
Power Function-Weibull Composite Distribution
for Modeling Lifetime Data

Chao Wang, Mengni Guan

Abstract—A new three-parameter distribution, referred to as
the Power Function-Weibull Composite (PFWC) distribution,
is introduced. This distribution features a power function
density up to an unknown threshold value and a Weibull
density beyond that threshold. Depending on its parameters,
the PFWC distribution can exhibit decreasing, increasing, or
bathtub-shaped hazard rate functions. We derive maximum
likelihood, moment, and nonlinear least squares estimators for
the distribution parameters. A simulation study is conducted
to evaluate the performance of these estimation methods,
supported by numerical computations. Additionally, tables of
critical values for the Kolmogorov–Smirnov, Anderson–Darling,
and Cramér–von Mises tests are provided for the PFWC
distribution with unknown parameters. The power of these
tests is also investigated under various scenarios. Finally, the
practical utility of the PFWC distribution is demonstrated
through the analysis of two real datasets.

Index Terms—composite distribution, lifetime data, left-
skewed, goodness-of-fit, negatively skewed, parameter estima-
tion.

I. INTRODUCTION

VARIOUS parametric families of distributions are com-
monly used in the analysis of lifetime data. A few

distributions, such as the exponential, Weibull, lognormal,
log-logistic, and gamma distributions, occupy a central posi-
tion among univariate distributions ([1]-[4]). However, when
these distributions prove inadequate or unsuitable, alternative
distributions are considered. Composite distributions are one
such alternative.

In 2005, [5] proposed the lognormal-Pareto composite
distribution, which combines a lognormal density up to
an unknown threshold and a two-parameter Pareto den-
sity beyond that threshold. When applied to a dataset of
2492 Danish fire insurance losses, their model demonstrated
a relatively good fit, outperforming several other heavy-
tailed distributions, including the lognormal, Pareto, inverse
Gaussian, gamma, and Weibull distributions. However, the
theoretical two-component composite distribution of [5], with
known mixing weights fixed and a priori, is restrictive in
many practical situations. To address this limitation, [6]
introduced a second lognormal-Pareto composite distribution,
which assumes the mixing weight varies with distribution
parameters. Using the same dataset, they showed that this
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modified distribution outperformed the orginal lognormal-
Pareto composite distribution proposed by [5].

Since 2005, various composite distributions have been pro-
posed in the literature, including the lognormal-Pareto ([5],
[6], [13]), lognormal-generalized Pareto ([6]), exponential-
Pareto ([7]), Weibull-Pareto ([8], [10]), Weibull-inverse
Weibull ([9]), Weibull-Burr ([14]), and Weibull-Lomax
([15]). Most recently, [17] introduced a power function-
Weibull composite distribution for insurance claims data,
following the design approach of [5]. Building on the work
of [6], [18] proposed a power function-lognormal composite
distribution, with applications to insurance claims and family
income data.

Over the past two decades, composite distributions have
found increasing applications in actuarial losses ([5], [6],
[11], [12], [13]), survival times ([8]), city sizes ([14]), and
reliability modeling ([9]). However, few composite distribu-
tions have been applied to model lifetime data.

In this paper, we propose the Power Function-Weibull
Composite (PFWC) distribution, which can be regarded as a
mixture distribution with a power function below a threshold
and a truncated Weibull distribution above it. The power
function, being the inverse of the Pareto model, is well-
suited for modeling shorter lifetimes, while the truncated
Weibull distribution effectively captures longer lifetimes.
Theoretically, the PFWC distribution can handle both highly
positively and negatively skewed data. Positively skewed data
typically consist of smaller values with higher frequencies
and occasional larger values with lower frequencies, whereas
negatively skewed data exhibit occasional smaller values with
lower frequencies and larger values with higher frequencies.
Modeling such data requires a distribution with similar
skewness characteristics. Unlike existing studies, we propose
fitting the logarithms of lifetimes, rather than the raw data,
to the PFWC distribution. This approach provides a novel
perspective for modeling lifetime data.

The remainder of this paper is organized as follows.
In Section II, we express the probability density function,
cumulative distribution function, quantile function, survival
function, and hazard rate function of the PFWC distri-
bution. In Section III, statistical issues of parameter es-
timation are investigated, and we describe a simulation
study conducted to evaluate the performance of the con-
sidered estimators. A probability plot is considered in Sec-
tion IV. Section V presents goodness-of-fit tests based on
the Kolmogorov–Smirnov (D), Anderson–Darling (A2), and
Cramér–von Mises (W 2) statistics. We describe applications
to two practical datasets in Section VI and provide conclud-
ing remarks in Section VII.
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II. POWER FUNCTION-WEIBULL COMPOSITE
DISTRIBUTION

A. Description of distribution

Let X be a random variable with probability density
function (PDF)

f(x) =

wf1(x), 0 < x ≤ θ,

(1− w)
f2(x)

1− F2(θ)
, θ ≤ x <∞,

(1)

where w is a mixing weight, 0 < w < 1; and f1(x) and f2(x)
have the respective forms of a power function distribution
and Weibull distribution, i.e.,

f1(x) =
αxα−1

θα
, 0 < x ≤ θ (2)

and

f2(x) =
τ

x

(
x

ψ

)τ
exp

[
−
(
x

ψ

)τ]
, x > 0. (3)

