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Abstract—In this work, the defining equation of relaxation
oscillation processes significant in physics, biology and engi-
neering, called the fractional relaxation oscillation equation is
studied. We have solved this benchmark equation by the frac-
tional differential transform, which is a semi-analytic method
and has advantages over many numerical and analytic methods.
To further explain the general solution, four specific examples
are presented. The solutions obtained using the fractional dif-
ferential transform method are compared with the solutions by
wavelet collocation method and residual power series method,
and with the available exact solutions as well. The graphical
and tabular comparison of the solutions and the error analysis
establishes the fact that the fractional differential transform
method gives more accurate results for the fractional relaxation
oscillation equation.

Index Terms—Fractional relaxation oscillation equation, Dif-
ferential transform method, DTM, FROE.

I. INTRODUCTION

AParticular kind of nonlinear oscillation known as re-
laxation oscillation happens in systems where energy

builds up gradually and is discharged rapidly, creating a
recurring cycle of accumulation and discharge. This process
of relaxation oscillation is significant in the phenomenon
where the physical system tends to return to equilibrium after
being disturbed. Because of its special qualities, including
its capacity to generate steady, repeating oscillations under
specific circumstances, this process is significant in a variety
of engineering applications.
A mathematical model known as the relaxation oscillation
equation explains how systems that display nonlinear peri-
odic oscillations with discrete periods of gradual energy or
charge collection and fast release, behave. In many appli-
cations in engineering where energy or a system variable
alternates between two states, this kind of oscillatory behav-
ior is essential.
Such process is modeled as an ordinary linear differential
equation of order 1 or 2. For instance

D1y(x) +Ay(x) = f(x)

is a relaxation equation, and

D2y(x) +Ay(x) = f(x)

is an oscillation equation, where x represents the time and
A is a positive constant representing damping or restoring.
The function f(x) is the external forcing function that
drives the system, and y(x) may represent voltage, current,

Manuscript received October 20, 2024; revised April 22, 2025.
Dr. Pratiksha is Assistant Professor in the Department of Applied Sci-

ence, Symbiosis Institute of Technology, Symbiosis International (Deemed)
University, Lavale, Pune, India. (e-mail: text2pratiksha@gmail.com).

Dr. Geeta Arora is Professor at the Department of Mathematics, School
of Chemical Engineering and Physical Sciences, Lovely Professional Uni-
versity, Punjab, India. (e-mail: geetadma@gmail.com).

displacement, temperature etc.
In the recent times, the classical differential equations have
been replaced by the fractional differential equations, as the
latter have proved to be a better model. The fractional models
use fractional derivatives to characterize systems that are not
entirely represented by integer-order models due to memory
effects or anomalous diffusion. Derivatives of non-integer
orders make it possible to describe complex systems ([1],
[2], [3]) more accurately and flexibly because the current
state depends on the system’s complete history as well as its
immediate past.
Fractional calculus is quite old yet a new field in mathemat-
ics. It involves the study of functions with their fractional
derivatives and fractional integrals. Its name does not bear
literal meaning and it can be attributed to the question arisen
by L’Hopital to Leibniz [4] on the notation of ordinary
derivative. L’Hopital was inquisitive for the value of dnx

dxn

when n = 1
2 . As 1

2 is a fraction, the name of this branch of
calculus evolved to be fractional calculus whereas in actual
scenario n can be any real or complex number. The fractional
derivative can be defined in many non unique ways (see
[5], [6], [7]) and the most popular are the Caputo’s [8] and
Riemann Liouville’s ([9], [10]) definitions.
Francesko Mainardi [11] in 1995, came up with the fractional
analogy of the relaxation oscillation equation known as the
Fractional relaxation oscillation equation (FROE). It is one
of the simplest yet significant fractional order differential
equations in order to understand the viscoelastic systems
and many biological and engineering processes. The process
of relaxation oscillation in many branches of physics and
biology ([12], [13], [14]) can better be explained by FROE
because it can capture memory and hereditary properties of
the system.
For any system involving some kind of dependence on mem-
ory and its hereditary properties, let the system’s response be
y(x), Dαy(x) be the Caputo’s fractional derivative, where
α is the arbitrary order of the derivative. Let f(x) be the
external forcing function and A is a damping coefficient,
then the FROE is given as:

