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Abstract—It is vital to address the multi-period dynamic
portfolio problem under uncertain exit time to dynamically
adjust investment strategy and withdraw investment timely.
Given the complexity of a fuzzy environment, investors often
make decisions based on uncertain information about the
financial market. To quantify this kind of uncertain exit time, a
novel class of fuzzy numbers with one parameter is defined for
the first time, which reflects investors’ willingness to exit and
their risk attitudes. Using novel trapezoidal fuzzy numbers as
special examples, their numerical characteristics (mean,
variance and covariance) are strictly derived based on
possibility theory; the trends of these characteristics are
analyzed through parameter derivation; their arithmetic
operations (addition, scalar multiplication) are defined and
corresponding closure property is verified in novel trapezoidal
fuzzy numbers. Referring to the properties of numerical
characteristics in probability theory, our novel trapezoidal
fuzzy numbers exhibit similar properties by rigorous
mathematical derivation. Moreover, fuzzy possibilistic entropy
with an adjustment coefficient is introduced to measure
diversification in the traditional MV model. Consequently, we
propose a mean-variance-entropy multi-period dynamic
portfolio model with uncertain exit time described by novel
fuzzy numbers with a parameter. In theory, our model offers
two key advantages. (1) The model output can guarantee the
diversification by adopting fuzzy entropy with an adjustment
coefficient. (2) Investors can withdraw investments promptly
according to exit will by setting the exit point of profit (EP) and
exit point of loss (EL). Finally, a numerical example is provided
to demonstrate the practical feasibility of our proposed model,
offering more effective solutions for investors facing dynamic
exit times.

Index Terms— portfolio, multi-period, possibility theory,
novel fuzzy number, uncertain exit time 
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I. INTRODUCTION

odern portfolio theory (MPT) by Markowitz [1] in the
1950s indisputably lays the cornerstone for modern

finance. A mathematical idea was put forward by using
expectation and variance of asset returns to quantify return
and risk, respectively. However, the modern portfolio theory
is not without its limitations, it has the following two aspects:
(1) the mean-variance model in MPT is a static and simplified
model that does not satisfy long-term investors’ real demand;
(2) it is easy for the MV model to yield extreme results,
which is inconsistent with the principle of diversified
investment. Therefore, numerous aspects in the portfolio
field need to be improved and enriched, which attracts a
number of scholars to study the hot topic.

A. Literature Review
In the complex financial market, the return and risk of

financial products are uncertain. Quantifying uncertainty to
construct a portfolio model is an important component.
Earlier studies [2,3] on portfolios focused on the stochastic
environment based on probability theory. This relies on
capturing the probability distribution of asset returns as
accurately as possible, which is very difficult for scholars and
investors. In real investment, investors often predict the
future asset return based on their own experience according
to the real market information. That implies that another
uncertainty with fuzzy information exists in the investment
field. It was not until the fuzzy set theory proposed by Zadeh
[4] that scholars began to pay more attention to portfolios in
the fuzzy environment.

Subsequent to the emergence of fuzzy set theory, a
multitude of scholars embarked on the exploration of the
theory of fuzzy variables in relation to probability theory.
Dubois and Prade [5] formulated the definition of the mean of
fuzzy interval numbers and corroborated that the mean of the
sum of two fuzzy numbers was commensurate with the sum
of their individual means. Moreover, Carlsson and Fullér [6]
devised the concepts of possibilistic variance and covariance
of fuzzy numbers. Concerning the numerical characteristics
of fuzzy variables, possibility theory was initially introduced
by Zadeh [7] and subsequently furthered by Dubois and
Prade [5]. Grounded on possibility theory, Carlsson and
Fullér [6] defined the upper and lower possibilistic means of
fuzzy numbers. Zhang [8] subsequently defined the upper
and lower possibilistic variances and covariances and
proceeded to deliberate on the properties of their numerical
characteristics, which enriched the possibilistic theory.

An increasing number of scholars have directed their
attention to the fuzzy portfolio problems. They substituted
fuzzy mean and covariance for the random mean and
covariance in Markowitz’s M-V model. Wadata [9] and
Ramaswamy [10] delved into portfolio models underpinned
by fuzzy decision theory. Tanaka and Guo [11] put forward
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the portfolio model of fuzzy probability and examined the
portfolio model with an exponential probability distribution.
Carlsson [6] devised the possibility portfolio model without
short selling, under the condition that the return was
considered as trapezoidal fuzzy numbers. Khayamim et al.
[12] utilized fuzzy logic and possibility theory to probe into
the uncertain factors of investment psychology. Deng et al.
[13] adopted the possibility means and possibility variances
as measures for portfolio return and risk, respectively, to
erect the mean-variance-efficient portfolio model. Deng and
Geng [14] explored a novel two-parameter coherent fuzzy
portfolio predicated on possibility theory.

To realistically simulate the actual financial market, it is of
utmost necessity to transition the portfolio model from a
single-period to a multi-period framework. In the context of
multi-period models, transaction costs exert a profound
impact on the model outcomes and thus cannot be readily
overlooked. Arnott [15] and Yoshimoto [16] et al. provided
empirical evidence demonstrating that disregarding
transaction costs would culminate in inefficient portfolios.
Lin et al. [17] contemplated the fuzzy portfolio problem
under practical constraints, encompassing limitations on the
number of assets, the minimum number of traders, and
budgetary constraints. Mulvey [18] employed a piecewise
linear function to approximate transaction costs; however,
this approach proves inadequate for non-convex transaction
costs that more closely mirror real-world scenarios.
Yoshimoto et al. [16] explored the portfolio problem
involving variable transaction costs. Konno [19] devised a
branch and bound algorithm for ascertaining the optimal
solution of the M-AD model with concave transaction costs,
enabling the attainment of the global optimal solution.
Peykani et al. [20] investigated a time-consistent
multi-period rolling portfolio optimization problem within a
fuzzy environment. Qian and Wang [21] introduced an
augmented algorithm that amalgamates the parallel
processing capabilities of PGAs with the multi-objective
optimization prowess of NSGA-III, customized specifically
for multi-period optimization design.

However, in real-world scenarios, a pre-determined
investment plan may be terminated prematurely due to a
plethora of factors. These encompass sudden substantial
consumption or expenditure, the onset of serious illness or
death, alterations in the market environment, and so forth.
Yarri [22] incorporated the assumption of uncertain life into
the life insurance model, and Hakansson [23] further
extended Yarri’s work [22] to the domain of the multi-period
portfolio with an uncertain exit time, which was treated as a
constant. Merton [24] investigated the problem of optimal
investment and consumption in continuous time to maximize
the expectation of the utility function, wherein the exit time
was postulated to be the time of the first event of an
independent Poisson process (thus, the investment period
was exponential). Since then, the portfolio model with
uncertain exit time has garnered increasing attention. Over
the past decade, the number of related studies has been
steadily on the rise. However, in essence, these studies have
invariably been predicated on random environments. Given
that fuzziness can characterize more complex and subjective
elements of the real market, it is worth studying the uncertain
exit time in a fuzzy environment.