For the power function, α > 0 is a shape parameter and θ > 0
is a scale parameter; for the Weibull distribution, ψ > 0 is a
scale parameter and τ > 0 is a shape parameter. To impose
continuity and differentiability conditions on θ, we have

f1(θ) = f2(θ), f
′

1(θ) = f
′

2(θ),

where f
′

1(θ) and f
′

2(θ) are the respective first derivatives of
f1(x) and f2(x), evaluated at θ. We can obtain that

w
α

τ
= (1− w)

(
θ

ψ

)τ
(4)

and
α

τ
= 1−

(
θ

ψ

)τ
. (5)

By substituting (5) in (4), we can obtain w = 1−α/τ . This
composite density can be reparameterized and rewritten as

f(x) =


wα

xα−1

θα
, 0 < x ≤ θ,

w
α

x

(x
θ

)τ
exp

{
−w

[(x
θ

)τ
− 1
]}

, θ ≤ x <∞,
(6)

which we will refer to as the PFWC, denoted by
PFWC(α, θ, τ ). The PFWC is a distribution in three unknown
parameters: α > 0, θ > 0, and τ > 0. The cumulative
distribution function F (x) and quantile function Q(p) are,
respectively, given by

F (x) =


w
(x
θ

)α
, 0 < x ≤ θ,

1− α

τ
exp

{
−w

[(x
θ

)τ
− 1
]}

, θ ≤ x <∞
(7)

and

Q(p) =


θ
[ p
w

]1/α
, 0 < p ≤ w,

θ

{
1− ln [(1− p)(τ/α)]

w

}1/τ

, w ≤ p < 1.

(8)
As illustrated in Figure 1, the PDF plots for selected values

of α, θ, and τ indicate that the PFWC distribution is highly
flexible.

Figures 2 and 3 illustrate the skewness and kurtosis,
respectively, of the PFWC distribution for specific ranges
of α, θ, and τ : 0 < α < 1 and 2 < τ < 5 in Figure 2, and
1 < α < 5 and 10 < τ < 15 in Figure 3. These plots reveal
that the skewness and kurtosis of the PFWC distribution can
vary considerably in magnitude.

B. Survival and Hazard Rate Functions

It follows immediately from Equation (7) that the survival
function of the PFWC distribution is given by S(x;α, θ, τ) =
1− F (x;α, θ, τ), i.e.,

S(x) =


1− w

(x
θ

)α
, 0 < x ≤ θ,

α

τ
exp

{
−w

[(x
θ

)τ
− 1
]}

, θ ≤ x <∞.

(9)

The corresponding hazard rate function is obtained as
H(x;α, θ, τ) = f(x;α, θ, τ)/S(x;α, θ, τ), i.e.,

H(x) =



{
wα

xα−1

θα

}/{
1− w

(x
θ

)α}
, 0 < x ≤ θ,

w
τ

x

(x
θ

)τ
, θ ≤ x <∞.

(10)
It is difficult to analyze the shape behavior of H(x;α, θ, τ)

for 0 < x ≤ θ. However, it is clear that for τ < 1,
limx→∞H(x) → 0, and for τ > 1, limx→∞H(x) → ∞.
Figure 4 shows that the PFWC can have a decreasing,
increasing, or bathtub-shaped hazard rate function, depending
on its parameters.

III. PARAMETER ESTIMATION

A. Maximum Likelihood Estimation

Let X1, X2, · · · , Xn, be a random sample from the
PFWC(α, θ, τ ) distribution. Assume the unknown parameter
θ lies between the mth and (m + 1)th ordered observa-
tions, i.e., xm ≤ θ ≤ xm+1, where m is the number of
observations less than θ. Given an ordered random sample
x1 ≤ x2 ≤ · · · ≤ xm ≤ θ ≤ xm+1 ≤ · · · ≤ xn, the
likelihood function can be expressed as

L(x,ω) =
(1− α/τ)nαn

θmα+(n−m)τ
exp

[
(n−m)

(
1− α

τ

)
)
] m∏
i=1

xα−1i

n∏
i=m+1

xα−1i exp
[
−
(xi
θ

)τ (
1− α

τ

)]
.

(11)

The corresponding log-likelihood function is:

lnL(x,ω) = n ln
(

1− α

τ

)
+ n lnα− [mα+ (n−m)τ ] ln θ

+ α
m∑
i=1

lnxi + τ
n∑

i=m+1

lnxi −
n∑
i=1

lnxi

−
(

1− α

τ

) n∑
i=m+1

(xi
θ

)τ
,

(12)

where ω = (α, θ, τ)T .
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Fig 1. Plots of PFWC distribution for selected parameter values
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Fig 2. Plots of skewness of PFWC distribution
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Fig 3. Plots of kurtosis of PFWC distribution

Since the maximum likelihood (ML) estimate of θ can
only lie between xm and xm+1, the ML estimators of ω can
be obtained numerically through the following steps:

Step 1: For each m = 1, 2, · · · , n−1, numerically find the
values of α and τ that maximize the log-likelihood function
lnL(x, ω) for θ in the interval (xm, xm+1). This yields n−1
sets of estimates:

(α̂1, θ̂1, τ̂1), (α̂2, θ̂2, τ̂2),· · · , (α̂n−1, θ̂n−1, τ̂n−1).
Step 2: Compute the log-likelihood function values for

each of the n − 1 sets of estimates. The optimal estimates,
denoted by (α̂mle, θ̂mle, τ̂mle), are those with the largest log-
likelihood value among all sets.

