
 

  

Abstract— The Mann-Whitney test is a nonparametric test for 

determining if two medians in two independent samples are 

equal. The test relies on the rank of all the observations. They 

come from two populations with symmetric continuous 

distributions and an unknown median. The power may be 

impacted when the symmetric distribution assumption is not 

satisfied. The research goal is to investigate the Mann-Whitney 

power of the test against the symmetry assumption. This study's 

objective is to use simulations to evaluate differences in the 

power of the Mann-Whitney between data sets from 

distributions that are symmetric and more asymmetric. As the 

transition between symmetry and asymmetry in the 

distribution, the Mixtures of Normal distributions simulations 

demonstrate that the Mann-Whitney test's power decreases 

when the population distribution grows more asymmetric. 

Consequently, under the asymmetry distribution, the Mann-

Whitney test is robust and applicable. 

 
Index Terms—power, Mann-Whitney test, symmetry, 

asymmetry distribution  
 

I. INTRODUCTION 

ALMOST all statistical inferential procedures depend 

on a set of assumptions. Therefore, it is essential to 

ensure that the relevant assumptions are met for any 

statistical inferential technique to be considered valid. A 

typical t-test, for instance, can be applied to determine 

whether a given value is equivalent to the population mean. 

In this case, a sample from the relevant population can 

always be used to perform the t-test technique. However, for 

the test procedure's results to be significant or legitimate, the 

sample must be taken from a normally distributed population, 

and the sample data required to run the test must be randomly 

selected ([9]). 

When statistical techniques are used, the assumptions' 

validity is always considered; for instance, when testing a 

location parameter or a distribution shift, the t- and Z-tests 

satisfy the assumption of a normal distribution, such as the 

population mean. Box and Andersen ([1]) suggested that a 

good statistical test must meet two requirements. 

1. Insensitive to changes in irrelevant factors.  

2. Change-sensitive to particular test factors. 
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A test is considered robust if it meets the first condition, 

and powerful if it meets the second. Based on the two 

conditions stated above, we discovered that parametric tests 

tend to meet the second requirement when the assumptions 

are correct not the first, however. Nonparametric tests 

typically meet the first condition, but not always the second. 

As a result, several statistical studies were carried out on (1) 

nonparametric tests' power, and (2) parametric tests' 

robustness or strength. When using testing hypotheses, we 

need to consider whether the corresponding assumptions are 

met. For statistical hypothesis testing, the validity of 

assumptions is important. However, even if the assumption is 

not satisfied or there are deviations from the assumption, the 

test should be valid.  

Huber ([3]) described that robust procedures are generally 

classed as nonparametric or free of distribution procedures. 

The ideas of nonparametric or free of distribution procedures 

have a slight overlap with the concepts listed below: 

(a) If a process is meant to be used on a huge and non-

parameterized collection of underlying distributions, it is said 

to be nonparametric. For instance, the population mean and 

median are estimated nonparametrically by the sample mean 

and median, respectively. 

(b) A test is said to be free of distribution if the chance of 

incorrectly rejecting the null hypothesis is the same for every 

potential continuous distribution that underlies it, or if it has 

optimal robust validity. Distribution-free tests typically 

exhibit strong overall performance, robustness, and a 

generally steady power. In any case, the distribution-free test 

reveals nothing about the power function's behavior. 

Parametric approaches typically rely on important 

assumptions about the population. When conditions for the 

underlying population are unsatisfactory or questionable, 

nonparametric approaches are used rather than parametric 

ones, because the majority of non-parametric techniques 

make only a few conditions but do not require a particular 

distribution function F. For example, we should find an 

alternative analysis method when the population distribution 

assumption is violated. One possibility is to use a 

nonparametric process. Many nonparametric approaches are 

accessible to infer the location or position parameter. In 

nonparametric procedures, for the location parameter, we 

apply the median of a population (M) instead of the mean of 

a population. 

For this article, we concentrate on the Mann-Whitney test 

and investigate the test's power in cases where the 

distribution's symmetry assumption is not met. In other 

words, a sample is drawn from a continuous asymmetric 

distribution. We examine the Mixtures of Normal distribution 

in such a way that their asymmetry coefficient varies from 

0.0 to 0.5, using a simulation study. The objective of the 

simulation study is to investigate the power of the Mann-
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Whitney test against the assumption of symmetry. We 

investigate the power of the Mann-Whitney test as 

asymmetry varies by simulating random samples with 

increasing asymmetry drawn from the Mixtures of Normal 

distributions. Additionally, a summary, discussion, and 

simulation results are provided. 

II. THE MANN-WHİTNEY TEST  

The Mann-Whitney test can alternatively be called the 

Mann-Whitney-Wilcoxon test or the Wilcoxon rank sum test. 