Portfolio models can be categorized based on whether the
exit time is independent of the asset return in each period. In
the majority of situations, the probability distribution (or

membership function) of the uncertain exit time is indeed
independent of the asset return in each period. This implies
that a low return does not exert any influence on the
early-stage exit time.

The investor’s early exit behavior is predominantly
associated with several factors, including sudden large
expenditures, serious illness, and alterations in the market
environment. There has been extensive research on uncertain
exit time within a random environment. For instance,
Martellini and Urosevic [25] investigated the asset allocation
problem when the exit time was either an exogenous or
endogenous random variable by means of the static
mean-variance model. Yi et al. [26] extended the
multi-period portfolio problem with uncertain exit time to the
scenario involving exogenous liabilities. In accordance with
the concepts of mean and variance, Yao et al. [27] delved into
the multi-period asset liability management problem with
uncertain exit time and stochastic cash flow. Yi et al. [28]
applied the average field formula to the M-V portfolio
problem with uncertain exit time in discrete time. Cui et al.
[29] proposed a two-dimensional average field formula and
derived the optimal solution as well as the effective frontier
analytical formula. Wu et al. [30] regarded the exit
probability of each period as the conditional probability of
market conditions. Ge et al. [31] tackled a multi-period
weighted mean-variance portfolio selection problem with
uncertain time horizons and stochastic cash flows in a
Markov regime-switching market. Yao et al. [32] explored a
dynamic trading problem involving transaction costs and
uncertain exit times in a general Markov market, where the
mean vector and covariance matrix of returns are contingent
upon the states of the stochastic market, with market states
undergoing regime switching within a time-varying state set.

B. Motivation
In order to ensure the diversification of investment,

entropy has been introduced into the portfolio model as a
measure of the dispersion degree. Shannon [33], drawing
inspiration from thermodynamics, christened the average
information devoid of redundancy as information entropy.
Philippatos [34], Cheng [35], and Qu [36] probed into the
stochastic entropy for portfolio problems. Xu [37] and Zhou
[38] incorporated fuzzy stochastic entropy into portfolio
problems. Mehmet and Osman [39] contrasted Shannon
entropy with Gini-Simpson entropy and ascertained that the
latter exhibited superior performance in the portfolio context.
From the aforementioned studies, the focal points of modern
portfolio problems can be discerned as follows: how to
dynamically adjust investment strategies, when to withdraw
investment, and how to ensure investment diversification
during multi-period investment. However, the preponderance
of research concerning uncertain exit time has been
conducted within a stochastic environment. In this paper,
fuzzy uncertain exit time is innovatively characterized by a
novel class of one-parameter fuzzy numbers, which
encapsulates investors’ exit intentions and risk attitudes. A
multi-period multi-objective portfolio model under uncertain
exit time is devised to address the three aforementioned
issues.

To more comprehensively organize the previous research
articles and to distinctly compare the disparities between our
study and prior works, we have compiled Table Ⅰ . As
evident from Table Ⅰ , existing research articles typically
take into account merely one or two of the following three
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factors: possibility theory, multi-period dynamics, and
uncertain exit time. Prior to our current endeavor, no article
had concurrently considered all three aspects. In contrast to
the previous literature, our study offers the following notable
advantages. (1) We have thoroughly accounted for the
uncertain exit time and the multi-period nature in the context
of fuzzy portfolio selection. Building upon traditional fuzzy
numbers, we have defined a novel class of fuzzy numbers,
and their numerical characteristics have been rigorously
derived based on possibility theory. In the specific case of
trapezoidal fuzzy numbers, we have defined operations such
as number addition, scalar multiplication, and fuzzy addition,
and have proven certain properties of the numerical
characteristics. (2) Regarding the model, the novel fuzzy
number is employed to characterize the uncertain exit time,
and the fuzzy possibilistic entropy with an adjustment
coefficient is utilized to depict the degree of investment
diversification. Subsequently, the fuzzy convex
programming method is applied to solve the model. (3) We
consider preference for risk and investment diversification in
the model, which can provide suitable investment schemes
for different investors.

C. Organization
The rest of this paper is organized as follows. In Section 2,

we will present the possibility theory of fuzzy numbers and
the pertinent conclusions regarding trapezoidal fuzzy
numbers. In Section 3, we shall define novel fuzzy numbers
and derive their numerical characteristics along with relevant
propositions. In Sections 4 and 5, the possibility
mean-variance-entropy portfolio model will be formulated,
and a numerical example will be provided to validate the
feasibility and efficacy of the proposed model.

II. PRELIMINARIES

A. Fuzzy Set Theory
A fuzzy set is an important way to describe fuzzy

information. It was proposed by Zadeh [4] in 1965. The
following is an introduction to fuzzy set and its properties.
Definition 2.1 [4] If A has a membership function

 ( ) : 0,1A x R  , which is called a fuzzy set on the domain
U , then it must satisfy the following conditions:
(a) A is normal, namely

0 0,s.t. ( ) 1.Ax U x  

(b) A is convex, namely
1 2

1 2 1 2

, , s.t.
( (1 ) min{ ( ), ( )}.A A A

x x U
x x x x


    
   

   

(c) ( )A x is upper semi-continuous and it has boundary

supp { | ( ) 0}AA x R x   , which is called support set of

fuzzy A.
According to the above definition, the membership

functions of general LR-type fuzzy numbers ( , , ,A a b   

are as follows:

( ) ,  

1 , 
( )

( ),  

0 ,  others.

A

A

A

a xL x a

a x b
x

x bR x b







 


    




(1)
Remark 1: ,A AL R represent the left and right membership

functions of fuzzy number A respectively, which are
continuous monotone decreasing functions and satisfy

(0) (0) 1,A AL R  (1) (1) 0A AL R  .

Definition 2.2 [4] Let A be a fuzzy number. ( )A x is

membership function of A . Then
[ ] { | ( ) (AA x R x         shows the  -level set
of A, which is written as [ ] [ ( (A a a     briefly.
Definition 2.3 [4] Let  1 1 1 1 1, , ,A a b   and

 2 2 2 2 2, , ,A a b   be two fuzzy numbers. The

corresponding  -level sets are 1 1 1[ ] [ ( (A a a     and

2 2 2[ ] [ ( (A a a     , respectively. Then we can define the

fuzzy addition and scalar-multiplication.
(a) Fuzzy addition,

1 2

1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2

    
( , , , ) ( , , , )
( , , , ).

A A
a b a b
a a b b

   
   


 
    

The form of  -level set,

1 2 1 2 1 2[ ] [ ( ( ( ( .A A a a a a              

(b) Fuzzy scalar-multiplication,
 
 

1 1 1 1

1 1 1 1
1

, , , ,  0,
, , , ,  0.

a
A

b
b a

    
   






 


B. The Possibility Theory of Fuzzy Number
In the fuzzy environment, the possibility theory was put

forward by Zadeh [7] in 1978 and perfected and developed by
Dubois and Prade [5]. Later, many scholars studied the
portfolio model based on the possibility theory.

Definition 2.4 [7] Let A be a fuzzy number.

[ ] [ ( (A a a     is  -level set of A.