Dαy(x) +Ay(x) = f(x) x > 0; y(k)(0) = 0, (1)
k = 0, 1, 2, . . . , n− 1 (2)

where n− 1 < α ≤ n.
For 0 < α ≤ 1 this equation is called fractional relaxation
equation (FRE) and for 1 < α ≤ 2 it is fractional oscillation
equation (FOE) specifically. The 0 < α ≤ 1 system is
categorized [11] as ”ultraslow processes” and 1 < α ≤ 2
system, as ”intermediate processes” by Mainardi. The ultra-
slow processes exhibit slow decay and no oscillations while
the intermediate processes are about damped oscillations.
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The analytic solution of the FROE in terms of Green’s
function [4] is given as

y(x) =

∫ x

0

G2(x− τ)f(τ)dτ, (3)

G2(x) = xα−1Eα,α(−Axα).

The FROE has recently been solved by some authors, (see
[1], [2], [3], [15], [16], [17]) using various numerical and
analytic methods employing the wavelets, transforms, Hilfer
derivative etc. However, the solution of the FROE by semi-
analytic technique of differential transform is not there in the
literature. This work is an attempt to solve the equation by
using fractional DTM.
Section II is devoted to a brief account of fractional differ-
ential transform method (DTM). Then the method has been
implemented on the general FROE in the Section III. The
Section IV contains the numerical examples with tabular and
pictorial comparison of the solutions along with the error
analysis. The discussions and conclusions are recorded in
Section V.

II. FRACTIONAL DTM

In 1986, Zhou [18] came up with differential transform
method for the first time, for his work on electric circuit
analysis. This method resulted in a power series solution
of the differential equation. The convergence of the series
solution by DTM has been studied by Odibat et al. in [19].
The differential transform of the kth order of a function u(x)
is given by

U(k) =
1

k!

(
dku(x)

dxk

)
x=x0

and inverse differential transform of U(k) is

u(x) =
∞∑
k=0

U(k)(x− x0)k.

To solve the fractional differential equations, the DTM also
got modified. The fractional differential transform [20] of the
kth order of function u(x) involving the Caputo’s fractional
derivative of order α where (n− 1 < α ≤ n) is given as,

Uα(k) =
1

Γ(αk + 1)

[(
Dα
x0

)k
u(x)

]
x=x0

(4)

and inverse differential transform of Uα(k) is given as

u(x) =
∞∑
k=0

Uα(k)(x− x0)kα. (5)

Since this work will incorporate fractional differential trans-
form (DT) only, instead of Uα(k) for the kth fractional
differential transform of u(x), U(k) will be used.
Fractional differential transforms of the initial conditions are
given as

U(k) =

 1
(kα)!

[
dkαu(x)
dxkα

]
x=x0

, if kα ∈ Z+, 0 ≤ k ≤
(
n
α

)
− 1.

0, otherwise.
(6)

A. Prerequisites
The basic results from [21], [22], [23] are used to solve

FROE. For the entirety of the paper, the results are presented
with the proofs. It is assumed that U(k), V (k) and W (k)
are the fractional differential transforms of u(x), v(x) and
w(x) respectively.

Proposition. If u(x) = v(x) ± w(x) then U(k) = V (k) ±
W (k).

Proof: Using Equation (5) the following can be written:

u(x) =
∞∑
k=0

V (k)(x− x0)kα ±
∞∑
k=0

W (k)(x− x0)kα

=
∞∑
k=0

[V (k)±W (k)](x− x0)kα.

Thus by definition of differential transform, U(k) = V (k)±
W (k). This proposition implies that DT preserves linearity.

Proposition. If u(x) = cv(x) then U(k) = cV (k).

Proof: Using Equation (5)

u(x) = c
∞∑
k=0

V (k)(x− x0)kα

=
∞∑
k=0

cV (k)(x− x0)kα.

Therefore, U(k) = cV (k). This proposition implies that DT
preserves scalar multiplication.

Proposition. If u(x) = v(x)w(x) then U(k) =
Σkr=0V (r)W (k − r).

Proof: Using the Equation (5)

u(x) = v(x)w(x)

=

∞∑
k=0

V (k)(x− x0)kα.

∞∑
k=0

W (k)(x− x0)kα

=
∞∑
k=0

k∑
r=0

V (r)W (k − r)(x− x0)kα.