The Mann-Whitney test is a nonparametric alternative to the 

independent t-test. The independent t-test assumes that 

populations are normally distributed. When the conditions 

are not satisfied, the Mann-Whitney test is an alternative 

method. Henry Mann and Donald Whitney adapted Frank 

Wilcoxon's rank sum test. The test depends on the ranking of 

the observations [2, 8, 10]. 

These are the assumptions that underlie the Mann-Whitney 

test. [2, 6] 

1. The two samples available for study, with sizes n and 

m, were chosen independently and randomly from the 

corresponding symmetric populations. 

2. The measurement has at least an ordinal scale. 

3. The variables of interest are continuous. 

4. If there is any difference between the populations, it 

is merely in their medians. 

When these conditions are satisfied, we may test the 

null hypothesis that the two populations have equal medians 

against any of the following three alternatives:  

(1) The populations' medians are unequal (two-sided 

test).  

Ho: M1 = M2 Ha: M1  M2 

(2) The population 1 median is greater than the 

population 2 median (right-handed side test).  

Ho: M1  M2 Ha: M1 > M2 

(3) The population 1 median is less than the population 

2 median (left-handed side test).  

Ho: M1  M2 Ha: M1 < M2 

If the two populations are symmetric, the conclusions we 

draw about their medians will likewise hold for their means, 

meaning that the median and mean are the same within each 

population. 

 Let X1, X2,..., Xn and Y1, Y2,..., Ym be two samples with 

sizes n and m (n  m) from two independent continuous 

populations, which are symmetric with medians M1 and M2, 

respectively. The two samples are combined, and all 

observations are ranked from smallest to largest while noting 

which sample each observation is from. The rank of tied 

observations is determined by averaging the ranks in which 

they are tied.  

 Let R(Xi) and R(Yj) be the observation rank assigned to Xi 

and Yj. Wilcoxon rank sum statistic: S) is  

       S = R(Xi)           (2.1) 

 The Mann-Whitney test statistic is 

    U = S – n(n + 1)/2        (2.2) 

where n is the number of sample X observations, and S is the 

sum of the ranks assigned to the sample observations from 

the population of X values. The choice of which sample’s 

values we label X is arbitrary. 

When n or m is more than 20 for a large sample, a normal 

approximation can be used, that is 

    Z =               (2.3) 

 where E(U) = nm/2 and V(U) = nm(n + m + 1)/12.  

III. MEASURE OF ASYMMETRY 

In a probability model, symmetry is a qualitative property 

that is significant in statistical techniques. In most cases, 

knowing their quantification in mathematics is useful. 

Rather, basic skewness measures in statistics are utilized to 

evaluate symmetry due to their straightforward structure and 

ease of application. Nevertheless, when two probability 

density function curves are compared for asymmetries, the 

skewness might not be the appropriate metric. Despite this, 

Li and Morris ([4]) demonstrate the inaccuracy of skewness 

metrics when used to make judgments about symmetry. 

Therefore, efforts to quantify the asymmetry have been made 

in the literature; nevertheless, these discussions are rather 

restricted and unsatisfactory. For instance, consider Li and 

Morris ([4]) and MacGillivray ([5]). Patil et al. ([7]) contend 

that previous quantification methods were not intuitive or 

user-friendly enough to display the level of asymmetry in a 

density ([9]). Patil et al. ([7]) proposed a measure that 

appears to characterize asymmetry accurately. On a -1 to 1 

scale, their approach measures the asymmetry of a 

continuous probability density function. A symmetric density 

is represented by a value of 0, while a value of 1 represents 

the most asymmetric densities, both positively and 

negatively.  

Definition A continuous probability density function f(x) with 

distribution function F(x), x  R, is said to be symmetric 

about  if F( - x) = 1 - F( + x) or, equivalently f( - x) = f( 

+ x) for every x  R.  

The following lemma describes a required condition 

utilized by Patil et al. ([5]) to establish a new symmetry 

measure. 

Lemma Let X be a continuous symmetric random variable 

with a square integrable continuous probability density 

function f(x) and distribution function F(x), then 

Cov(f(X), F(X)) = 0.  

 

Based on the above required condition, Patil et al. ([7]) 

suggested a measure or coefficient of asymmetry (X) of a 

random variable X, which is described as  

 

             -Corr(f(X), F(X))  if 0 < Var(f(X)) <  

(X) =  

      0        if Var(f(X)) = 0  

where F(X) is the distribution function of X. Observe that the 

coefficient of asymmetry (X) is such that -1 < (X) < 1.  

For (X) to be defined, one needs Var(f(X)) <  and that 

leads to the condition  

        (3.1)  
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A value of (X) around zero indicates that the density 

function is almost symmetric, whereas a value near 1 

indicates that it is almost the most asymmetrical function, 

either positively or negatively. In the Cauchy, Normal, and 

Uniform distributions, for example, the coefficients of 

asymmetry are all equivalent to 0 ((X) = 0). 

The major characteristics of their asymmetry measure 

are  

1. If (3.1) holds, then (X) = 0 for a random variable X 

that is symmetric.  