(a) Possibilistic mean of A is
1

0
( ) ( ( .E A a a d        (2)

(b) Possibilistic variance of A has two forms, the first
form is

1* 2

0

1( ) ( ( .
2

Var A a a d        (3)

(c) The second form is
1 2 2

0
( ) {[ ( ) ( [ ( ) ( } .Var A E A a E A a d         (4)

Remark 2: Both of above definitions are common variances,
of which the second is more common. Let
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[ ] [ ( (B b b     be the  -level set of fuzzy number B .

Possibilistic covariance of A and B has two forms, the first
form is

1*

0

1( , ) ( ( ( ( ] .
2

Cov A B a a b b d             (5)

The second form is
1

0
( , ) [( ( ) ( ))( ( ) ( ))

                     ( ( ) ( ))( ( ) ( ))] .

Cov A B E A a E B b

E A a E B b d

  

  

  

  


(6)

According to extension principle of Zadeh, if
( 1, , )iA i n  are fuzzy numbers, i R  , then

1 1

[ ] ( ),
n n

i i i i
i i

E A E A 
 

  (7)

2

1 1 1

[ ] ( ) 2 ( , ).
n n

i i i i i j i j
i i i j n

Var A Var A Cov A A   
    

    (8)

C. Numerical Characteristics of Trapezoidal Fuzzy Numbers
If a fuzzy number A is called a trapezoidal fuzzy number

with core interval [ , ]a b , left width  and right width  ,

then its membership function is expressed as follows:

1 ,  

1,  
( )

1 ,  

0,  others,

A

a x a x a

a x b
x

x b b x b









    


 
      




(9)

that is, ( , , , )A a b   . Thus, the  -level set of the

trapezoidal fuzzy number A is
[ (1 ) , (1 ) ], [0,1].a b          (10)

According to the possibility theory, numerical characteristics
of trapezoidal fuzzy numbers are summarized as follows:
(a) Possibilistic mean:

( ) .
2 6

a bE A   
  (11)

(b) Possibilistic variance:
2

* 2 (( ) ( ) ,
2 6 72

b aVar A       
   (12)

2 2
2 ( (( ) ( ) .

2 6 72 72
b aVar A           

    (13)

(c) Possibilistic covariance:
*

1 2

1 1 1 1 2 2 2 2

1 1 2 2

   ( , )

( )( )
2 6 2 6

( )( )  ,
72

Cov A A
b a b a   

   

   
  

 


(14)

1 2

1 1 1 1 2 2 2 2

1 2 1 2

   ( , )

( )( )
2 6 2 6

   .
36

Cov A A
b a b a   

   

   
  




(15)

Remark 3: Because the second variance is used by most
scholars, and the influence of the difference   between

left width and right width is considered more than that of the
first one, the second variance and covariance will be used in
the model demonstration in this paper.

III. NEW RESULTS OF NOVEL FUZZY NUMBERS

In this section, we introduce conventional fuzzy numbers
and their numerical characteristics based on possibility
theory. In this section, we define a new type of fuzzy numbers
based on it and use the general formula of possibility theory
to deduce numerical characteristics. In the case of trapezoidal
fuzzy numbers, we define the number addition, number
multiplication, and fuzzy addition of the novel fuzzy numbers,
and then prove some properties of the numerical
characteristics of novel fuzzy numbers to ensure that the
portfolio model and empirical research are feasible in theory.

A. Novel Fuzzy Numbers
Li et al. [40] proposed a novel concept that establishes a

connection between the uncertain exit time and a novel type
of fuzzy number. This concept places its emphasis on the
determination of the investment's loss exit point and profit
exit point, namely the Exit Point of Loss (EL) and the Exit
Point of Profit (EP).In this paper, a novel fuzzy number is
constructed by intercepting the original fuzzy number with a
given intercepting level K (membership degree), so that the
values of EL and EP can be obtained directly from the
 -level set. In this way, the change of EL and EP only

depends on the given K value, which can be changed
according to the risk attitude of investors.

The novel fuzzy number is a function with the parameter
K of exit willing. In this function, on the one hand, we select
the upper part of the membership function of fuzzy number
according to investors’ exit willing by using the horizontal
straight line ( [0,1])y K K  . On the other hand, we make
the values of other parts of the function 0, which is generally
a piecewise function. In this way can we cut the original
fuzzy number with the same left and right height, which
means that part of the risks and benefits is equally discarded.
That is more reasonable and in line with the law of
investment.
Definition 3.1 Let A be a general fuzzy number. And its

 -level set is [ ] [ ( ), ( )]A a a   , [0,1]  . Now we set

K to be the interception level, then the  -level set of novel

fuzzy number ( )KA can be denoted by
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a

( )A x

x

1

bb +a 

( )

[ ( ), ( )],  [0, ),
[ ]

[ ( ), ( )],    [ ,1].K

a K a K K
A

a a K
 

  


  

Remark 4: If 0K  , the novel fuzzy number degenerates to
the corresponding conventional fuzzy number. If 1K  , the
novel fuzzy number degenerates to a clear number interval,
that is the kernel of the corresponding general fuzzy number
( { | , ( ) 1}AKer A x x U x   ).

B. Novel Trapezoidal Fuzzy Numbers
a. Novel trapezoidal fuzzy numbers and their numerical

characteristics
Li [40] employed the improved fuzzy simulation to

approximate the continuous membership function of fuzzy
numbers to a piecewise - linear function, and subsequently
approximated their mean value, variance, value at risk, and
credibility measure. Inspired by this approach, we derived the
explicit expression of the numerical characteristics of the
novel trapezoidal fuzzy number. Based on the definition of
novel fuzzy numbers, this section presents the definition,
numerical characteristics, and properties of novel trapezoidal
fuzzy numbers and conducts a comparative analysis with
conventional trapezoidal fuzzy numbers.
Definition 3.2 Let A be a trapezoidal fuzzy number with

core interval [ , ]a b , left width  and right width  . Now

we set the interception level as ( [0,1])K K  . Then the

membership function of the novel trapezoidal fuzzy number

( ) ( , , , , )KA a b K  can be denoted by

 ( )

1 ,  (1 )

1,  
( )

1 ,  (1 )

0,  others.

KA

a x a K x a

a x b
x

x b b x b K









     


        




(16)

And we will write the novel trapezoidal fuzzy numbers as
NTFN briefly in the following sections.

Comparison between the graph of the trapezoidal fuzzy
numbers and corresponding novel trapezoidal fuzzy numbers
is shown in the following figures.

Fig. 1. Conventional trapezoidal fuzzy

Fig. 2. Novel trapezoidal fuzzy number with exit point

According to the possibility theory, we can deduce some
propositions of the novel trapezoidal fuzzy numbers

( ) ( , ,KA a b K     .

Proposition 1: The  -level set of ( )K
A

( )

[ (1 ) (1 )   ,
[ ]

[ (1 ) (1 ) ,  .K

a K b K K
A

a b K
   

    
        

         
(17)

From the above equation, it is obvious that the  -level set of

( )KA is fixed if 0 K  .

Proposition 2: The possibilistic mean of ( )KA is

3
( )( ) .

2 6 6K
a bE A K     

  

Proof. According to Eq. (2), it is easy to obtain the
specific Equation (18) of ( )( )KE A .