Thus, U(k) = Σkr=0V (r)W (k−r). This proposition implies
that DT of a product of two functions results in the convo-
lution of their transformed functions.

Proposition. If u(x) = Dα
x0
v(x) then

U(k) =
Γ(αk + α+ 1)

Γ(αk + 1)
V (k + 1).

Proof: Employing Equation (4),

U(k) =
1

Γ(αk + 1)

(
Dα
x0

)k [
Dα
x0
v(x)

]
x=x0

=
1

Γ(αk + 1)

[(
Dα
x0

)k+1
v(x)

]
x=x0

=
Γ(αk + α+ 1)

Γ(αk + 1)Γ(αk + α+ 1)

[(
Dα
x0

)k+1
v(x)

]
x=x0

=
Γ(αk + α+ 1)

Γ(αk + 1)
V (k + 1)
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Therefore, U(k) = Γ(αk+α+1)
Γ(αk+1) V (k + 1). This proposition

gives the DT of Caputo’s derivative of a function.

Proposition. If u(x) = (x− x0)q; q = nα; n ∈ Z then
U(k) = δ

(
k − q

α

)
.

Proof: Here δ(k) is Kronecker delta function defined as

δ(k − n) =

{
1, if k = n.

0, otherwise.
(7)

By Expression (5), u(x) = (x− x0)q can be written as,

u(x) =
∞∑
k=0

(x− x0)αkδ
(
k − q

α

)
.

Therefore, U(k) = δ
(
k − q

α

)
. This proposition gives the

DT of a power function.

Proposition. If u(x) = Dξ
x0
v(x),m− 1 < ξ ≤ m then

U(k) =
Γ(αk + ξ + 1)

Γ(αk + 1)
V

(
k +

ξ

α

)
.

Proof: From Equation (4)

U(k) =
1

Γ(αk + 1)

(
Dα
x0

)k [
Dξ
x0
v(x)

]
x=x0

=
1

Γ(αk + 1)

[
(Dx0)

αk+ξ
v(x)

]
x=x0

=
Γ(αk + ξ + 1)

Γ(αk + 1)Γ(αk + ξ + 1)

[
(Dx0

)
αk+ξ

v(x)
]
x=x0

=
Γ(αk + ξ + 1)

Γ(αk + 1)
V

(
k +

ξ

α

)
.

Therefore, U(k) = Γ(αk+ξ+1)
Γ(αk+1) V

(
k + ξ

α

)
. This proposition

gives the DT of a general derivative of a function.

III. IMPLEMENTATION OF METHOD

Consider Equation (1) with the general initial conditions.
Taking fractional differential transform (DT) on both sides
and let

DT (f(x)) = F (k)

DT (y(x)) = Y (k).

Applying the proposition of linearity:

DT (Av(x)±Bw(x)) = AV (k)±BW (k)

and proposition on the Caputo’s derivative of a function:

DT (Dα
x0
y(x)) =

Γ(αk + α+ 1)

Γ(αk + 1)
Y (k + 1),

the transformed equation can be written as,

Γ(αk + α+ 1)

Γ(αk + 1)
Y (k + 1) +AY (k) = F (k).

In the recursive form, it can be re-written as,

Y (k + 1) =
Γ(αk + 1) (F (k)−AY (k))

Γ(αk + α+ 1)
. (8)

From this recursive expression and from the initial value
Y (0); the values or expressions of Y (1), Y (2), Y (3), ... etc.
are obtained. Then the approximate series solution or the
mth truncated solution of the FROE is obtained as:

y(x) = Σmk=0Y (k)(x− x0)kα. (9)

For the available exact solutions, the absolute error can be
found as

Error = |Exact Solution−mthTruncated Solution|.

And the relative error is calculated as,

Error =
|Exact Solution−mthTruncated Solution|

|Exact Solution|
.

The series solution is truncated at m for which the errors are
minimum or are in the desired range. In the next section four
FROEs are solved and the error analysis of the solutions is
discussed in the Section (IV-E).

IV. NUMERICAL EXAMPLES

To show the effectiveness of the method, four examples are
discussed. The solution obtained by the fractional differential
transform method has been compared with the available
solution by other methods.

A. Example 1

Consider a fractional relaxation equation from [15], with
α = 0.5 known as Mainardi’s ”ultraslow process” [11].