2. if Y = aX + b where a > 0 and b any real number then 

(X) = (Y), 

3. if Y = -X, (X) = -(Y).  

Patil et al. ([7]) provide several examples that demonstrate 

how well the above coefficient quantifies the visual 

perception of a probability density curve's asymmetry. A few 

instances of asymmetric probability distributions that are 

utilized in the simulation study and their corresponding 

coefficients of asymmetry are provided below.  

Let X be a continuous random variable that follows a 

Mixture of Normal distributions, or X  N(1, ) + (1 - 

α)N(2, ) where 0 <  < 1 is the mixing coefficient. 

The probability density function of X is f(x), where 

f(x) =  

for - < x < , - < 1 < , - < 2 < , > 0, 0 <  < 

1 

The Mixture of Normal distribution's parameters is chosen 

in such a way that the asymmetry's size shifts from 0.0 to 0.5. 

For instance, let 1 = 0, 2 = 2, = 1,  = 4, and let  vary 

for 0.000 to 0.491. Figure 1 shows the Mixtures of Normal 

density curves for various .  

Table 1 presents the asymmetry coefficient of various 

mixing coefficients , denoted as (X), as described in Patil 

et al. ([7]).  

 

Table 1. The mixing coefficients (i) and asymmetry size 

(i) of the Mixtures of Normal distribution when 1 = 0, 2 = 

2, = 1,  = 4  

i  i  

0.000 0.0 

0.101 0.1 

0.175 0.2 

0.256 0.3 

0.382 0.4 

0.491 0.5 

 

IV. POWER AND RELATIVE POWER 

As for the Mann-Whitney test null distribution, the Mann-

Whitney sampling distribution test statistic is derived under 

the assumption that the null population is symmetric between 

the two populations. Thus, as soon as one assumes the 

population under null to be asymmetric, the statistic does not 

follow the typical distribution used to determine cut-off 

values. As a result, doing a standard test (i.e., utilizing 

standard cut-off values) will not yield the intended size of 

test. Furthermore, numerical power produced using typical 

cut-off values is meaningless without precise knowledge of 

the null distribution. Moreover, the Mann-Whitney test 

statistic's null distribution remains intractable when the null 

population's functional form is unknown, other than the fact 

that it is asymmetrical. In this case, to obtain insight into the 

behavior of the test's power, we present and describe relative 

power as follows. 

First, we perform the Mann-Whitney test and calculate the 

empirical size () and power (). As previously stated, one 

does not have perfect knowledge of the null distribution, and 

these values are meaningless. Even if linearity is assumed, 

the relative power, *, is defined with (Patil's suggestion) [7],  

         * = . 

 

V.  SIMULATION STUDY 

In this section, the main issue is to evaluate, using 

simulations, whether the Mann-Whitney test is still robust 

against the symmetry assumption. To accomplish this, we run 

the Mann-Whitney test in a perfect environment and assess 

its empirical power. The procedures for the simulation study 

are as follows: 

1. To generate a sample from the Mixtures of Normal 

distribution where 1 = 0, 2 = 2, = 1,  = 4, that is X  

N(0, 1) + (1 - α)N(2, 4) which the mixing coefficient () 

equals to 0.000, 0.101, 0.175, 0.256, 0.382 and 0.491 

according to the size of asymmetry () 0, 0.1, 0.2, 0.3. 0.4 

and 0.5, respectively. That is, under the null hypothesis, the 

population distribution is N(0, 1) + (1 - α)N(2, 4) with the 

median M and the population distribution under the 

alternative hypothesis is N(0 + , 1) + (1 - α)N(2 + , 4) 

with the median M, where  is a small constant that starts 

from zero to 0.25 with an increment of 0.05. Then, the 

median of all population distributions is obtained from the 

bisection method. 

2. From populations with the same shape (or functional 

form), two independent samples are taken, with sample sizes 

of 10, 20, 30, 40, 50, 60, 100, 200, and 500, iterated 10,000 

times. The Mann-Whitney test is then conducted to 

determine its empirical size and power. This process is 

repeated with an asymmetric null population. In other words, 

using an asymmetrical population as the null population, we 

repeatedly test the null hypothesis that the sampled 

population median is equal to the null population median. 

   Ho: M1 = M2      vs. Ha: M1 > M2  

         or Ho: M1 - M2 = 0 vs. Ha: M1 - M2 > 0 

3. To summarize the empirical size and power of the 

Mann-Whitney test. 