From the above equation, it is easily known that

( )( )
2 6K

a bE A  


 
 if 0K  and ( )( )

2K
a bE A 

 if

1K  , that is, in the case of a general fuzzy number and a
clear number interval respectively. Additionally, as K

increases in the interval [0,1] , ( )KE A  decreases to
2

a b ,

which means that the influence of the difference between left
and right width   on the possibilistic mean value of

NTFN is reduced.
Proposition 3: The first form of possibilistic variance of

( )KA is
2

* 2
( )

3 4
2

( )( ) ( )
2 6 72

               ( )( ) ( ) .
6 8

K
b aVar A

K Kb a

   

     

  
  

      

Proof. By Equation (3), we can deduce Equation (19).

Based on the above equation, we know that

 
2

*
( ) 2K

b aVar A 
 

 
 

if 0K 

and

bEL

( ) ( )A K x

1

K

EPa x
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 
2

* 2
( ) ( )

(
2 6 72K

b aVar A    


   
  if 1K  ,

that is, in case of general fuzzy number and clear number
interval respectively. In addition, for

    

   

( )

22 3

2

*( )
1 1
2 2

1 ( 1) ( )  0,
2

KVar A

K b a K

K K b a

     

   



       

        

 *
( )KVar A decreases to

2

2
b a 

 
 

as K increases in the

interval [0,1] .

Proposition 4: The second form of possibilistic variance

of ( )KA is
*

( )

2 2 4 2 2

2 2
( ) ( )

3
( ) ( )

( )

1 1( ) ( )
4 4

1 [( ( ) ) ( ( ) ) ]
2
1 ( 2)[ ( ( ) ) ( ( ) )].
3

K

K K

K K

Var A

K

E A a E A b

K E A b E A a

   

 

   



  

     

      

Proof. By Equation (4), it is easily to obtain Equation (20).
Now let us calculate the two terms in the above equation
respectively. The first term is as in Equation (21); The second
term is as in Equation (22). Finally, we sum up the two terms,
we can obtain Equation (23). According to the above
derivation, we continue to analyze the variation trend of the
second form variance of ( )KA in the domain. Before

analyzing, it is primary to derivate ( )( )KVar A for the

parameter. Its derivative for parameter is in Equation (24).

By the above equation, we discuss the ( )( )KVar A in three

cases about  and  :

(a) If     , NTFN degenerates to a clear number

interval, and at this time, NTFN is a constant which is

independent of intercept level K . So ( )( )KVar A is

fixed whatever K varies into [0,1] . In this case,
2

( )
)( )

4K
b aVar A 


（

.

(b) If 0   , ( )( )KVar A  can be written as
2 2 2[ 2 ( ) 2 ]K K b a      briefly. It is easily

known that its zero point is
2

2

( ) 2
1

2
b a

K
 


 

 

and ( )( ) 0KVar A   when [0,1]K  . Hence,

( )( )KVar A is monotone decreasing in [0,1]K  from

 2 21( ) 0
2 3 18

b a K 
   to  

2( ) 1
4

b a K
 .

(c) If   , we set ( )F K as

2 2 2

2 3 2

1( ) ( )
2

1 1 1          ( )( ) ( ) ( ) .
2 3 6

( ) K

b

F K

a K

   

     

  

      



that is, 2
( )Var( ) ( )KA K F K  . Then the derivative of

( )F K is denoted by 2 2 2 21
( ) ( )

2
F K K        . It is

obvious that the zero point of ( )F K is K 

 
2 2

2

2( )
( )

0 1 
 





 ， , so ( ) 0F K  in [0,1] . Hence,

( )F K and ( )( )KVar A   2 ( )K F K are strictly monotone

increasing in [0,1] . However, for

( ) 1
1( ) ( )( ) 0
2K KVar A b a       , so ( )( ) 0KVar A  

if [0,1].K  Therefore, ( )( )KVar A is monotone decreasing

from 2( )
2 6

b a   
  2 21

( )
36

  to
2( )

4
b a

in

 0 ,1 .

Proposition 5. The possibilistic covariance between 1( )KA

and 2( )KA is in Equation (25).

b. Some properties about numerical characteristics of novel
trapezoidal fuzzy number

Li [40] defined new fuzzy numbers but did not define
arithmetic operations for fuzzy numbers, nor prove the
relevant properties of mean value, variance, etc. All of these
are the necessary basis to ensure the theoretical feasibility of
the fuzzy portfolio model. Therefore, we define the number
addition, number multiplication, and fuzzy addition of the
novel trapezoidal fuzzy numbers, according to the definitions
of the arithmetic operation of the conventional fuzzy
numbers. On this basis, the properties of the mean, variance,
and covariance of the novel trapezoidal fuzzy numbers are
given and proved, which keeps the consistency with the
properties of the mean, variance and covariance of random
variables in probability theory.

( ) ( , , , , )KA a b K  is a NTFN and [ ( ), ( )]a a  is its

 -level set. We set , , 0m n l  , [0,1]K  is given real

number. In order to define and calculate expediently, we set
the same K of all the NTFNs in the same equation. Then we
define some arithmetic operations as follows, which lays a
theoretical foundation for the fuzzy portfolio model and
empirical calculation.
Definition 3.3 Number addition,

( ) ( , , , , ).KA l a l b l K     (26)
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The form of  - level set is denoted by

( )[ ] [ ( ) , ( ) ],  [0,1].KA l a l a l         (27)

Definition 3.4 Number multiplication,

( ) ( , , , , ).KnA na nb n n K  (28)

The form of  - level set is denoted by

( )[ ] [ ( ), ( )],  [0,1].KnA na na      (29)

Definition 3.5 Fuzzy addition, let

1( ) 1 1 1 1 2( ) 2 2 2 2( , , , , ), ( , , , , )K KA a b K A a b K     are two

NTFNs, their  - level sets are 1 1 2 2[ ( ), ( )],[ ( ), ( )]a a a a    .

Then addition of NTFN is defined by

1( ) 2( ) 1 2 1 2 1 2 1 2( , , , , ).K KA A a a b b K         (30)

The form of  - level set is denoted by

1( ) 2( )

1 2 1 2

   [ ]
[ ( ) ( ), ( ) ( )],  [0,1].

K KA A
a a a a



    



    
(31)

According to the above definitions, it is obviously known
that the NTFN after arithmetic operation is also a NTFN,
which means arithmetic operation is closed in NTFN.
Additionally, based on the properties of the numerical
characteristics of random variables in probability theory, we
summarize the arithmetic operation properties of the
numerical characteristics of fuzzy numbers as follow.
Proposition 6: ( ) ( )( ) ( ) .K KE A l E A l  

Proposition 7: ( ) ( )( ) ( ).K KE nA nE A

Proposition 8: 1( ) 2( ) 1( ) 2( )( ) ( ) ( ).K K K KE A A E A E A  

Proposition 9: ( ) ( )( ) ( ).K KVar A l Var A 

Proposition 10: 2
( ) ( )( ) ( ).K KVar nA n Var A

Proposition 11:

1( ) 2( ) 1( )

2( ) 1( ) 2( )

( ) ( )
    ( ) 2 ( , ).