The asymptotic variance and covariance of the ML esti-

mators are given by the inverse of the Fisher information
matrix:

I(ω) = −E∂
2 lnL(x,ω)

∂ω∂ωT

=

I11 I12 I13
I21 I22 I23
I31 I32 I33



= E


−∂

2 lnL(x,ω)

∂α2
−∂

2 lnL(x,ω)

∂α∂θ
−∂

2 lnL(x,ω)

∂α∂τ

−∂
2 lnL(x,ω)

∂θ∂α
−∂

2 lnL(x,ω)

∂θ2
−∂

2 lnL(x,ω)

∂θ∂τ

−∂
2 lnL(x,ω)

∂τ∂α
−∂

2 lnL(x,ω)

∂τ∂θ
−∂

2 lnL(x,ω)

∂τ2

 ,
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where the elements of the matrix are defined as:

I11 =
[
m+ (n− 2m)

α

τ

] [ 1

α2
+

1

(τ − α)
2

]
,

I12 = I21

=
1

θ

[
(n−m) + (3m− 2n)

α

τ

]
+

1

θ
(n−m)

α

τ

1

1− α/τ

(
2− α

τ

)
,

I13 = I31

= − m

τ2(1− α/τ)

− (n−m)α

τ3

[
1

(1− α/τ)2
− b1

(
1− α

τ

)
exp

(
1− α

τ

)]
,

I22 =
α

θ2

{
m
(

1− α

τ

)
− (n−m)

[
1− (τ + 1)

(
2− α

τ

)]}
+
α

θ2

{
(2m− n)(α+ 1)

(
1− α

τ

)}
,

I23 = I32 = − α

θτ
(n−m)

1

(1− α/τ)

− α

θτ

{
(n−m)b1

(
1− α

τ

)2
exp

(
1− α

τ

)
+ (2m− n)

α

τ

}
,

I33 = m
(

1− α

τ

)[ 1

(τ − α)2
− 1

τ2

]
+

(n−m)α

τ3

[
2

(1− α/τ)
+

α

τ(1− α/τ)2
+ 2

]
− 2(n−m)α2

τ3
1

(τ − α)

(
2− α

τ

)
+

(n−m)α

τ3

[
2α

τ
exp

(
1− α

τ

)
b1

]
+

(n−m)α

τ3

(
1− α

τ

)2
exp

(
1− α

τ

)
b2,

where b1 =
∫ +∞
1

u lnu exp(−(1− α/τ)u) du and b2 =∫ +∞
1

u(lnu)2 exp(−(1− α/τ)u) du.

B. Method of Moments

The method of moments (MM) is a parameter estimation
technique that matches sample moments to the theoretical

moments of a distribution. In the case of the PFWC distri-
bution, the rth raw moment can be expressed as

E(Xr) = θr
[

wα

(α+ r)
+
α

τ
eww−r/τ iga

(
1 +

r

τ
, w
)]
,

(13)
where iga(b, x) =

∫ +∞
x

tb−1 exp(−t) dt is the upper incom-
plete gamma function.

From (13), the first, second, and third raw moments
can be readily derived. Using the method of moments, the
theoretical moments E(X), E(X2), and E(X3) are equated
to their corresponding sample moments:

1

n

n∑
i=1

xi,
1

n

n∑
i=1

x2i , and
1

n

n∑
i=1

x3i ,

respectively. This leads to the following nonlinear system of
equations:



θ

[
wα

(α+ 1)
+
α

τ
eww−1/τ iga

(
1 +

1

τ
, w

)]
=

1

n

n∑
i=1

xi,

θ2
[

wα

(α+ 2)
+
α

τ
eww−2/τ iga

(
1 +

2

τ
, w

)]
=

1

n

n∑
i=1

x2i ,

θ3
[

wα

(α+ 3)
+
α

τ
eww−3/τ iga

(
1 +

3

τ
, w

)]
=

1

n

n∑
i=1

x3i .

(14)
This system can be solved iteratively for the parame-

ters (α, θ, τ ), yielding the method of moments estimators
(MMEs) denoted by α̂mm, θ̂mm, and τ̂mm.

C. Nonlinear Least Squares Estimation
Nonlinear least squares (NLS) is a frequently employed

technique for parameter estimation, which minimizes the dif-
ference between the empirical CDF and the order statistics.
By applying the logarithm to Equation (7), we derive

lnF (x) = lnw + α lnx− α ln θ, 0 < x ≤ θ,

ln(1− F (x)) = lnw − w
(x
θ

)τ
, θ ≤ x <∞.