 4. To analyze and summarize the empirical relative power 

of the Mann-Whitney test. 
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Figure 1. Mixtures of Normal density curves when 1 = 0, 2 = 2, = 1,  = 4 with asymmetry coefficients of 

0.0, 0.1, 0.2, 0.3, 0.4, and 0.5  

 

VI. RESULT AND DISCUSSION 

A. The Median of the Mixtures of Normal Distribution  

The median of all samples from the Mixtures of Normal 

distribution where 1 = 0, 2 = 2, = 1,  = 4 or N(0, 1) 

+ (1 - α)N(2, 4) which the mixing coefficient () equals to 

0.000, 0.101, 0.175, 0.256, 0.382 and 0.491 according to the 

size of asymmetry () 0, 0.1, 0.2, 0.3. 0.4 and 0.5, 

respectively, and a small constant,  which starts from zero to 

0.25, is obtained from the bisection method and given in 

Table 2.   
From Table 2, we found that 

(1) when  = 0.000 or  = 0.0 and  increases from 0.00   

– 0.25, the median increases from 1.992 – 2.242 

(2) when  = 0.101 or  = 0.1 and  increases from 0.00   

– 0.25, the median increases from 1.742 – 1.992 

 

(3) when  = 0.175 or  = 0.2 and  increases from 0.00   

– 0.25, the median increases from 1.523 – 1.773 

(4) when  = 0.256 or  = 0.3 and  increases from 0.00   

– 0.25, the median increases from 1.289 – 1.539 

(5) when  = 0.382 or  = 0.4 and  increases from 0.00   

– 0.25, the median increases from 0.945 – 1.195 

(6) when  = 0.491 or  = 0.5 and  increases from 0.00   

– 0.25, the median increases from 0.680 – 0.930 

That is, the median of the Mixtures of Normal 

distribution where 1 = 0, 2 = 2, = 1,  = 4 and the 

mixing coefficient () equals to 0.000, 0.101, 0.175, 

0.256, 0.382 and 0.491 according to the size of 

asymmetry () 0, 0.1, 0.2, 0.3. 0.4 and 0.5, respectively, 

decrease from 1.992 to 0.930. Therefore, when the 

distribution is slightly and more asymmetric, the median 

tends to decrease.   
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Table 2. The median of the Mixtures of Normal distribution when 1 = 0, 2 = 2, = 1,  = 4 or i N(0 + i, 1) +             

(1 - i)N(2 + i, 4) with mixing coefficient (i) between 0.000 and 0.491 and a small constant (i) between 0.00 and 0.25   

mixing coefficient 

(i) 

median of the Mixtures of Normal distribution: i N(0 + i, 1) + (1 - i)N(2 + i, 4) 

1 = 0.00 2 = 0.01 3 = 0.05 4 = 0.10 5 = 0.15 6 = 0.20 7 = 0.25 

0.000 1.992 2.008 2.055 2.102 2.148 2.195 2.242 

0.101 1.742 1.758 1.789 1.836 1.898 1.945 1.992 

0.175 1.523 1.539 1.586 1.633 1.680 1.727 1.773 

0.256 1.289 1.305 1.336 1.398 1.445 1.492 1.539 

0.382 0.945 0.945 0.992 1.039 1.086 1.133 1.195 

0.491 0.680 0.695 0.742 0.789 0.836 0.883 0.930 

Table 3. The empirical size percentages of the Mann-Whitney test of the Mixtures of Normal distribution when 1 = 0, 2 = 2, 

= 1,  = 4 or i N(0, 1) + (1 - i)N(2, 4) with mixing coefficient (i) between 0.000 and 0.491 and samples of sizes 10, 

20, 30, 40, 50, 60, 100, 200, 500 

mixing coefficient 

(i) 

the empirical size percentages of the test 

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 100 n = 200 n = 500 

0.000 4.63 4.96 4.88 5.00 4.49 5.03 5.26 4.25 5.25 

0.101 4.86 5.06 4.73 4.90 4.99 5.22 5.05 4.73 4.65 

0.175 4.54 4.97 4.74 5.00 4.84 5.36 4.98 4.81 5.48 

0.256 4.55 4.60 5.07 4.93 4.89 5.17 4.75 5.01 4.76 

0.382 4.66 4.78 5.06 5.09 4.75 4.86 5.14 4.75 4.90 

0.491 4.64 4.60 5.08 4.73 4.70 4.95 4.92 5.11 4.94 

Table 4. The empirical power percentages of the Mann-Whitney test when  = 0.0 and  equals 0.00, 0.01, 0.05, 0.10, 0.15, 

0.20 and 0.25 

constant  

(i) 

the empirical power percentages of the test 

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 100 n = 200 n = 500 

0.00 4.63 4.96 4.88 5.00 4.49 4.97 4.81 4.91 4.96 

0.01 4.20 4.74 4.77 4.80 4.94 4.84 4.83 4.65 5.14 

0.05 4.54 4.64 4.51 4.82 4.86 5.39 4.95 4.87 4.88 

0.10 4.32 4.68 4.95 4.85 4.85 5.12 5.52 5.07 4.83 

0.15 4.50 4.66 4.50 5.27 4.84 5.25 5.04 4.96 5.28 

0.20 4.51 4.65 4.71 4.89 5.21 4.94 5.03 4.98 4.50 

0.25 4.34 5.14 4.97 5.23 4.98 4.93 5.12 4.98 4.99 

Table 5. The empirical power percentages of the Mann-Whitney test when  = 0.1 and  equals 0.00, 0.01, 0.05, 0.10, 0.15, 