D0.5y(x) + y(x) = 0

with initial condition y(0) = 1. This is the generalized FRO
equation (1) with values A = 1, f(x) = 0 .
Taking differential transform on both sides and applying the
propositions from Section (II). The transformed equation can
be written as

Γ(0.5k + 1.5)

Γ(0.5k + 1)
Y (k + 1) + Y (k) = 0.

It can be rewritten as,

Y (k + 1) = − Γ(0.5k + 1)

Γ(0.5k + 1.5)
Y (k). (10)

Using Equation (6), the transformed initial condition is

Y (0) = 1.

The approximate solution for m = 21 by inverse fractional
differential transform (see 5) is given as,

y(x) = Y (0) + Y (1)x0.5 + Y (2)x1 + . . .+ Y (21)x10.5.

Substituting the values Y (0), Y (1), Y (2) . . . etc. the follow-
ing expression is obtained.

y(x) = 1− 1.12837916714x0.5 + 1x− 0.7522527780x1.5

+ 0.4999999999x2 − 0.3009011111x2.5 + 0.1666666665x3

−0.0859717459x3.5 +0.0416666665x4−0.0191048323x4.5

+0.0083333332x5−0.0034736058x5.5 +0.0013888888x6−
0.0005344008x6.5 + 0.0001984126x7 − 0.0000712534x7.5

+ 0.0000248015x8 − 0.0000083827x8.5 + 0.0000027357x9

− 0.00000088238549x9.5 + 0.00000028254315x10

− 0.000000086163217x10.5.

This solution is compared with the available results from the
wavelet collocation method and exact solution as recorded in
[15], in Table (I). The last column depicts the absolute error
in the exact solution and the solution by fractional DTM.
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TABLE I
COMPARISON OF SOLUTIONS BY FRACTIONAL DTM WITH EXISTING SOLUTIONS FOR EXAMPLE IV-A

x Wavelet collocation method [15] Exact solution(A) Fractional DTM(F) Error(|A− F |)
0.0 1.0000000 1.0000000 1.0000000 0
0.1 0.7235784 0.7235784 0.7235784 1.3611e-013
0.2 0.6437882 0.6437882 0.6437882 9.9298e-013
0.3 0.5920184 0.5920184 0.5920184 1.8488e-012
0.4 0.5536062 0.5536062 0.5536062 2.2161e-012
0.5 0.5231565 0.5231565 0.5231565 3.9851e-011
0.6 0.4980245 0.4980245 0.4980245 2.3950e-010
0.7 0.4767027 0.4767027 0.4767027 1.0558e-009
0.8 0.4582460 0.4582460 0.4582460 3.8471e-009
0.9 0.4420214 0.4420214 0.4420213 1.2184e-008
1.0 0.4275835 0.4275835 0.4275835 3.4561e-008

0 0.2 0.4 0.6 0.8 1

x

0.4

0.5

0.6

0.7

0.8

0.9

1

y
(x

)

Analytic solution

Approximate solution

Fig. 1. Comparison of analytic and approximate solutions of Example
IV-A

From the Table (I), following inferences can be made:

• The results by fractional DTM are very close to the
exact solution, but there are small deviations for larger
values of x.

• The errors are increasing from 1.36× 10−13 at x = 0.1
to 3.45× 10−8 at x = 1.0.

• The error is growing gradually but it is too small to
impact the practical scenario.

B. Example 2

Consider a fractional oscillation equation from [15] with
α = 1.5 depicted as an ”intermediate process” by Mainardi
[11].

D3/2y(x) + y(x) = 0

with initial conditions y(0) = 1 and y′(0) = 0 i.e. A =
1, f(x) = 0 in generalized FRO equation (1).
Using equation 8, the fractional differential transform of the
equation can be written as,

Γ(1.5k + 2.5)

Γ(1.5k + 1)
Y (k + 1) + Y (k) = 0.

It can be simplified as,

Y (k + 1) = − Γ(1.5k + 1)

Γ(1.5k + 2.5)
Y (k). (11)

The initial conditions after applying differential transform is

Y (0) = 1.

The approximate solution considering m = 14 in equation
(9), is

y(x) = Y (0) + Y (1)x1.5 + Y (2)x3 + . . .+ Y (14)x21.

