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Abstract—In this study, we investigated the dynamics of a
delayed rumor propagation model with logistic growth and
the Beddington-DeAngelis functional response. The model has
two-time delays that describe the time required for the rumor
propagation process and provide the existence conditions of the
rumor equilibrium point. By applying the Lyapunov functional
technique, we establish the necessary conditions for both the
local and global asymptotic stability of the rumor equilibrium
point. Moreover, we also analyze the local stability and Hopf
bifurcation that arise as a result of time delay. In the context
of a rumor propagation model with time delay, we introduce
two control variables and subsequently derive the optimal
solution through an optimization process. To further enhance
our understanding of the system, we investigate the impact of a
time delay on the equilibrium stability of the rumor propagation
model using some numerical simulations.

Index Terms—Beddington-DeAngelis functional response;
Lyapunov functional; global stability; Hopf bifurcation

I. INTRODUCTION

W ITH the advancement of science and technology,
communication has become more accessible, but the

channels for spreading rumors have also expanded, result-
ing in significant global consequences. In the information
age, media play a central role in shaping public opinion.
Particularly, the rapid growth of ”we-media” platforms has
become a major catalyst of rumors dissemination in recent
years. Therefore, understanding the mechanisms and strate-
gies underlying rumor transmission is essential for effectively
controlling its spread and minimizing its potential harm.

Due to the striking similarities between the spread of
rumors and transmission of infectious diseases, models orig-
inally designed for infectious disease propagation are com-
monly applied in rumor propagation research. Although both
processes share similar characteristics, it is impossible to cre-
ate a unified framework or an equivalent model for both. In
1965, Daley and Kendall [1] proposed a rumor propagation
model, which assumes that individuals move between distinct
groups according to a given probability distribution. They
categorized the population into three groups: the ignorant,
communicators, and rational individuals. Later, Maki and
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Murray [2] built upon the DK model through theoretical
analysis, introducing an immune population and developing
the MT rumor model. Subsequent research extended and
refined the MT model [3-8]. For instance, Zhang et al. [9]
addressed the limitations of the traditional SEIR model by
considering trusted and questioned nodes, resulting in the
SETQR model, which uses probability theory to describe
the law of information propagation. Li et al. [10] examined
the SIR model within the framework of logistic growth.
Building on earlier work, Zhao et al. [11] modified the
rumor propagation flowchart to enhance its realism and
clarity. In another study, Zhao et al. [12] applied the SIR
model for analytical and numerical studies of rumor spread
within complex networks. To accurately represent real-world
phenomena, time delays have also been incorporated into
models [13-17]. Time lag is a well-known characteristic of
real -world processes. In rumor propagation, delays may
occur when users are unable to receive or disseminate a
rumor promptly, resulting in a delay in information trans-
mission. In [16], Zhang et al. improved the ILSR rumor
propagation model by considering logistic growth and two
discrete delays, addressing the Hopf bifurcation problem of
positive equilibrium points in six distinct cases. In [17], Guo
proposed a SEIMR model that incorporates media reports
and time delays, analyzing the impact of media on rumor
spread. The study revealed that the shorter the delay between
media reports, the greater their influence and the more
effectively they suppress rumors. These studies demonstrate
the importance of real-world factors, such as government
regulations and transmission delays, which are considered
in the present study, in shaping in rumor propagation.

In [18], Li constructed a mathematical model that de-
scribes the basic dynamics of he interaction among the
susceptible S(t), propagating I(t), and removing R(t) in-
dividual as follows:

dS

dt
= rS(t)(1 − S(t)

K
) − βS(t)I(t)

(1 + α1S(t))(1 + α2I(t))
,

dI

dt
=

βS(t − τ1)I(t − τ1)
(1 + α1S(t − τ))(1 + α2I(t − τ))

− µI(t)

− γ(I(t) + R(t))I(t),
dR

dt
= γ(I(t) + R(t))I(t) − µR(t).