0.20 and 0.25 

constant  

(i) 

the empirical power percentages of the test 

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 100 n = 200 n = 500 

0.00 4.78 4.98 4.67 4.74 4.94 4.85 5.01 5.32 5.01 

0.01 4.56 4.21 5.22 5.02 4.93 5.10 4.85 4.86 5.23 

0.05 4.44 4.71 5.01 4.83 5.25 4.97 5.10 4.89 5.08 

0.10 4.50 4.68 4.99 4.94 4.86 5.21 5.09 5.17 4.63 

0.15 4.52 4.79 4.83 5.00 4.89 4.75 4.98 4.95 4.79 

0.20 4.55 4.68 5.15 5.20 4.96 4.83 5.01 5.10 5.07 

0.25 4.43 4.62 4.98 4.95 5.12 5.19 5.11 5.28 5.06 

Table 6. The empirical power percentages of the Mann-Whitney test when  = 0.2 and  equals 0.00, 0.01, 0.05, 0.10, 0.15, 

0.20 and 0.25 

constant  

(i) 

the empirical power percentages of the test 

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 100 n = 200 n = 500 

0.00 4.71 5.16 5.37 4.85 4.93 4.87 4.90 5.04 4.91 

0.01 4.47 4.42 4.97 5.22 5.19 4.82 4.94 4.99 4.94 

0.05 4.62 4.94 5.03 5.41 5.12 5.23 5.21 5.22 5.28 

0.10 4.70 4.93 4.85 5.18 5.20 4.84 4.97 5.22 5.14 

0.15 4.59 5.08 5.06 5.05 5.13 5.07 5.21 5.11 4.87 

0.20 4.56 4.84 4.74 5.11 4.66 5.05 5.40 5.08 4.80 

0.25 4.64 4.62 4.80 4.96 5.07 5.16 4.91 4.68 5.19 
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Table 7. The empirical power percentages of the Mann-Whitney test when  = 0.3 and  equals 0.00, 0.01, 0.05, 0.10, 0.15, 

0.20 and 0.25 

constant  

(i) 

the empirical power percentages of the test 

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 100 n = 200 n = 500 

0.00 4.74 4.98 4.90 5.35 5.02 4.48 5.23 4.80 4.94 

0.01 4.57 4.44 5.08 4.98 4.46 5.20 5.00 5.07 5.22 

0.05 4.64 4.82 5.20 4.99 4.90 4.83 5.25 5.27 4.94 

0.10 4.69 4.79 4.83 4.93 5.25 5.27 4.73 5.08 4.97 

0.15 4.35 5.17 5.24 5.44 4.91 4.82 4.86 5.00 5.00 

0.20 4.23 4.76 5.28 5.03 5.01 4.94 4.83 5.22 5.06 

0.25 4.84 4.78 5.08 4.53 5.20 4.89 4.78 4.70 5.27 

Table 8. The empirical power percentages of the Mann-Whitney test when  = 0.4 and  equals 0.00, 0.01, 0.05, 0.10, 0.15, 

0.20 and 0.25 

constant  

(i) 

the empirical power percentages of the test 

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 100 n = 200 n = 500 

0.00 4.37 4.86 4.99 4.69 4.92 5.16 5.03 4.98 5.04 

0.01 4.26 4.54 5.03 4.82 4.80 4.88 4.93 5.03 5.05 

0.05 4.06 5.13 4.98 5.31 5.08 4.85 5.10 5.15 5.18 

0.10 4.04 4.78 5.14 5.43 4.80 4.83 5.04 4.48 4.74 

0.15 4.37 4.62 4.89 4.64 5.30 4.66 5.23 5.01 4.75 

0.20 4.12 4.97 5.00 5.08 5.00 4.97 4.96 5.29 4.95 

0.25 4.43 4.72 5.17 5.20 5.10 4.95 5.15 4.72 4.94 

Table 9. The empirical power percentages of the Mann-Whitney test when  = 0.5 and  equals 0.00, 0.01, 0.05, 0.10, 0.15, 

0.20 and 0.25 

constant  

(i) 

the empirical power percentages of the test 

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 100 n = 200 n = 500 

0.00 4.41 4.71 5.13 4.79 4.61 5.09 5.04 5.36 5.06 

0.01 4.47 4.86 5.16 5.25 4.74 5.08 5.14 4.74 5.19 

0.05 4.58 4.87 5.15 5.05 4.98 4.89 4.76 5.56 4.79 

0.10 4.18 4.64 5.03 4.92 4.91 5.11 4.98 5.00 5.27 

0.15 4.22 4.57 4.96 4.51 4.88 4.55 4.89 5.18 4.94 

0.20 4.20 4.77 5.04 5.06 5.14 4.93 5.15 5.36 4.81 

0.25 4.42 4.72 5.01 4.42 4.70 4.86 5.29 5.16 4.91 

B. The Empirical Power of the Mann-Whitney Test 

As previously stated, we perform the Mann-Whitney test 

in the ideal case, when  = 0.  