(15)

In this method, it is necessary to use a plotting position
to estimate the distribution function corresponding to the ith
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Table I: Biases and MSEs of MLEs for PFWC distribution

PFWC(2,5,2.5)

n bias(α) mse(α) bias(θ) mse(θ) bias(τ ) mse(τ )

10 0.1985 0.4748 3.1525 22.5913 12.0121 48.2889
20 0.0896 0.2330 1.8317 17.9147 7.6881 27.7242
50 0.1018 0.1480 0.2513 8.4966 6.2671 15.1875
100 0.0800 0.0834 -0.1734 3.6947 1.9627 5.8948
200 0.0404 0.0353 -0.1276 1.6047 0.0725 0.1464
500 0.0163 0.0108 -0.0080 0.4509 0.0359 0.0421

PFWC(10,8,15)

n bias(α) mse(α) bias(θ) mse(θ) bias(τ ) mse(τ )

10 1.2506 21.2075 0.4167 0.9731 17.9478 28.7112
20 0.9093 12.5836 0.1137 0.9228 5.5221 12.2384
50 0.5432 5.7755 -0.1758 0.8717 3.8611 8.4252
100 0.4429 3.3993 -0.2069 0.6396 1.1113 3.3361
200 0.2476 1.8073 -0.1262 0.4000 0.5481 3.7932
500 0.0854 0.5547 -0.0236 0.0768 0.2197 1.2715

order statistic. We take this as pi = i
n+1 . The nonlinear least

squares estimators (NLSEs) of α, θ, and τ , denoted by α̂nls,
θ̂nls, and τ̂nls, respectively, can be obtained by minimizing

G(α, θ, τ) =
m∑
i=1

{ln pi − lnw − α lnxi + α ln θ}2

+

n∑
i=m+1

{
ln(1− pi)− lnw + w

[(xi
θ

)τ
− 1
]}2

,

(16)
which is solved similarly to (12).

D. Simulation study
We present a Monte Carlo simulation to illustrate the esti-

mation methods for PFWC(1.5,5,2.5) and PFWC(10,8,15),
as described above. We note that PFWC(1.5,5,2.5) is
right-skewed, with skewness coefficient of 0.2880, and
PFWC(10,8,15) is left-skewed, with skewness coefficient of
–1.0902.

We compare the performance of the MLEs, MMEs, and
NLSEs in terms of biases and mean square errors (MSEs)
using 10,000 replications, examining sample sizes ranging
from very small (n = 10) to very large (n = 500).
All computations were performed using MATLAB R2015b.
Simulation study results are summarized in Tables I–III, from
which we observe the following:

(1) As the sample size n increases, the biases and mean
squared errors (MSEs) generally decrease;

(2) For the PFWC(10,8,15) distribution, maximum like-
lihood estimators (MLEs) tend to have smaller biases and
MSEs than method of moments estimators (MMEs), whereas
for PFWC(1.5,5,2.5), MMEs typically outperform MLEs.
This suggests no clear superiority between MLEs and
MMEs;

(3) MMEs generally demonstrate better performance than
nonlinear least squares estimators (NLSEs) in terms of both
biases and MSEs.

Therefore, we recommend MLEs or MMEs for estimating
the parameters of the PFWC distribution, with NLSEs as a
secondary option.

IV. PROBABILITY PLOT

The probability plot is a straightforward tool for evaluating
whether a proposed distribution fits a given dataset. When the

Table II: Biases and MSEs of MMs for PFWC distribution

PFWC(2,5,2.5)

n bias(α) mse(α) bias(θ) mse(θ) bias(τ ) mse(τ )

10 0.0529 0.3177 0.0725 11.4781 2.6633 37.6517
20 0.0479 0.1556 -0.1232 8.8290 1.7714 22.9067
50 0.0025 0.0690 -0.1179 4.8208 0.5411 7.4750
100 0.0211 0.0428 -0.1300 2.6565 0.1383 0.4718
200 0.0239 0.0276 -0.0742 1.2185 0.0599 0.1198
500 0.0111 0.0108 -0.0326 0.4436 0.0235 0.0419

PFWC(10,8,15)

n bias(α) mse(α) bias(θ) mse(θ) bias(τ ) mse(τ )

10 2.2955 17.0902 -0.4401 0.6524 14.0902 51.7285
20 1.2524 7.7237 -0.3311 0.5463 7.0401 29.3602
50 0.7444 3.8830 -0.2159 0.4115 4.0915 8.8716
100 0.4492 2.5312 -0.1128 0.3322 4.4460 12.8579
200 0.2712 1.3561 -0.0733 0.2137 2.9724 12.2004
500 0.1540 0.7101 -0.0304 0.1251 1.6525 5.3423

Table III: Biases and MSEs of NLSEs for PFWC
distribution

PFWC(2,5,2.5)

n bias(α) mse(α) bias(θ) mse(θ) bias(τ ) mse(τ )

10 -0.0745 0.2653 -0.0109 13.4437 2.2494 35.7349
20 -0.0121 0.2285 0.0684 15.4717 3.6940 25.4868
50 0.0000 0.1673 0.0857 16.7614 4.4048 12.4749
100 0.0570 0.1425 -0.6006 12.3572 1.5842 20.2862
200 0.0915 0.1095 -1.0095 7.4364 0.4017 2.2671
500 0.0529 0.0604 -0.5736 3.2979 -0.0451 0.0682

PFWC(10,8,15)

n bias(α) mse(α) bias(θ) mse(θ) bias(τ ) mse(τ )