Substituting the value of Y (0), Y (1), Y (2), . . . etc. the ap-
proximate solution can be written as,

y(x) = 1−0.752252778063675x1.5+0.166666666666666x3

− 0.0191048324587600x4.5 + 0.00138888888888888x6

− 7.12534543916457e− 5x7.5 + 2.75573192239858e− 6x9

− 8.40376876209885e− 8x10.5 + 2.087675698786e− 9x12

−4.33044445067896e−11x13.5+7.64716373181981e−13x15

−1.16774718055184e−14x16.5+1.5619206968586e−16x18

−1.84971338370751e−18x19.5+1.95729410633912e−20x21

(12)

The Table (II) explains and supports the efficiency and
applicability of fractional DTM. The more the number of
terms in the right hand side of equation (12) the lesser will
be the deviation from the exact solution [15]. However, how
many terms one should take out of the infinite series is still
an open question- seeking a general answer. Currently a trial
and error approach is used to select the number of terms.
The following inferences can be made from the Table (II):

• The error due to fractional DTM is either zero or very
small (1.1102× 10−16).

• Both the methods are consistent throughout 0.0 < x <
1.0.

• The fractional DTM gives near perfect accuracy, thus
making it suitable for problems that need higher preci-
sion.

The visual depiction of the similar output of the methods
through the FRE and FOE examples are given in Figure (1)
and (2).
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TABLE II
COMPARISON OF SOLUTION BY FRACTIONAL DTM WITH EXISTING SOLUTIONS FOR EXAMPLE IV-B

x Wavelet collocation method [15] Exact solution(A) Fractional DTM(F) Error(|A− F |)
0.0 1.0000000 1.0000000 1.0000000 0
0.1 0.9763777 0.9763777 0.9763777 0
0.2 0.9340362 0.9340362 0.9340362 0
0.3 0.8808084 0.8808084 0.8808084 1.1102e-016
0.4 0.8200563 0.8200563 0.8200563 0
0.5 0.7540488 0.7540488 0.7540488 0
0.6 0.6845298 0.6845298 0.6845298 0
0.7 0.6129215 0.6129215 0.6129215 0
0.8 0.5404169 0.5404169 0.5404169 1.1102e-016
0.9 0.4680306 0.4680306 0.4680306 0
1.0 0.3966293 0.3966293 0.3966293 0
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y
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Analytic solution

Approximate solution

Fig. 2. Comparison of analytic and approximate solutions of Example IV-B

C. Example 3

Consider a fractional relaxation oscillation from [16].

Dαy(x)− 4y(x) = 0

with initial conditions y(0) = 1 i.e. A = −4, f(x) = 0 in
equation (1).
Using the propositions in section II, the fractional differential
transform of the equation can be written as:

Y (k + 1) = −4
Γ(kα+ 1)

Γ(kα+ α+ 1)
Y (k). (13)

The initial conditions imply

Y (0) = 1.

The relation (13) gives

Y (1) =
4

Γ(α+ 1)
, Y (2) =

42

Γ(2α+ 1)
, Y (3) =

43

Γ(3α+ 1)
,

and so on.
Using the inverse differential transform one can obtain,

y(x) =
∞∑
n=0

4nxnα

Γ(nα+ 1)
.

The truncated solution can thus be written as,

y(x) =

m∑
n=0

4nxnα

Γ(nα+ 1)
.
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Fig. 3. Exact and approximate solutions in Example IV-C for m=10

For α = 1 the y(x) = e4x. Since the exact solution is
available in [4], [15] for α = 1, so the solution due to DTM
is checked for α = 1 and with various trials of m as recorded
in Table (III) and Table (IV).

The following inferences can be made from the Table (IV):
• Both RPSM and Fractional DTM give the results very

close to the exact solution.
• The fractional DTM has minimal error at small values

of x and it is increasing gradually from 0 to 1.05×10−7

as x increases from 0.0 to 1.0.
• The error is yet quite small (< 10−6), that indicates

good precision of the method.
• The results by RPSM are slightly less precise as com-

pared to the fractional DTM, although the difference is
negligible for practical purposes.

• Both methods are consistent with the exact solution for
smaller values of x and the slight deviations at greater
values of x do not affect the general accuracy.