 

Case 1:  = 0.0 

We now test Ho: M1 = M2 against Ha: M1 > M2 for 

every  = 0.00, 0.01, 0.05, 0.10, 0.15, 0.20, 0.25. Each of 

these tests is conducted on samples ranging in size from 10 to 

500. This is carried out 10,000 times. For a 0.05-size test, the 

empirical size and powers against every M are recorded in 

Tables 3 and 4 for the above sample sizes. 

From Table 3, we found that when the mixing coefficient 

(i) increases from 0.000 to 0.491 and sample sizes (n) 

increase, the empirical size percentages of the Mann-Whitney 

test are between 4.25 and 5.28, which are similar to the size 

of the test, 0.05 or 5%. 

From Table 4, we found that as the sample sizes (n) and 

small constant () both rise, the empirical power percentages 

of the Mann-Whitney test increase, ranging from 4.20 and 

5.52. 

 

Case 2:  = 0.1 

This suggests that the null population has become slightly 

asymmetric. Again, we perform the Mann-Whitney test by 

selecting an alternative population similar to the null, but 

with a median that is moved to the right. This means that 

now we test Ho: M1 = M2 against Ha: M1 > M2 for every 

 = 0.00, 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, and each of these 

tests is conducted on samples ranging in size from 10 to 500. 

This is carried out 10,000 times. For a 0.05-size test, the 

empirical size and powers against every M are recorded in 

Table 5 for the above sample sizes. 

Case 3:  = 0.2 

It indicates that, in contrast to the previous case, the null 

population is now more asymmetric. However, we perform 

the Mann-Whitney test again by selecting an alternative 

population with the same shape as the null but a rightward-

shifted median. That is, now we test Ho: M1 = M2 against 

Ha: M1 > M2 for every  = 0.00, 0.01, 0.05, 0.10, 0.15, 

0.20, 0.25. Each of these tests is conducted on samples 

ranging in size from 10 to 500. This is carried out 10,000 

times. For a 0.05-size test, the empirical size and powers 

against every M are recorded in Table 6 for the above 

sample sizes. 
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Case 4:  = 0.3 

It indicates that the null population is now more 

asymmetrical than it was in the previous instance. However, 

in this instance, we replicate the Mann-Whitney test by 

selecting an alternative population similar to the null, but 

with a median that is moved to the right. Therefore, we will 

test Ho: M1 = M2 against Ha: M1 > M2 for every  = 

0.00, 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, and each of these tests 

is conducted on samples ranging in size from 10 to 500. This 

is carried out 10,000 times. For a 0.05-size test, the empirical 

size and powers against every M are recorded in Table 7 for 

the above sample sizes. 

 

Case 5:  = 0.4 

It indicates that the null population has become more 

asymmetric than in the previous scenario. However, we 

repeat the Mann-Whitney test by selecting an alternative 

population similar to the null, but with a median that is 

moved to the right. In other words, we now conduct a test 

Ho: M1 = M2 against Ha: M1 > M2 for every  = 0.00, 

0.01, 0.05, 0.10, 0.15, 0.20, 0.25, and each of these tests is 

conducted on samples ranging in size from 10 to 500. This is 

carried out 10,000 times. For a 0.05-size test, the empirical 

size and powers against every M are recorded in Table 8 for 

the above sample sizes.  

 

Table 10. The empirical relative power percentages of the Mann-Whitney test when  = 0.0 and  equals 0.01, 0.05, 0.10, 

0.15, 0.20 and 0.25 

constant  

(i) 

the empirical relative power percentages of the test 

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 100 n = 200 n = 500 

0.01 -0.102 -0.046 -0.023 -0.042 0.091 -0.039 -0.089 0.086 -0.021 

0.05 -0.020 -0.069 -0.082 -0.037 0.076 0.067 -0.063 0.127 -0.076 

0.10 -0.072 -0.060 0.014 -0.031 0.074 0.018 0.047 0.162 -0.087 

0.15 -0.029 -0.064 -0.084 0.051 0.072 0.042 -0.044 0.143 0.006 

0.20 -0.027 -0.067 -0.036 -0.022 0.138 -0.018 -0.046 0.147 -0.167 

0.25 -0.067 0.035 0.018 0.044 0.098 -0.020 -0.027 0.147 -0.052 

Table 11. The empirical relative power percentages of the Mann-Whitney test when  = 0.1 and  equals 0.01, 0.05, 0.10, 