10 -0.8449 15.3496 0.0728 0.8581 14.3688 79.8894
20 -0.5935 9.4413 -0.0964 1.2272 23.8231 59.2279
50 -0.1983 6.6545 -0.4578 1.7664 4.6022 41.6809
100 0.3238 5.4045 -0.7251 2.0540 3.7528 15.8347
200 0.5512 4.3639 -0.7871 2.1494 1.4216 5.0974
500 0.4751 2.7880 -0.6047 1.7755 -0.2834 2.1547

quantiles of the theoretical distribution are plotted against
the sample order statistics, the points should approximately
form a straight line if the distribution is a good fit. For the
PFWC distribution, the quantile function is given by (8), and
applying the logarithm to this function results in

lnx(p) =


ln θ +

1

α
(ln p− lnw) , 0 < p ≤ w,

ln θ +
1

τ
ln

[
1− 1

w
ln

(
1− p
1− w

)]
, w ≤ p < 1,

(17)
where w = 1− α/τ . Define

p1 =


1

α
(ln p− lnw) , 0 < p ≤ w,

1

τ
ln

[
1− 1

w
ln

(
1− p
1− w

)]
, w ≤ p < 1.

(18)

Equation (18) can be rewritten as:
1

α
(ln p− lnw) = − ln θ + lnx, 0 < x ≤ θ,

1

τ
ln

[
1− 1

w
ln

(
1− p
1− w

)]
= − ln θ + lnx, x ≥ θ.

(19)
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Equation (19) describes a linear relationship between p1
and lnx, with an intercept of − ln θ and a slope of 1. It is
also evident that when p = w, p1 = 0 and x = θ. Figure
5 displays the probability plot for 100 sets of simulated
data generated from the PFWC(10,8,15) distribution, using
a random seed of 1234. The solid line AB in Figure 5
represents the probability plot constructed based on Equation
(17). The starting point A and endpoint B correspond to
the natural logarithms of the minimum and maximum values
of the simulated data, denoted by ln(xmin) and ln(xmax),
respectively. In this example, ln(xmin) = 1.7570 and
ln(xmax) = 2.2480. The point E(ln θ, 0) is the intersection
of the lines lnx = ln θ and p1 = 0, which precisely
corresponds to p = w = 1−α/τ = 1−10/15 = 0.3333. The
line p1 = 0 divides AB into two segments. For the upper
segment, AE, p1 is 1/α (ln p− lnw), while for the lower

segment, BE, it is
1

τ
ln

[
1− 1

w
ln

(
1− p
1− w

)]
. Additionally,

the straight line p = 0.3333 divides AB into two regions:
p < 0.3333 and p > 0.3333.

To assess whether the PFWC distribution is suitable for
fitting a given dataset, we use a probability plot constructed
as follows:

(1) Arrange the data in ascending order, denoted as x =
(x1, x2, · · · , xn);

(2) Obtain the maximum likelihood estimates (MLEs) of
α, θ, and τ , denoted as α̂, θ̂, and τ̂ , respectively. Then
compute ŵ = 1− α̂/τ̂ ;

(3) Compute pi =
i

n+ 1
for i = 1, 2, · · · , n;

(4) Compute p̂1 from (19): p̂1i = 1/α (ln pi − ln ŵ) when

pi < ŵ, and p̂1i =
1

τ̂
ln

[
1− 1

ŵ
ln

(
1− pi
1− ŵ

)]
when pi >

ŵ;
(5) Plot p̂1 against lnx. If the points approximately form

a straight line, the PFWC distribution can be used to model
the dataset.

V. GOODNESS-OF-FIT TESTS

A. The test statistics

Let x = (x1, x2, · · · , xn) be an independent random
sample drawn from a continuous distribution F (x). In this
study, a goodness-of-test is employedd to evaluate the null
hypothesis:

H0 : F (x) = F0(x; ω̂), (20)

where F0(x; ω̂) represents the PFWC distribution with es-
timated parameters, ω̂ = (α̂, θ̂, τ̂)T . To assess whether
the PFWC distribution is suitable for a given dataset, the
following three goodness-of-fit tests are utilized:
• Kolmogorov–Smirnov (D):

D = max
0≤i≤n

{max(D1, D2)} , (21)

where D1 =
i

n
− F0(x(i), ω̂) and D2 = F0(x(i), ω̂)−

i− 1

n
. Here, F0(x(i), ω̂) is the estimated cumulative

distribution function of the original sample.
• Anderson–Darling (A2):

A2 = − 1

n

{
n∑
i=1

(2i− 1)(A1 +A2)

}
− n, (22)

where A1 = log
[
F0(x(i), ω̂)

]
, and A2 =

log
[
1− F0(x(i), ω̂)

]
.

• Cramér–von Mises (W 2):

W 2 =
n∑
i=1

{
F0(x(i), ω̂)− i− 0.5

n

}2

+
1

12n
. (23)

The Kolmogorov–Smirnov (D), Anderson–Darling (A2),
and Cramér–von Mises (W 2) tests are among the most
widely used methods for assessing the goodness-of-fit of a
null hypothetical distribution to data. For further details on
these tests, refer to [19].