(1)
Control strategies such as deleting rumor posts and ed-

ucating the public on popular science were considered.
To explore ways to control the spread of rumors, Li et
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al. [19] established an extended rumor propagation model,
strengthened rumor identification and timely rumor-refuting
education, and effectively controlled the spread of rumors.
Jain et al. [20] introduced optimal control of rumor prop-
agation in a uniformly mixed population. The above study
shows that some practical factors need to be considered when
rumors spread.

In [21], Miao et al. proposed a double-delay virus trans-
mission model with Beddington-DeAngelis response and
studied the dynamics of the considered model. As is known,
the Beddington-DeAngelis functional response was proposed
by Beddington et al.[22] and DeAngelis et al. [23]. In reality,
rumor spreading is restricted by multiple factors. For exam-
ple, resources such as people’s attention and communication
channels are limited. The Beddington-DeAngelis response
function can take into account the competition for these
limited resources among different roles like rumor spreaders
and rumor refuters, making the model closer to the actual
situation and accurately reflecting the resource constraints
that rumors face during the spreading process. Moreover,
it can describe the interactions among different groups,
such as the complex relationships among rumor spreaders,
susceptible individuals, and rumor refuters. The reflection
of these interactions helps to gain a more comprehensive
understanding of the dynamic process of rumor spreading
and the roles played by different groups, thereby providing a
basis for formulating more effective rumor control strategies.
Therefore, we should introduce the Beddington-DeAngelis
functional response into model foundation, which will have
more resemblance to in reality. Based on the above discus-
sions, in this paper, we consider the following system:

dS(t)
dt

= rS(t)(1 − S(t)
K

) − aS(t) − βS(t)I(t)
1 + αS(t) + λI(t)

,

dI(t)
dt

=
βe−mτ1S(t − τ1)I(t − τ1)

1 + αS(t − τ1) + λI(t − τ1)
− (b + k)I(t),

dH(t)
dt

= kI(t) − (c + η)H(t) + εe−mτ2R(t − τ2),

dR(t)
dt

= ηH(t) − dR(t) − εe−mτ2R(t − τ2),
(2)

where S(t) denotes the ignorant crowd at time t, I(t) denotes
the spreading crowd at time t, H(t) denotes the questioning
crowd at time t, and R(t) denotes the sober crowd at time
t. a > 0, b > 0, c > 0, and d > 0 represent the mobility
of rumors in the states of ignorance, propagation, suspicion,
and awakening, respectively, and the condition that r−a > 0
is satisfied; β, k, η, K, and m are all positive constants. In
addition, we have the following explanations for system (2):

(i) The increase in the ignorant population can be de-
scribed by the mathematical model of population growth,
which is represented by the formula rS(1 − S

K ). Here, r
indicates the population growth rate over time, K represents
the environmental population capacity, and all components
do not exceed the environmental capacity.

(ii) In reality, a delay exists between initially hearing a
rumor and spreading it, and we assume that rumor generation
occurs after the rumor has passed a constant delay of τ1. τ2 is
the time required for a doubter to think, verify, and become
sober.

(iii) Constant ε represents the doubt rate. When ε > 0,

then the sober person will be transferred to doubt at a rate
of ε. When ε = 0, then the sober person is unaffected by
rumors and is always awake.

(iv) β represents the transmission rate, while k denotes
the rate at which an individual transitions from a state
of transmission to a state of questioning. η represents the
rate at which an individual transitions from questioning to
awareness.