0.15, 0.20 and 0.25 

constant  

(i) 

the empirical relative power percentages of the test 

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 100 n = 200 n = 500 

0.01 -0.066 -0.202 0.094 0.024 -0.012 -0.024 -0.041 0.027 0.111 

0.05 -0.095 -0.074 0.056 -0.014 0.050 -0.050 0.010 0.033 0.085 

0.10 -0.080 -0.081 0.052 0.008 -0.027 -0.002 0.008 0.085 -0.004 

0.15 -0.075 -0.056 0.021 0.020 -0.020 -0.099 -0.014 0.044 0.029 

0.20 -0.068 -0.081 0.082 0.058 -0.006 -0.081 -0.008 0.073 0.083 

0.25 -0.097 -0.095 0.050 0.010 0.025 -0.006 0.012 0.104 0.081 

 

Table 12. The empirical relative power percentages of the Mann-Whitney test when  = 0.2 and  equals 0.01, 0.05, 0.10, 

0.15, 0.20 and 0.25 

constant  

(i) 

the empirical relative power percentages of the test 

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 100 n = 200 n = 500 

0.01 -0.016 -0.124 0.046 0.042 0.067 -0.112 -0.008 0.036 -0.109 

0.05 0.017 -0.006 0.058 0.076 0.055 -0.025 0.044 0.079 -0.038 

0.10 0.034 -0.008 0.023 0.035 0.069 -0.107 -0.002 0.079 -0.066 

0.15 0.011 0.022 0.063 0.010 0.057 -0.057 0.044 0.059 -0.125 

0.20 0.004 -0.027 0.000 0.022 -0.039 -0.061 0.078 0.053 -0.142 

0.25 0.022 -0.076 0.012 -0.008 0.045 -0.039 -0.014 -0.028 -0.056 

 

Table 13. The empirical relative power percentages of the Mann-Whitney test when  = 0.3 and  equals 0.01, 0.05, 0.10, 

0.15, 0.20 and 0.25 

constant  

(i) 

the empirical relative power percentages of the test 

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 100 n = 200 n = 500 

0.01 0.004 -0.036 0.002 0.010 -0.096 0.006 0.050 0.012 0.088 

0.05 0.019 0.046 0.025 0.012 0.002 -0.070 0.095 0.049 0.036 

0.10 0.030 0.040 -0.050 0.000 0.069 0.019 -0.004 0.014 0.042 

0.15 -0.046 0.110 0.032 0.094 0.004 -0.073 0.023 -0.002 0.048 

0.20 -0.076 0.034 0.040 0.020 0.024 -0.047 0.017 0.040 0.059 

0.25 0.060 0.038 0.002 -0.088 0.060 -0.057 0.006 -0.066 0.097 
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Table 14. The empirical relative power percentages of the Mann-Whitney test when  = 0.4 and  equals 0.01, 0.05, 0.10, 

0.15, 0.20 and 0.25 

constant  

(i) 

the empirical relative power percentages of the test 

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 100 n = 200 n = 500 

0.01 -0.094 -0.053 -0.006 -0.056 0.010 0.004 -0.043 0.056 0.030 

0.05 -0.148 0.068 -0.016 0.041 0.065 -0.002 -0.008 0.078 0.054 

0.10 -0.153 0.000 0.016 0.063 0.010 -0.006 -0.020 -0.060 -0.034 

0.15 -0.066 -0.035 -0.035 -0.097 0.104 -0.043 0.017 0.052 -0.032 

0.20 -0.131 0.038 -0.012 -0.002 0.050 0.022 -0.036 0.102 0.010 

0.25 -0.052 -0.013 0.021 0.021 0.069 0.018 0.002 -0.006 0.008 

Table 15. The empirical relative power percentages of the Mann-Whitney test when  = 0.5 and  equals 0.01, 0.05, 0.10, 

0.15, 0.20 and 0.25 

constant  

(i) 

the empirical relative power percentages of the test 

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 100 n = 200 n = 500 

0.01 -0.038 0.053 0.016 0.099 0.008 0.026 0.043 -0.078 0.048 

0.05 -0.013 0.055 0.014 0.063 0.056 -0.012 -0.034 0.081 -0.031 

0.10 -0.110 0.009 -0.010 0.039 0.043 0.031 0.012 -0.022 0.063 

0.15 -0.100 -0.007 -0.024 -0.049 0.037 -0.088 -0.006 0.014 0.000 

0.20 -0.105 0.036 -0.008 0.065 0.086 -0.004 0.045 0.047 -0.027 

0.25 -0.050 0.025 -0.014 -0.070 0.000 -0.019 0.070 0.010 -0.006 

Case 6:  = 0.5 

This means that the null population is now more 

asymmetric than in the previous case. However, we perform 

the Mann-Whitney test again by selecting an alternative 

population with the same shape as the null but a right-shifted 

median. So, we now test Ho: M1 = M2 against Ha: M1 > 

M2 for every  = 0.00, 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 

and each of these tests is conducted on samples ranging in 

size from 10 to 500. This is carried out 10,000 times. For a 

0.05-size test, the empirical size and powers against every 

M are recorded in Table 9 for the above sample sizes. 