K K K

K K K

Var A A Var A
Var A Cov A A

 

 

Proposition 12: 1( ) 2( ) 2( ) 1( )( , ) ( , ).K K K KCov A A Cov A A

Proposition 13:

1( ) 2( ) 1( ) 2( )( , ) ( , ).K K K KCov A n A l Cov A A  

Proposition 14:

1( ) 2( ) 1( ) 2( )( , ) ( , ).K K K KCov nA lA nlCov A A

Proposition 15:

1( ) 2( ) 3( )

1( ) 2( ) 1( ) 3( )

   ( , )
( , ) ( , ).

K K K

K K K K

Cov A A A
Cov A A Cov A A



 

The above proposition implies that the numerical
characteristics of novel fuzzy numbers bear resemblance to
those of random variables, thereby providing a theoretical
foundation for the establishment of a novel fuzzy portfolio
model.

IV. FUZZY PORTFOLIO MODEL

In this section, a portfolio model is constructed in the fuzzy
environment. We use the novel trapezoidal fuzzy numbers to
describe the uncertain exit time and add the fuzzy
possibilistic entropy by Zhang et al. [41] to measure the
degree of investment diversification. In addition, the weights
of investors’ preference for two objectives of risk and entropy
are introduced in our model.

A. Possibilistic Multi-Period Mean-variance-entropy Model
The concept of utilizing the mean and variance to quantify

returns and risks has its roots in Markowitz’s M-V model.
Nevertheless, since returns and risks cannot simultaneously
attain their optimal values, we typically aim to minimize the
portfolio risk when the upper limit of returns is specified or
maximize the portfolio return when the lower limit of risk is
set. Additionally, taking into account investors’ subjective
factors, the asset return is treated as a fuzzy number.
Consequently, a multi-period fuzzy portfolio model is put
forward in this section. Prior to constructing the model, for
the sake of clarity in illustration, we present some symbols in
Table Ⅱ.
a. Fuzzy possibilistic entropy

Shannon entropy, Yager entropy, and proportion entropy are
commonly employed to measure the degree of investment
diversification. Nevertheless, the aforementioned entropies
are solely associated with the investment proportion, failing
to take into account the specific impact of the investment
proportion when the rate of return is lower than the return of
the risk-free asset. Zhang et al. [40] posited that the higher the
ratio of return to risk, the greater the corresponding asset
proportion. Consequently, they proposed a fuzzy possibilistic
entropy and extended it to the multi-period scenario. Hence,
we utilize this type of entropy to measure the degree of
portfolio diversification. The fuzzy possibilistic entropy is
denoted as in Equation (32).

Remark 5: In Equation (32), ,

,

max{ ( ) ( ),0}
( )

t i f

t i

E r r t
Var r




 is

an enough small positive number, which represents the part
of the thi  asset over the risk-free asset in the t-period.

Besides,

,

,
,

,
1

,

max{ ( ) ( ),0}
( )

( ) max{ ( ) ( ),0}
( )

t i f

t i
t i

n t i f
i

t i

E r r t
Var r

x E r r t
Var r











is an

adjustment coefficient of ,t ix . By the above equation, it is

found that , 0t ix  if ,E( ) ( )t i fr r t , which is in accordance

with the principle that investors never invest the asset whose
return is lower than the risk-free return.
b. Model construction

In our proposed model, we set risk and entropy as two
objectives when the portfolio return is given. In addition, the
return of each period is required to exceed the given
minimum expected return. Then we can construct the
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portfolio model as in Equation (33).

B. Multi-period Mean-variance-entropy Portfolio Model
with Uncertain Exit Time
a. Application of novel fuzzy numbers with uncertain exit

time
The returns are regarded as novel trapezoidal fuzzy

numbers, which describe uncertain exit time in investment.
Besides, investors always adjust investment proportion
according to market information. And at the same time,
transaction costs are considered into the multi-period
portfolio model as a non-negligible factor. Before
constructing models, firstly we rewrite and replenish some
symbols.

By the propositions in Section 3, we can induce the
equations about mean, variance and covariance in the fuzzy
portfolio model. The possibilistic mean of the returns under

investment proportion tx is denoted by

( ) , , ( ) , , ( )
1 1

, , , , , ,3
,

1

   ( ) ( ) ( )

( ).
2 6 6

n n

t K t i t i K t i t i K
i i

n
t i t i t i t i t i t i

t i
i

E R E x r x E r

a b
x K

   
 



 

  
   

 


(34)

The possibilistic variance of the returns under investment

proportion tx is denoted by

( )

2
, , ( )

1

, , , ( ) , ( )
1

  ( )

( )

2 ( , ),  1, 2, , .  

t K

n

t i t i K
i

t i t j t i K t j K
i j n

Var R

x Var r

x x Cov r r t T


  



  





(35)

Supposed the transaction costs are V-type functions, so the
transaction costs of the thi  risk asset in the t-period are

, , 1,t i t i t ic x x  . Then in the t-period, the total transaction

costs of investment are

, , 1,
1

,  1,2, , .
n

t t i t i t i
i

C c x x t T


   

So, the net return in the t-period is

( ) , , ( ) , , 1,
1 1

 ( ) ( ) ,  1, 2, , .
n n

t t K t i t i K t i t i t i
i i

E R x E r c x x t T
 

     
Besides, the recursion equation of wealth is denoted by

1 ( )(1 ( )),  1,2, , .t t t t KW W E R t T    

b. Construction and analysis of model

Based on the above analysis, we construct the multi-period
mean-variance-entropy portfolio model under uncertain
exit time with a parameter as in Equation (36).
Remark 6: The return covariance of any two assets in the
same period is denoted by Equation (37). The adjustment

coefficient of ,t ix is denoted by Equation (38).

It is noted that there are two mutually restrictive objectives in
the model. Minimizing risk means holding as a high
proportion as possible for the minimum risk assets, which is
in contradiction with maximizing the degree of

diversification of investment. In order to find a Pareto
solution, we use the fuzzy convex programming method [42]
to deal with this model. We need to find the maximum values
of two objective functions ( ( ), ( )V x P x ) in the same feasible

region 0X , that is, we first solve the following four models:

0

min  ( )
s.t.   

V x
x X


 

(39)

0

max  ( )
s.t.   

V x
x X


 

(40)

0

min  ( )
s.t.   

P x
x X


 

(41)

0

max  ( )
s.t.   

P x
x X


 

(42)

For given different parameter K values, we can obtain
corresponding optimal solutions of above four models. We
write them as min max min max

( ) ( ) ( ) ( ), , ,K K K KV V P P , respectively. Then two

membership functions are set to measure investors’ degree of
satisfaction to two objectives ( ), ( )V x P x by

max
( )

max
( ) min max

( ) ( ) ( )max min
( ) ( )

min
( )

0,   ( )

( )
( ) ,   ( )

1,   ( )

K

K
V K K K

K K

K

V x V

V V x
x V V x V

V V

V x V



 



  


 

(43)

and
min

( )

min
( ) min max

( ) ( ) ( )max min
( ) ( )

max
( )

0,   ( )

( )
( ) ,   ( )

1,   ( ) .