II. BOUNDEDNESS AND EQUILIBRIUM POINTS

Let τ = max{τ1, τ2}, R4
+ = {(x1, x2, x3, x4) : xi ≥

0, i = 1, 2, 3, 4} and C([−τ, 0], R4
+) be the space of con-

tinuous functions mapping the interval [−τ, 0] into R4
+

with the norm ‖φ‖ = sup−τ≤t≤0{|φ(t)|} for any φ ∈
C([−τ, 0], R4

+). The initial conditions for system (2) are
given as follows

S(θ) = φ1(θ), I(θ) = φ2(θ),H(θ) = φ3(θ), R(θ) = φ4(θ),

φi(θ) ≥ 0, θ ∈ [−τ, 0]) , φi(0) > 0(i = 1, 2, 3, 4), (3)

where (φ1(θ), φ2(θ), φ3(θ), φ4(θ)) ∈ C([−τ, 0], R4
+) . It is

well known by the fundamental theory of functional differ-
ential equation [24], system (2) admits a unique solution
(S(t), I(t),H(t), R(t)) satisfying initial conditions (3).
Theorem 2.1 The solutions of system (2) with initial
condition (3) remain non-negative and ultimately bounded
for all t ≥ 0.
Proof According to [27] and [28], assume that
(S(t), I(t),H(t), R(t)) be a solution of system (2) with
initial condition (3) and defined on [0,+∞), let m̂ =
min{S(t), I(t),H(t), R(t)}, then m̂ > 0. Assume that there
exists t∗ > 0 such that m̂(t∗) = 0 and m̂(t) > 0 for all
t ∈ [0, t∗). If m̂(t∗) = S(t∗), from the first equation of
model (2), we have

S(t∗) = S(0)er(1−S(t∗)
K )−a− βI(t∗)

1+αS(t∗)+λI(t∗) > 0,

which leads to a contradiction. Similarly, when m̂(t∗) =
I(t∗), m̂(t∗) = H(t∗), and m̂(t∗) = R(t∗), we also can
obtain the contradiction. Hence, m̂(t) > 0 for all t ≥ 0, and
thereby (S(t), I(t),H(t), R(t)) is positive for all t ≥ 0.

Let G(t) = e−mτ1S(t− τ1)+ I(t)+H(t)+R(t) and γ =
min {a, b, c, d}. By positivity of (S(t), I(t),H(t), R(t)), we
obtain

Ġ(t) = e−mτ1rS(t − τ1)(1 − S(t − τ1)
K

) − (ae−mτ1S(t−

τ1) + bI(t) + cH(t) + dR(t))
≤ e−mτ1rK − (ae−mτ1S(t − τ1) + bI(t) + cH(t)

+ dR(t))
≤ e−mτ1rK − γG(t).

(4)
Thus we have,

lim
t→∞

supG(t) ≤ e−mτ1

γ
rK.

Therefore, all the solutions of system (2) are ultimately
bounded.

The following is the basic regeneration number of system
(2)

R0 =
Kβe−mτ1(r − a)

(b + k)[r + αK(r − a)]
.
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Theorem 2.2 (i) System (2) has a trivial equilibrium point
E0 = (0, 0, 0, 0).

(ii) System (2) always has a rumor-free equilibrium point
E1 = (K(r−a)

r , 0, 0, 0).
(iii) When R0 > 1, then system (2) has a local equilibrium

point E2 = (S2, I2,H2, R2, ), where
S2 = λK(r − a) + K[α(b + k)emτ1 ] + K

√
∆,

I2 = βS2−(b+k)(1+αS2)e
mτ1

λemτ1 (b+k) ,

H2 = k(d+εe−mτ2 )
c(d+εe−mτ2 )+dη

I2,

R2 = ηk
c(d+εe−mτ2 )+dη

I2,

∆ = [β(1 − 1
R0

) + rβ
[r+αK(r−a)]R0

+ λ(r − a)]2

− 4λ(r − a)(1 − 1
R0

).

III. 3 STABILITY ANALYSIS HOPF BIFURCATIONS

In this section, we will examine the local and global
asymptotic stability of equilibrium points E1 and E2 of
system (2), in addition, we will obtain the conditions on the
Hopf bifurcation.

