K. Nataraj, Puttaswamy and S. Purushothama, "Pendant Domination of Line Graph of N-Sunlet Graph," *Tuijin Jishu/ Journal of Propulsion Technology*, 45(4), 2024.
- [11] R. Pavithra and D. Vijayalakshmi, "On Grundy Chromatic Number For Splitting Graph On Different Graphs," *International Journal of Open Problems in Computer Science and Mathematics*, 17(1), 2024.
- [12] N. P. Shrimali and Y. M. Parmar, "Edge vertex prime labeling for some trees," *Journal of Applied Science and Computations*, 6(1), 1236-1249, 2019.
- [13] R. Sundareswaran and V. Swaminathan, "Domination Integrity in Graphs," Proceedings of International Conference on Mathematical and Experimental Physics, pp. 46-57, Narosa Publishing House, 2010.