B. Critical values of the test statistics

Suppose x is a random variable following the PFWC
distribution. Then, the transformed variable y = w(x/θ)α

follows the distribution:

F (y) =



y, 0 < y ≤ w,

1− (1− w)

exp

−w
( y

w

) 1

1− w − 1

 , w ≤ y <∞,

(24)
where w = 1 − α/τ . This transformation reduces the
problem in (20) to testing whether the values of y follow the
distribution given in (24). Consequently, the null hypothesis
becomes:

H0 : F (y) = F0(y; ŵ). (25)

Since goodness-of-fit tests are not distribution-free when
the population parameters must be estimated, different crit-
ical values correspond to different null hypotheses. In this
case, both y and the critical values of these tests depend
solely on the value of w. Therefore, the Monte Carlo simu-
lation technique is employed to determine the critical values
for these tests for a given w. The procedure for finding the
critical values of the D test is as follows:

(1) Generate a random sample of size n from the distri-
bution (24) for a given w;

(2) Sort the data in ascending order, compute F0(y(i), w),
and calculate D using Equation (21);

(3) Repeat steps 1 and 2 20,000 times. Order the resulting
20,000 test statistics and determine the 80th, 85th, 90th, 95th,
and 99th percentiles. These quantiles approximate the critical
values for significance levels of 0.20, 0.15, 0.10, 0.05, and
0.01, respectively.

For w = 0.4, the critical values of the D, A2, and W 2

tests are presented in Table IV for significance leves of 0.20,
0.15, 0.10, 0.05 and 0.01. For instance, when n = 20, the null
hypothesis is rejected if the test statistic D exceeds 0.2642,
0.2934, or 0.3523 at significance leves of 0.10, 0.05, and
0.01, respectively.

When the critical values of D in table IV are compared
with those in the standard table for the Kolmogorov-Smirnov
test (Table 1 of [20]), it is evident that the Monte Carlo
critical values closely align with the results of [20]. For
instance, at a significance level of 0.05, the critical value
of D for n = 20 is 0.2935, which is very close to the value
of 0.294 reported in [20]. Regarding the Anderson–Darling
test, [21] provides a table of asymptotic significance points
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Fig 5. Probability plot for 100 sets of simulated PFWC(10,8,15) data

Table IV: Critical values for D, A2, and W 2

n Statistic 0.20 0.15 0.10 0.05 0.01

D 0.4446 0.4725 0.5080 0.5609 0.6629
5 A2 1.3982 1.5995 1.9513 2.5044 3.9151

W 2 0.2407 0.2835 0.3375 0.4406 0.6791

D 0.3224 0.3419 0.3679 0.4082 0.4817
10 A2 1.4177 1.6281 1.9388 2.4914 3.7799

W 2 0.2414 0.2829 0.3448 0.4473 0.6904

D 0.2314 0.2461 0.2642 0.2934 0.3523
20 A2 1.4055 1.6137 1.9305 2.5035 3.9485

W 2 0.2415 0.2833 0.3464 0.4579 0.7362

D 0.1662 0.1763 0.1891 0.2100 0.2522
40 A2 1.4191 1.6318 1.9459 2.5503 3.9926

W 2 0.2434 0.2843 0.3477 0.4702 0.7471

D 0.1361 0.1443 0.1557 0.1733 0.2062
60 A2 1.4217 1.6288 1.9429 2.5163 3.8755

W 2 0.2445 0.2857 0.3485 0.4608 0.7459

D 0.1180 0.1256 0.1351 0.1501 0.1789
80 A2 1.4220 1.6371 1.9383 2.4951 3.8268

W 2 0.2443 0.2857 0.3486 0.4654 0.7221

D 0.1053 0.1118 0.1206 0.1341 0.1606
100 A2 1.4005 1.6083 1.9399 2.5260 3.8284

W 2 0.2387 0.2823 0.3456 0.4669 0.7263

D 0.0751 0.0796 0.0856 0.0955 0.1141
200 A2 1.4140 1.6253 1.9373 2.5073 3.8350

W 2 0.2420 0.2844 0.3500 0.4626 0.7336

D 0.0533 0.0566 0.0608 0.0671 0.0803
400 A2 1.4146 1.6343 1.9366 2.4981 3.7878

W 2 0.2437 0.2853 0.3479 0.4598 0.7238

D 0.0434 0.0460 0.0497 0.0551 0.0658
600 A2 1.4099 1.6123 1.9325 2.4909 3.8025

W 2 0.2418 0.2827 0.3492 0.4595 0.7257

D 0.0376 0.0399 0.0430 0.0478 0.0566
800 A2 1.4062 1.6232 1.9305 2.4886 3.8000

W 2 0.2413 0.2850 0.3464 0.4637 0.7293

D 0.0338 0.0358 0.0385 0.0427 0.0519
1000 A2 1.4238 1.6243 1.9332 2.4783 3.9608

W 2 0.2435 0.2872 0.3499 0.4556 0.7623

for A2 at levels 0.10, 0.05, and 0.01, which are 1.933, 2.492,
and 3.857, respectively. The values in Table IV show good
agreement with these asymptotic values. For the Cramér–
von Mises test, the asymptotic significance points for W 2

at levels 0.2, 0.15, 0.10, 0.05, and 0.01 are 0.2412, 0.2841,
0.3473, 0.4614, and 0.7435, respectively (Table 1 of [22]).
Our results for n = 1000 are 0.2435, 0.2872, 0.3499, 0.4556,
and 0.7623, respectively, demonstrating strong consistency
with those of [22].