K

K
P K K K

K K

K

P x P

P x P
x P P x P

P P

P x P



 



  


 

(44)

Finally, we can use fuzzy convex programming to
transform the bi-objective model into the single objective
model as follow:

( ) ( ) ( )

0

max   ( ) ( ) ( )

s.t.     ,
         1,
         , 0.

K V V K P P K

V P

V P

u x x x

x X

   

 
 

 





 
 

(45)

Remark 7: ,V P  represent the preference degree

coefficients of minimizing the multi-period cumulative risk
and maximizing the degree of diversification of investment.

V. NUMERICAL EXAMPLE

In this section, the multi-period mean-variance-entropy
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portfolio model is applied to analyze portfolios with real
market data. We suppose investors choose five kinds of risk
assets in the market. There are five kinds of stocks selected
from the Shenzhen Stock Exchange. The codes are SZ000418,
SZ000429, SZ000061, SZ000830, and SZ000860, which are
abbreviated by stocks 1-5, respectively. The initial wealth is

set to 1 10000W  , and investors intend to make three periods

investment decisions. We collect the closing price of each
quarter from January 2013 to December 2018 and calculate
the returns of each quarter. Then we use the approximate
method to get the trapezoidal fuzzy numbers distribution of
asset return in each period.

Under different parameters K values, the three periods
returns and their means, variances, and entropies of five
stocks are shown in Tables Ⅳ-Ⅵ. From these tables, we can
see that the average return of each stock is monotonically
decreasing or increasing about K , which depends on whether
the value of   is positive or negative. The variance of

return rate decreases when the value of K increases. These
results are consistent with the analysis in Section 3.
Additionally, because of the decrease of variance, most of the
entropy increases monotonically.

After obtaining the data, we normalize the entropy of five
stocks in each period to [0.3,1.9] and set 9  in order
to ensure the validity of the total entropy equation of
investment. According to the historical performance of the
market, we set the minimum expected return in each period as

1 2 30.04, 0.07, 0.09     , the risk-free return rate of

each period as (1) (2) 0.012, (3) 0.01f f fr r r   , the upper

and lower limits of the investment proportion of each stock in

each period as , ,0.1, 0.6t i t il u  ( 1, ,5; 1,2,3)i t  .

Besides, the unit transaction costs of five stocks are all

, 0.003( 1,2, ,5; 1,2,3)t ic i t   .

According to the models in Section 4, corresponding optimal
portfolio selection solutions are solved based on investors’
different exit methods. These are shown in Tables Ⅶ-Ⅺ.

Based on the above results, we analyze the variance,

entropy and final wealth with different values of , ,V PK   ,

respectively. The results are shown in Figures 3-5.

In Figure 3, at the same preference levels of ,V P  , with

the increase of the K value, the variance significantly
decreases. This proves that the stronger the investors’ exit
willing is, the lower the risk is. On the other hand, with the

increase of preference for risk minimization V , the variance

is significantly decreasing.

TABLE Ⅺ
COMPARISON UNDER DIFFERENT , ,V PK  

K V P ( )Ku variance entropy wealth

0
1 0 1.000 0.0224 -4.315 12130

0.5 0.5 0.745 0.0341 -3.772 12130
0 1 1.000 0.0350 -3.744 12130

0.3
1 0 1.000 0.0216 -4.325 12130

0.5 0.5 0.795 0.0277 -3.878 12358
0 1 1.000 0.0372 -3.730 12687

0.5
1 0 1.000 0.0189 -4.290 12130

0.5 0.5 0.740 0.0295 -3.810 12130
0 1 1.000 0.0305 -3.773 12130

0.7
1 0 1.000 0.0144 -4.190 12149

0.5 0.5 0.738 0.0233 -3.703 12130
0 1 1.000 0.0244 -3.661 12130

This proves that the preference coefficient we set has a
significant impact on the results. We can provide different
portfolio selections for investors based on their preferences
for risk and diversification.

In Figure 4, at the same preference levels of ,V P  , with

the increase of the intercept level K , the entropy increases
slowly. This shows that the stronger the investors’ exit willing
is, the higher the portfolio diversification degree is, but the
change is slight. On the other hand, at the same K value,
with the preference of minimizing the degree of investment

dispersion P increasing, the entropy increases significantly.

This proves that the preference coefficient we set has a
significant impact on the results. We can provide different
portfolio choices for investors based on their preference for
risk and diversification.

In Figure 5, the values of wealth are significantly higher
than others when 0.3K  . But the ultimate wealth doesn’t
change significantly in other cases, because it is not the main
goal of our model. However, it can be seen from the figure
that in two cases, the return rate increases significantly when
K is close to 0.3. This shows that a moderate willingness to
exit helps to improve the final wealth. On the one hand, if
investors seldom or never withdraw investments or adjust
investment decisions, they may lose the opportunity of
getting profit from other assets and bear the huge losses of
holding assets. On the other hand, if investors have strong
exit willing, they will withdraw investment prematurely and
lose the opportunity to acquire long-term returns.
After analyzing three important results respectively, we can
summarize the following conclusion holistically. First of all,
at the same degree of preference, with the increase of K
from 0 to 1, the variance decreases significantly, the entropy
increases slowly, and the final wealth is unchanged, which
verifies the feasibility and rationality of our model. However,
the increase of K will also bring other disadvantaged results.
That will result in the waste of working capital, too frequent
adjustments in investment proportion, high transaction costs,
and so on. Besides, the actual investment time will be far less
than the fixed investment period. The results of the model
also show that moderate exit willing can improve the wealth
of multi-period investment, but the performance in risk or
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investment diversification is slightly worse. From the
perspective of different preference degrees, the preference
coefficient we set does have a significant impact on the
results. To sum up, our model results show the advantages
and disadvantages of investment schemes under different exit
willing. We can provide different portfolio selections based
on their different exit willing and the preference degree for
risk and diversification of investment.

VI. CONCLUSION

In this paper, a novel type of fuzzy number is defined on the
basis of traditional fuzzy numbers, and its numerical
characteristics are deduced according to the possibility theory.
For trapezoidal fuzzy numbers, we define number addition,
scalar multiplication, and fuzzy addition, and prove certain
properties of the numerical characteristics. Regarding the
model, the novel fuzzy number is employed to describe the
uncertain exit time, and the fuzzy possibilistic entropy with
an adjustment coefficient is utilized to characterize the
degree of investment diversification. Subsequently, the fuzzy
convex programming method is applied to solve the model.

Moreover, we take into account the preferences for risk and
investment diversification within the model, which enables
us to offer suitable investment schemes for different
investors.

The main contribution of this paper lies in studying the
uncertain exit time within a fuzzy environment. Our model
primarily addresses the following three issues: (1) how to
make dynamic adjustments to the investment proportion in
multi - period investment; (2) how to quantify the uncertain
exit time; (3) how to guarantee investment diversification. To
some degree, our model is capable of customizing investment
schemes based on investors' preferences.

In future research on portfolios within a fuzzy environment,
on one hand, scholars could take into account an increasing
number of constraints in the model. This would bring
portfolio decisions closer to the actual investment
environment. On the other hand, researchers can explore
other types of novel fuzzy numbers that can effectively
reflect and gauge investors' psychological attitudes. This
approach will offer investors a more satisfactory portfolio
selection.