D. Example 4

Consider another fractional relaxation oscillation equation
from [16]

Dαy(x)− y(x) = 1

with initial conditions y(0) = 0 i.e. A = −1, f(x) = 1 in
generalized FRO equation (1).
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TABLE III
COMPARISON OF SOLUTIONS OF FROE IN EXAMPLE IV-C FOR m = 10

x Exact solution(A) Residual Power Series Method([16]) Fractional DTM(F) Error(|A− F |)
0.0 1.000000000 1.0000000 1.0000000 0
0.1 1.491824698 1.4918246 1.491824698 1.09E-12
0.2 2.225540928 2.2255409 2.225540926 2.30E-09
0.3 3.320116923 3.3201167 3.320116716 2.07E-07
0.4 4.953032424 4.9530273 4.953027348 5.08E-06
0.5 7.389056099 7.3889947 7.388994709 6.14E-05
0.6 11.02317638 11.0227019 11.02270198 0.000474398
0.7 16.44464677 16.4419542 16.44195426 0.00269251
0.8 24.5325302 24.5203334 24.52033341 0.012196784
0.9 36.59823444 36.5517073 36.5517073 0.046527141
1.0 54.59815003 54.4431040 54.44310406 0.155045977

TABLE IV
COMPARISON OF SOLUTIONS OF FROE IN EXAMPLE IV-C FOR m = 20

x Exact solution(A) Residual Power Series Method([16]) Fractional DTM(F) Error(|A− F |)
0.0 1.000000000 1.0000000 1.000000000 0
0.1 1.491824698 1.4918246 1.491824698 2.22E-16
0.2 2.225540928 2.2255409 2.225540928 0
0.3 3.320116923 3.3201169 3.320116923 4.44E-16
0.4 4.953032424 4.9530324 4.953032424 0
0.5 7.389056099 7.3890560 7.389056099 4.62E-14
0.6 11.02317638 11.0231763 11.02317638 2.12E-12
0.7 16.44464677 16.4446467 16.44464677 5.51E-11
0.8 24.5325302 24.5325301 24.5325302 9.28E-10
0.9 36.59823444 36.5982344 36.59823443 1.12E-08
1.0 54.59815003 54.5981499 54.59814993 1.05E-07
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Fig. 4. Exact and approximate solutions in Example IV-C for m=15

Using propositions in section II, the fractional differential
transform of the equation can be written as,

Y (k + 1) =
Γ(kα+ 1)

Γ(kα+ α+ 1)
(δ(k) + Y (k)). (14)

The initial condition after the proposed transformation be-
comes,

Y (0) = 0.

The relation (14) gives

Y (1) =
1

Γ(α+ 1)
, Y (2) =

1

Γ(2α+ 1)
, Y (3) =

1

Γ(3α+ 1)
,
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Fig. 5. Exact and approximate solutions in Example IV-C for m=20

and so on.
Using the inverse differential transform one can obtain

y(x) =
∞∑
n=1

xnα

Γ(nα+ 1)

The approximate solution can be obtained by truncating the
series as,

y(x) =

m∑
n=1

xnα

Γ(nα+ 1)

IAENG International Journal of Applied Mathematics

Volume 55, Issue 6, June 2025, Pages 1685-1694

 
______________________________________________________________________________________ 



0 0.2 0.4 0.6 0.8 1

x

0

50

100

150

200

250

300

350
y
(x

)

=0.25

=0.5

=0.75

=0.8

=0.9

=1

Fig. 6. Response of the system at different values of α in Example IV-C
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Fig. 7. Exact and approximate solutions of Example IV-D for m=10

For α = 1 the y(x) = ex−1. For the available exact solution
[4], [15], the solutions due to DTM are recorded in the Table
V and VI. The visual depiction of the similar output of the
methods through two FROE examples are given in Figure
(3, 4, 5) and (7, 8, 9).
It can be observed from the Table (VI) that
• The minimal error values show that the RPSM and

FDTM results are very close to the exact solution.
• The absolute errors are of the order 10−16 or 10−17

suggesting high accuracy of the fractional DTM.
• On all the points 0.0 ≤ x ≤ 1.0, the results by fractional

DTM consistently match the exact solution.
• The RPSM slighly deviates from the exact solution at

some points.
• The errors are very small and don’t grow as ’x’ grows.

That indicates the stable behavior of the method.