C. Critical Value Approximations

To smooth the critical values in Table IV and facilitate
future use of the test statistics, we modeled the critical
values as functions of sample size. Specifically, we developed
separate regression models for the critical values of the
Kolmogorov–Smirnov (D) statistic at significance levels of
0.20, 0.15, 0.10, 0.05, and 0.01. The resulting models are as
follows:

• D0.20 = 0.004569 +
1.003507√

n
, (R2 = 0.9993)

• D0.15 = 0.004799 +
1.065908√

n
, (R2 = 0.9994)

• D0.10 = 0.005279 +
1.146039√

n
, (R2 = 0.9993)

• D0.05 = 0.006258 +
1.268593√

n
, (R2 = 0.9991)

• D0.01 = 0.009201 +
1.501386√

n
, (R2 = 0.9986)

Figure 6 displays the regression models (solid lines)
alongside the tabled critical values for the D test statistics
(symbols) at significance levels of 0.20 and 0.01, showing
excellent agreement. Additionally, the R2 values of the re-
gression models range from 0.9986 to 0.9994, indicating that
the curves provide a strong fit to the tabled values. Similar
graphs were also obtained for the remaining significance
levels, further validating the accuracy of the models.

The critical values of the A2 and W 2 statistics are plotted
in Figures 7 and 8, respectively. It is evident that the critical
values decrease as α increases for a fixed sample size n,
while they remain relatively constant as n increases for a
fixed α. Furthermore, Figures 7 and 8 reveal that the critical
values of both statistics follow a similar pattern.
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D. Power comparison

In statistics, the power of a test is defined as the probability
of rejecting the assumed null hypothesis. In this subsection,
we use the Monte Carlo approach to evaluate the power of
the D, A2, and W 2 tests for the PFWC distribution. Four
alternative distributions are considered:

• Gamma(a,b):
1

baΓ(a)
xa−1e−x/b

• χ2(v) :
x(v−2)/2

Γ(v/2)
2−v/2e−x/2

• LN(µ, σ2) :
1

xσ
√

2π
exp

{
−(lnx− µ)2

2σ2

}
• Weibull(a,b):

b

a

(x
a

)b−1
e−(x/a)

b

The null hypothesis is set as the PFWC(1.5,7,2.5) distribu-
tion, while the alternative distributions are Gamma(3.5,2.7),
χ2(10), LN(2.3,0.5), and Weibull(10,2). Figure 9 displays the
density curves of these five competing distributions, showing
that the differences between them are minimal.

The power of the tests was determined by generating
10,000 random samples of size n from each of the four
alternative distributions, with a significance level of 5%. The
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Table V: Values of the power for testing the
PFWC(1.5,7,2.5) for D, A2, and W 2

n Statistic Gamma(3.5,2.7) χ2(10) LN(2.3,0.5) Weibull(10,2)

D 0.1921 0.0911 0.0702 0.2551
10 A2 0.3073 0.1221 0.1007 0.4326

W 2 0.2099 0.1023 0.0723 0.2851

D 0.3238 0.1148 0.0794 0.4313
20 A2 0.4959 0.1683 0.1190 0.6664

W 2 0.3624 0.1370 0.0790 0.4846

D 0.5493 0.1702 0.0843 0.6973
40 A2 0.7385 0.2554 0.1288 0.8863

W 2 0.5877 0.2051 0.0815 0.7419

D 0.7383 0.2521 0.0996 0.8745
60 A2 0.8863 0.3662 0.1656 0.9747

W 2 0.7679 0.3012 0.0958 0.9062

D 0.8574 0.3099 0.1118 0.9508
80 A2 0.9530 0.4530 0.1945 0.9944

W 2 0.8760 0.3770 0.1037 0.9656

D 0.9272 0.3826 0.1285 0.9828
100 A2 0.9847 0.5420 0.2341 0.9990

W 2 0.9383 0.4526 0.1236 0.9866

D 0.9877 0.5094 0.1638 0.9992
150 A2 0.9984 0.7100 0.3190 1.0000

W 2 0.9902 0.6056 0.1565 0.9994

D 0.9986 0.6527 0.2194 1.0000
200 A2 0.9998 0.8381 0.4384 1.0000

W 2 0.9988 0.7463 0.2244 1.0000

D 1.0000 0.9234 0.4324 1.0000
400 A2 1.0000 0.9857 0.7755 1.0000

W 2 1.0000 0.9598 0.4733 1.0000

D 1.0000 0.9873 0.6389 1.0000
600 A2 1.0000 0.9993 0.9353 1.0000

W 2 1.0000 0.9951 0.6965 1.0000

results of the power study are summarized in Table V. Key
observations from the comparison of the three tests include:

(1) For each test statistic, the power of rejection increases
as the sample size n increases;

(2) When the alternative distribution is LN(2.3,0.5), the
power of all tests is the lowest, particularly for sample sizes
smaller than 80, where the performance is extremly poor;

(3) For a fixed sample size n, the power of the tests
decreases in the order A2, W 2, and D. Thus, the A2

test statistic demonstrates the highest power of rejection,
outperforming both the W 2 and D test statistics.

VI. DATA ANALYSIS

We analyze two datasets using the proposed distribution.
The first dataset (Example 3.4.1 of [3]) consists of the

number of cycles to failure for 60 electrical appliances
in a life test. [3] studied this dataset using nonparametric
estimates of hazard rate functions. The 60 observations,
sorted in ascending order, are as follows:

14, 34, 59, 61, 69, 80, 123, 142, 165, 210, 381, 464, 479,
556, 574, 839, 917, 969, 991, 1064, 1088, 1091, 1174, 1270,
1275, 1355, 1397, 1477, 1578, 1649, 1702, 1893, 1932, 2001,
2161, 2292, 2326, 2337, 2628, 2785, 2811, 2886, 2993, 3122,
3248, 3715, 3790, 3857, 3912, 4100, 4106, 4116, 4315, 4510,
4584, 5267, 5299, 5583, 6065, 9701.