TABLE I
COMPARISON OF LITERATURE FEATURES

Features Risk measure Environment Possibility theory Multi-period dynamic Uncertain exit time
Yao et al. (2013) Mean-variance Random × √ ×

Arash et al. (2018) Mean-variance Fuzzy √ × ×

Liesiö et al. (2020) Mean-variance Random × × ×

Deng et al. (2021) Mean-variance-efficiency Fuzzy √ × ×

Yao et al. (2022) Mean-variance Random × √ √

Deng and Geng (2023) Mean-variance Fuzzy √ × ×

Peykani et al. (2023) Mean-entropy Fuzzy × √ ×

Ge et al. (2023) Mean-variance Random × √ √

Qian and Wang (2024) Mean-variance Random × √ ×

Our approach Mean-variance-entropy Fuzzy √ √ √

TABLE Ⅱ
ILLUSTRATION OF SYMBOLS

Symbol Illustration

,t ix The investment proportion of the thi  risk asset in the t-period

tx The t-period investment proportion vector, that is, ,1 ,2 ,( , , , )t t t t nx x x x 

,t ir The fuzzy rate of return of the thi  risk asset in the t-period

tR The fuzzy rate of return of the t-period investment tx
( )fr t The t-period risk-free investment rate of return

tW The wealth value at the beginning of the t-period

t The minimum expected rate of return in the t-period

, ,,t i t il u The investment proportion upper and lower limits of the i-kind risk asset in the t-period

TABLE Ⅲ
REWRITE AND REPLENISH OF SYMBOLS

Symbol Illustration
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, ( )t i Kr The fuzzy rate of return of the i-kind risk asset in the t-period with quitting intention K

( )t KR The fuzzy rate of return of the t-period investment tx with quitting intention K
,t ic The transaction expenses of the i-kind risk asset in the t-period

TABLE Ⅳ
RETURN OF FIVE STOCKS AND THEIR MEAN, VARIANCE AND ENTROPY UNDER DIFFERENT VALUES OF ( 1)K t 

number ( , , , )A a b   index 0K  0.3K  0.5K  0.7K 

1 (0.0589,0.1081,0.1536,0.0423)
mean 0.0649 0.0654 0.0673 0.0713

variance 0.0040 0.0038 0.0032 0.0022
entropy 13.300 14.150 17.280 26.410

2 (0.0091,0.0338,0.0797,0.1360)
mean 0.0308 0.0306 0.0297 0.0276

variance 0.0030 0.0028 0.0023 0.0014
entropy 6.2200 6.5600 7.7200 10.990

3 (0.0249,0.1564,0.1589,0.2077)
mean 0.0988 0.0985 0.0977 0.0957

variance 0.0180 0.0173 0.0152 0.0116
entropy 4.8200 5.0000 5.6300 7.2700

4 (-0.0089,0.0659,0.1231,0.0955)
mean 0.0239 0.0240 0.0245 0.0258

variance 0.0061 0.0059 0.0052 0.0039
entropy 1.9400 2.0400 2.4200 3.4700

5 (-0.0590,0.0551,0.0120,0.1701)
mean 0.0244 0.0237 0.0211 0.0154

variance 0.0084 0.0082 0.0074 0.0061
entropy 1.4700 1.4300 1.2300 0.5500

TABLE Ⅴ
RETURN OF FIVE STOCKS AND THEIR MEAN, VARIANCE AND ENTROPY UNDER DIFFERENT VALUES OF ( 2)K t 

number return ( , , , )A a b   index 0K  0.3K  0.5K  0.7K 

1 (0.0459,0.2990,0.0699,0.0297)
mean 0.1658 0.1659 0.1666 0.1680

variance 0.0207 0.0205 0.0200 0.0189
entropy 7.4400 7.5100 7.7300 8.2500

2 (0.0066,0.1945,0.1062,0.0642)
Mea n 0.0936 0.0938 0.0945 0.0960

variance 0.0154 0.0152 0.0143 0.0128
entropy 5.3000 5.4000 5.7500 6.5800

3 (-0.0241,0.0850,0.1561,0.1067)
mean 0.0222 0.0224 0.0232 0.0250

variance 0.0107 0.0103 0.0092 0.0071
entropy 0.9600 1.0100 1.2300 1.8300

4 (0.0040,0.0878,0.1828,0.1944)
mean 0.0478 0.0478 0.0476 0.0471

variance 0.0130 0.0123 0.0105 0.0073
entropy 2.7600 2.9000 3.4100 4.8300

5 (0.0528,0.1101,0.2100,0.0922)
mean 0.0618 0.0623 0.0643 0.0685

variance 0.0077 0.0073 0.0061 0.0041
entropy 6.4700 6.9200 8.6200 13.880

TABLE Ⅵ
RETURN OF FIVE STOCKS AND THEIR MEAN, VARIANCE AND ENTROPY UNDER DIFFERENT VALUES OF ( 3)K t 

number return ( , , , )A a b   index 0K  0.3K  0.5K  0.7K 

1 (-0.0145,0.0690,0.1052,0.2612)
mean 0.0533 0.0526 0.0500 0.0443

variance 0.0128 0.0121 0.0102 0.0071
entropy 3.3900 3.5100 3.9100 4.8300

2 (0.0152,0.0799,0.0869,0.0243)
mean 0.0371 0.0374 0.0384 0.0407

variance 0.0028 0.0027 0.0025 0.0020
entropy 9.6300 10.030 11.470 15.170

3 (0.0818,0.1910,0.0942,0.0316)
mean 0.1260 0.1263 0.1273 0.1296

variance 0.0060 0.0059 0.0055 0.0047
entropy 19.390 19.850 21.470 25.320

4 (0.0460,0.2118,0.1175,0.3273)
mean 0.1639 0.1629 0.1595 0.1519

variance 0.0280 0.0269 0.0236 0.0179
entropy 5.4900 5.6800 6.3300 7.9100

5 (0.0210,0.1266,0.0738,0.2629)
mean 0.1053 0.1045 0.1014 0.0945

variance 0.0139 0.0133 0.0115 0.0084
entropy 6.8400 7.1000 7.9600 10.040

TABLE Ⅶ
OPTIMAL SOLUTIONS WHEN 0K 
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model ( )Ku variance entropy wealth t stock
1 2 3 4 5

(39) － 0.0224 － 12130
1t  0.1969 0.5031 0.1000 0.1000 0.1000
2t  0.1271 0.1000 0.1000 0.1000 0.5729
3t  0.1000 0.3087 0.3913 0.1000 0.1000

(40) － 0.0467 － 13508
1t  0.1000 0.6000 0.1000 0.1000 0.1000
2t  0.6000 0.1000 0.1000 0.1000 0.1000
3t  0.1000 0.1000 0.1000 0.6000 0.1000

(41) － － -4.690 12521
1t  0.2957 0.2774 0.2269 0.1000 0.1000
2t  0.2550 0.2490 0.1000 0.1391 0.2569
3t  0.1000 0.2835 0.2998 0.1234 0.1933

(42) － － -3.744 12130
1t  0.1000 0.1000 0.1877 0.1000 0.5123
2t  0.2550 0.1000 0.4450 0.1000 0.1000
3t  0.4474 0.1000 0.1000 0.2526 0.1000