E. Error Analysis

From the Figure (11), it is observed that the as n
increases, the absolute error decreases, validating that
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Fig. 8. Exact and approximate solutions of Example IV-D for m=15
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Fig. 9. Exact and approximate solutions of Example IV-D for m=20
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TABLE V
COMPARISON OF SOLUTIONS OF FROE IN EXAMPLE IV-D FOR m = 15

x Exact solution(A) Residual Power Series Method([16]) Fractional DTM(F) Error(|A− F |)
0.0 0 0 0 0
0.1 0.105170918 0.1051709 0.105170918 8.33E-17
0.2 0.221402758 0.2214027 0.221402758 0
0.3 0.349858808 0.3498588 0.349858808 5.55E-17
0.4 0.491824698 0.4918246 0.491824698 0
0.5 0.648721271 0.6487212 0.648721271 1.11E-16
0.6 0.8221188 0.8221188 0.8221188 1.11E-16
0.7 1.013752707 1.0137527 1.013752707 8.88E-16
0.8 1.225540928 1.2255409 1.225540928 2.00E-15
0.9 1.459603111 1.4596031 1.459603111 9.10E-15
1.0 1.718281828 1.7182818 1.718281828 5.08E-14

TABLE VI
COMPARISON OF SOLUTIONS OF FROE IN EXAMPLE IV-D FOR m = 20

x Exact solution(A) Residual Power Series Method([16]) Fractional DTM(F) Error(|A− F |)
0.0 0 0 0 0

0.1 0.105170918 0.1051709 0.105170918 8.33E-17

0.2 0.221402758 0.2214027 0.221402758 0

0.3 0.349858808 0.3498588 0.349858808 5.55E-17

0.4 0.491824698 0.4918246 0.491824698 0

0.5 0.648721271 0.6487212 0.648721271 1.11E-16

0.6 0.8221188 0.8221188 0.8221188 1.11E-16

0.7 1.013752707 1.0137527 1.013752707 6.66E-16

0.8 1.225540928 1.2255409 1.225540928 6.66E-16

0.9 1.459603111 1.4596031 1.459603111 2.22E-16

1.0 1.718281828 1.7182818 1.718281828 0
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Fig. 11. Absolute and relative errors observed in Example IV-C

higher n leads to better approximation. For n = 20 the
error is negligible for small values of x, inferring excellent
convergence.
For n = 10, the relative error is higher for x > 0.5 and as n
increases there is an evident improvement. For larger values
of x, larger values of n are essential to retain the accuracy.

Similarly from the Figure (12), it is noticed that the absolute
error decreases for all values of x as n increases. Moreover
the decreasing relative error confirms the improvement in
approximation with increasing n.
The absolute and relative error plots of Figure (11, 12),
confirm the convergence of the series solution to the
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Fig. 12. Absolute and relative errors observed in Example IV-D

exact solution as n is increased. The error reduction can
significantly be observed for the larger values of x.

V. DISCUSSION AND CONCLUSION

Any physical systems involving relaxation, diffusion, os-
cillations and wave propagation is governed by a benchmark
equation called the fractional relaxation oscillation equation.
In this work, the solution of this equation is discussed
using the fractional differential transform method. This semi-
analytic method can solve the fractional differential equations
up to the desired level of accuracy. A comparison of the
solutions of numerical examples cited in the literature, is
done with the solutions by two popular methods called
wavelet collocation method (IV-A, IV-B) and the residual
power series method (IV-C, IV-D).
The Figures (6) and (10) depict the behavior of the response
of the systems stated in Examples (IV-C)) and (IV-D) re-
spectively, for different fractional orders and only four terms
in the series solution. As α increases, the response y(x)
is slowing down. In Figure (10), the α = 1 curve, almost
separates the slow-growing curves (α > 1) and the fast-
growing curves (α < 1). It shows that the lower value of
α depicts a system with fast changes and higher value of α
corresponds to the slower dynamics.
The results by fractional DTM are comparable to the exact
solution at α = 1. The best attributes of this method are
its semi-analytic nature, ease to understand and quick to
program. The errors can be reduced to as low as required,
by increasing the number of terms in the solution series.
Thus, from the inferences of Tables (I, II, IV, VI) it can be
concluded that the fractional differential transform method
offers slightly better precision compared to wavelet colloca-
tion method and the residual power series method.
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