 At symmetric distributions or  = 0.0, Table 4 indicates 

that the Mann-Whitney test's empirical power increases with 

increasing sample size (n) and small constant (). It means 

that the results in Table 4 are valid, which is consistent with 

the Mann-Whitney test's symmetric distribution assumption. 

Tables 5-9 show that as the distribution becomes more 

asymmetric, the Mann-Whitney test's empirical power 

increases with increasing sample size (n) and a small 

constant ().  

Therefore, the Mann-Whitney test is a relatively robust test 

that does not rely on the assumption of population 

distribution. According to common sense, the Mann-Whitney 

test’s power should decrease if the population distribution 

becomes more asymmetric or moves away from symmetry. 

For Table 5 - 9, the cut-off points of each test are derived 

under the assumption that the null population is symmetric. 

In contrast, all of the null populations discussed above are 

asymmetric, except for the situation when  = 0. This makes 

them useless for demonstrating the robustness of the Mann-

Whitney test against the symmetry assumption. The relative 

power of the test, which is another measure to assess the 

Mann-Whitney test's robustness to the symmetry assumption, 

is examined in the following section.  

 

 

 

 

 

 

C. The Empirical Relative Power of the Mann-Whitney Test 

If the assumption of symmetry is at the core of the 

reasoning behind the Mann-Whitney test, then we anticipate 

that the test’s power will drop as the distribution shifts from 

symmetry to asymmetry for the robustness research. We 

discovered from the simulation findings in section B that 

when the measure of asymmetry shifts from 0.0 to 0.5, the 

empirical power of the test increases. However, as previously 

stated, those figures are worthless since the null population 

was asymmetric; under the null, the statistic produced did not 

follow the typical distribution associated with the Mann-

Whitney test statistic. In this section, we calculate and 

analyze the relative power of the test using the power and 

size from the simulation study. The empirical relative powers 

of the Mann-Whitney test are shown in Table 10-15 and are 

categorized by asymmetry measures ranging from 0.0 to 0.5.  

Clearly, during the distribution becomes from symmetry 

( = 0.0) to more asymmetry ( = 0.5), we found that  

1. The Mann-Whitney test has an increase in empirical 

relative power when the distribution is symmetric ( = 0.0), 

as the sample sizes (n) and small constant () both rise.    

This is absolutely what one would have anticipated. 

2. For less symmetric distributions ( = 0.1, 0.2, and 0.3), 

we will focus on large sample sizes, such as n = 200 or 500. 

The empirical relative power of the test appears to decline 

with increasing asymmetry for larger sample sizes. 

3. Some numbers have relative power that is negative. It 

indicates that in certain instances, the test's power is lower 

than its size in terms of power units. When the symmetry 

assumption is true, we often anticipate that the Mann-

Whitney test’s power will decrease when the distribution 

shifts from symmetry to asymmetry. 
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VII. CONCLUSION 

For the research of the Mann-Whitney test, we assume that 

the assumption of symmetry lies at the heart of the reasoning 

for this test is that as the distribution changes from symmetric 

to asymmetric, its power will drop. From the simulation 

study, we examined how the distribution shifts from 

symmetry to asymmetry and how this affects the Mann-

Whitney test's power and size. The simulation study focuses 

on the Mixtures of Normal distributions whose asymmetry 

size is between 0.0 and 0.5, and 1 = 0, 2 = 2, = 1,  = 

4. The purpose of this simulation study was designed to 

explore the robustness of the Mann-Whitney test concerning 

the assumption of symmetry.  

According to the findings of the simulation study, which 

are provided in Table 4 - 9, our findings indicate that the  

Mann-Whitney test’s power increases as the asymmetry's 

size grows from 0.0 to 0.5. The Mann-Whitney test requires 

the symmetric population distribution of data sets, and we 

anticipate that the test will remain robust even if minor 

departures from this symmetric assumption marginally 

reduce the test's power. Consequently, the simulations 

highlight the fact that to examine the question test’s behavior, 

we must either determine the distribution of the Mann-

Whitney test statistic, it depends on the degree of asymmetry, 

or apply it to test the hypothesis, or we must identify a 

different approach that takes into account the test's power 

behavior as increasing asymmetry. 

The relative power of the Mann-Whitney test was instead 

calculated and taken into consideration in section C as an 

alternate way to examine the power behavior. The test's 

relative power appears to be significant. We discovered that, 

at least for large sample sizes, the test's relative power tends 

to drop when the distribution shifts from symmetry ( = 0.0) 

to asymmetry ( = 0.5). Therefore, when the population is 

asymmetric, the Mann-Whitney test should be used with 

caution. 
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