(45)
1,
0

V

P







1.000 0.0224 -4.315 12130
1t  0.1969 0.5031 0.1000 0.1000 0.1000
2t  0.1271 0.1000 0.1000 0.1000 0.5729
3t  0.1000 0.3087 0.3913 0.1000 0.1000

(45)
0.5
V P 


0.745 0.0341 -3.772 12130
1t  0.1000 0.1000 0.1905 0.5095 0.1000
2t  0.2549 0.1000 0.4451 0.1000 0.1000
3t  0.4473 0.1000 0.1000 0.2527 0.1000

(45)
0,
1

V

P







1.000 0.0350 -3.744 12130
1t  0.1000 0.1000 0.1877 0.1000 0.5123
2t  0.2550 0.1000 0.4450 0.1000 0.1000
3t  0.4473 0.1000 0.1000 0.2527 0.1000

TABLE Ⅷ
OPTIMAL SOLUTIONS WHEN 0.3K 

model ( )Ku variance entropy wealth t stock
1 2 3 4 5

(39) － 0.0216 － 12130
1t  0.2001 0.4999 0.1000 0.1000 0.1000
2t  0.1238 0.1000 0.1000 0.1000 0.5762
3t  0.1000 0.3081 0.3919 0.1000 0.1000

(40) － 0.0453 － 13500
1t  0.1000 0.1000 0.6000 0.1000 0.1000
2t  0.6000 0.1000 0.1000 0.1000 0.1000
3t  0.1000 0.1000 0.1000 0.6000 0.1000

(41) － － -4.720 12516
1t  0.2958 0.2782 0.2259 0.1000 0.1000
2t  0.2537 0.2476 0.1000 0.1433 0.2554
3t  0.1000 0.2842 0.2890 0.1229 0.1939

(42) － － -3.730 12687
1t  0.1000 0.1000 0.1926 0.1000 0.5074
2t  0.6000 0.1000 0.1000 0.1000 0.1000
3t  0.4528 0.1000 0.1000 0.2472 0.1000

(45)
1,
0

V

P







1.000 0.0216 -4.325 12130
1t  0.2001 0.4999 0.1000 0.1000 0.1000
2t  0.1238 0.1000 0.1000 0.1000 0.5762
3t  0.1000 0.3081 0.3919 0.1000 0.1000

(45)
0.5
V P 


0.795 0.0277 -3.878 12358
1t  0.1000 0.1000 0.1908 0.5092 0.1000
2t  0.2534 0.1000 0.4466 0.1000 0.1000
3t  0.1000 0.1000 0.6000 0.1000 0.1000

(45)
0,
1

V

P







1.000 0.0372 -3.730 12687
1t  0.1000 0.1000 0.1926 0.1000 0.5074
2t  0.6000 0.1000 0.1000 0.1000 0.1000
3t  0.4528 0.1000 0.1000 0.2472 0.1000

TABLE Ⅸ
OPTIMAL SOLUTIONS WHEN 0.5K 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 6, June 2025, Pages 1667-1684

 
______________________________________________________________________________________ 



model ( )Ku variance entropy wealth t stock
1 2 3 4 5

(39) － 0.0189 － 12130
1t  0.2104 0.4896 0.1000 0.1000 0.1000
2t  0.1116 0.1000 0.1000 0.1000 0.5884
3t  0.1000 0.3060 0.3940 0.1000 0.1000

(40) － 0.0409 － 13473
1t  0.1000 0.1000 0.6000 0.1000 0.1000
2t  0.6000 0.1000 0.1000 0.1000 0.1000
3t  0.1000 0.1000 0.1000 0.6000 0.1000

(41) － － -4.718 12513
1t  0.2964 0.2799 0.2236 0.1000 0.1000
2t  0.2566 0.2421 0.1000 0.1467 0.2546
3t  0.1000 0.2868 0.2963 0.1217 0.1951

(42) － － -3.773 12130
1t  0.1000 0.1000 0.2099 0.1000 0.4901
2t  0.2472 0.1000 0.4528 0.1000 0.1000
3t  0.4223 0.1000 0.1000 0.2777 0.1000

(45)
1,
0

V

P







1.000 0.0189 -4.290 12130
1t  0.2104 0.4896 0.1000 0.1000 0.1000
2t  0.1116 0.1000 0.1000 0.1000 0.5884
3t  0.1000 0.3060 0.3940 0.1000 0.1000

(45)
0.5
V P 


0.740 0.0295 -3.810 12130
1t  0.1000 0.1000 0.1920 0.5080 0.1000
2t  0.2480 0.1000 0.4520 0.1000 0.1000
3t  0.4224 0.1000 0.1000 0.2776 0.1000

(45)
0,
1

V

P







1.000 0.0305 -3.773 12130
1t  0.1000 0.1000 0.2099 0.1000 0.4901
2t  0.2472 0.1000 0.4528 0.1000 0.1000
3t  0.4223 0.1000 0.1000 0.2777 0.1000

TABLE Ⅹ
OPTIMAL SOLUTIONS WHEN 0.7K 

model ( )Ku variance entropy wealth t stock
1 2 3 4 5

(39) － 0.0144 － 12149
1t  0.2287 0.4713 0.1000 0.1000 0.1000
2t  0.1000 0.1000 0.1000 0.1000 0.6000
3t  0.1000 0.3012 0.3988 0.1000 0.1000

(40) － 0.0331 － 13410
1t  0.1000 0.1000 0.6000 0.1000 0.1000
2t  0.6000 0.1000 0.1000 0.1000 0.1000
3t  0.1000 0.1000 0.1000 0.6000 0.1000

(41) － － -4.566 12502
1t  0.2976 0.2824 0.2176 0.1024 0.1000
2t  0.2570 0.2214 0.1000 0.1510 0.2706
3t  0.1000 0.2856 0.2918 0.1253 0.1973

(42) － － -3.661 12130
1t  0.1000 0.1000 0.2457 0.1000 0.4543
2t  0.2338 0.1000 0.4662 0.1000 0.1000
3t  0.3775 0.1000 0.1000 0.3225 0.1000

(45)
1,
0

V

P







1.000 0.0144 -4.190 12149
1t  0.2287 0.4713 0.1000 0.1000 0.1000
2t  0.1000 0.1000 0.1000 0.1000 0.6000
3t  0.1000 0.3012 0.3988 0.1000 0.1000

(45)
0.5
V P 


0.738 0.0233 -3.703 12130
1t  0.1000 0.1000 0.1949 0.5051 0.1000
2t  0.2359 0.1000 0.4641 0.1000 0.1000
3t  0.3776 0.1000 0.1000 0.3224 0.1000

(45)
0

= 1
V

P





1.000 0.0244 -3.661 12130

1t  0.1000 0.1000 0.2457 0.1000 0.4543
2t  0.2338 0.1000 0.4662 0.1000 0.1000
3t  0.3775 0.1000 0.1000 0.3225 0.1000
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Fig. 3. Comparison of variance under different , ,V PK   in Model (45)
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Fig. 4. Comparison of entropy under different , ,V PK   in Model (45)

Fig. 5. Comparison of wealth under different , ,V PK   in Model (45)
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