The second dataset (Table 2.2 of [24]) consists of the
service times (hours of operation without failure) of aircraft
windshields at the time of observation. This dataset was
analyzed by [23] using the Weibull distribution and by [15]
using the Weibull-Lomax distribution. The 65 observations
are as follows:

46, 140, 150, 248, 280, 313, 389, 487, 622, 900, 952, 996,
1003, 1010, 1085, 1092, 1152, 1183, 1244, 1249, 1262, 1360,
1436, 1492, 1580, 1719, 1794, 1915, 1920, 1963, 1978, 2053,
2065, 2117, 2137, 2141, 2163, 2183, 2240, 2341, 2435, 2464,
2543, 2560, 2592, 2600, 2670, 2717, 2819, 2820, 2878, 2950,
3003, 3102, 3304, 3483, 3500, 3622, 3665, 3695, 4015, 4628,
4806, 4881, 5140.

We denote the first and second datasets as LIFE and
SERVICE, respectively. Their basic descriptive statistics are
shown in Table VI. Both datasets exhibit positive skewness
and are leptokurtic, which are typical characteristics of life-
time data. However, the log-transformed datasets, log(LIFE)
and log(SERVICE), display left-skewness and leptokurtosis.
This suggests that a left-skewed distribution, which is uncom-
mon for lifetime data, would be required to model the log-
transformed data. This feature is further illustrated in Figure
10, where the histograms of LIFE and SERVICE are heavily
right-skewed, while their log-transformed counterparts are
clearly left-skewed.

Table VII presents the maximum likelihood estimates
(MLEs) of α, θ, and τ , along with their corresponding
asymptotic standard errors (in parentheses), derived from the
associated Fisher information matrix.

To assess the goodness-of-fit of the PFWC distribution, we
conducted the Kolmogorov–Smirnov (D), Anderson–Darling
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Table VI: Descriptive statistics of LIFE and SERVICE data

LIFE Log(LIFE) SERVICE Log(SERVICE)

Mean 2193.03 7.0675 2081.42 7.3637
Standard Error 1920.15 1.4514 1230.39 0.9200
Median 1675.50 7.4237 2065.00 7.6329
Minimum 14.00 2.6391 46.00 3.8286
Maximum 9701.00 9.1800 5140.00 8.5448
Skewness 1.2613 -1.1854 0.4485 -1.6316
Kurtosis 5.2313 3.7356 2.7837 5.9128

Table VII: MLE of parameters (standard errors in
parentheses)

α̂ θ̂ τ̂

Log(LIFE) 4.3481(0.8086) 7.9676(0.1797) 14.6985(2.3547)
Log(SERVICE) 8.0592(1.7684) 7.6578(0.1292) 18.2512(2.3056)

(A2), and Cramér–von Mises (W 2) tests for the cumula-
tive distributions of the data under the PFWC hypothesis.
Generally, smaller values of these test statistics indicate a
better fit. The results, including the test statistics and p-values
(in parentheses), are reported in Table VIII. These results
demonstrate that the log-transformed LIFE and SERVICE
datasets can be statistically well-described by the PFWC
distribution.

Figure 11 shows the empirical survival function with 99%
confidence bounds, along with the fitted PFWC distribution.
Figure 12 presents the probability plot against the PFWC, as
described in Section IV. From Figure 11, it is evident that the
fitted PFWC distribution lies within the confidence bounds.
Similarly, Figure 12 shows that the data points approximately

Table VIII: EDF goodness-of-fit measures for fitted PFWC

D W 2 A2

Log(LIFE) 0.4306(0.6902) 0.0684(0.5400) 0.0917(0.6942)
Log(SERVICE) 0.4209(0.6971) 0.0677(0.5423) 0.0867(0.7124)

follow a straight line. These graphical results suggest that the
PFWC distribution is a suitable choice for modeling the two
datasets.

VII. CONCLUSION

We introduced a three-parameter Power Function-Weibull
Composite (PFWC) distribution and investigated its key
properties, including the probability density function (PDF),
cumulative distribution function (CDF), quantile function,
survival function, and hazard rate function. We also discussed
three estimation methods for the distribution parameters:
maximum likelihood estimation (MLE), method of moments
(MM), and nonlinear least squares (NLS). The performance
of these methods was compared through extensive Monte
Carlo simulations. Additionally, we computed the critical
values of three goodness-of-fit test statistics—Kolmogorov–
Smirnov (D), Anderson–Darling (A2), and Cramér–von
Mises (W 2)—using Monte Carlo simulations. The power
of the proposed tests against four alternative distributions
was also evaluated through Monte Carlo simulations. To
demonstrate the practical utility of the PFWC distribution,
we applied it to two real lifetime datasets. Unlike most
studies, we found that the log-transformed lifetime data,
rather than the original data, can be effectively modeled by
the PFWC distribution, as confirmed by probability plots and
goodness-of-fit tests. This finding provides a novel approach
for modeling lifetime data.
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