3.1 Stability of equilibrium E1

Theorem 3.1 In system (2), if R0 < 1, then E1 is locally
asymptotically stable. If R0 > 1, then E1 is unstable.
Proof First, at equilibrium point E1 of system (2), we can
get the characteristic equation of the linearized system

[s − (a − r)](s + c + η)[s − (
(r − a)Kβe−(m+s)τ1

r + αK(r − a)
− (b + k))][s + d + (1 − η)εe−(m+s)τ2 ] = 0.

(5)

Then we have two roots s1, s2 of (5), where s1 = a−r < 0,
s2 = −(c + η) < 0. When τ1 = 0, consider the following
equation

s3 − (
(r − a)Kβe−(m+s)τ1

r + αK(r − a)
− (b + k)) = 0. (6)

Then from (6) and the expression of R0, we get s3 =
(b + k)(R0 − 1).
Clearly, when R0 < 1, then s3 < 0. In conclusion, when
τ1 = 0, the rumor-free equilibrium point E1 is locally
asymptotically stable.

On the other hand, assume s = iω with ω > 0 be purely
imaginary roots of (6), then we have

ω = − (r − a)Kβ

r + αK(r − a)
sinωτ1,

b + k =
(r − a)Kβ

r + αK(r − a)
cos ωτ1,

which implies that ω2 = ( (r−a)Kβ
r+αK(r−a) )

2 − (b + k)2.
Note that when R0 < 1, then ω2 < 0, which is a

contradiction. In conclusion, equation (6) has no roots with
non-negative real parts.

Now, we will consider the following equation

s + d + (1 − η)εe−(m+s)τ2 = 0. (7)

When τ2 = 0, the above formula can be reduced to s + d +
(1 − η)ε = 0, then, we get s = −d + (η − 1)ε < 0. This
indicates that the roots of equation (7) have negative real
parts. By the general theory of the characteristic equation of
delayed linear differential equation (see Kuang [27, Theorem

3.4.1]), if R0 < 1, then E1 is locally asymptotically stable.
Next, if R0 > 1, then let

f1(s) = s − (
(r − a)Kβe−mτ1

r + αK(r − a)
− (b + k)).

It is easy to see that

f1(0) = b+k− (r − a)Kβe−(m+s)τ1

r + αK(r − a)
= (b+k)(1−R0) < 0,

and
lim

s→+∞
f1(s) = +∞.

Thus, f(s) = 0 has at least one positive real root. Hence, if
R0 > 1, then equilibrium point E1 of system (2) is unstable.
This completes the proof.
Theorem 3.2 The rumor-free equilibrium point E1 of system
(2) is globally asymptotically stable if R0 ≤ 1.
Proof Define Lyapunov functional V1(t) as follows

V1(t) =S(t) − S1 − S1 ln
S1

S(t)
+ emτ1I(t) + H(t) + R(t)

+ U−(t),

where U−(t) =
∫ t−τ1

t
βS(θ)I(θ)

1+αS(θ)+λI(θ)dθ. Calculating the
derivative of V1(t) along with any positive solution of system
(2) and from S1 = K(r−a)

r , we can obtain

dV1(t)
dt

≤ − (S − S1)2

K
+

βS1I(t)
1 + αS(t) + λI(t)

+ kI(t)

− (b + k)emτ1I(t) − cH(t) − dR(t)

= − (S − S1)2

K
+

βK(r − a)I(t)
r(1 + αS(t) + λI(t))

− (b + k)emτ1I(t) + kI(t) − cH(t) − dR(t)

≤ − (S − S1)2

K
+

emτ1(b + k)(1 + αS1)
1 + αS(t) + λI(t)

(R0 − 1)−

emτ1I(t) − kI(t)(emτ1 − 1) − cH(t) − dR(t).

Obviously, if R0 ≤ 1, then dV1(t)
dt ≤ 0 for any

(S(t), I(t),H(t), R(t)). We have dV1(t)
dt = 0 if and only if

S = S1, I = 0,H = 0, R = 0. Let N be the largest invariant
set of {(S(t), I(t),H(t), R(t)) ∈ R+

4 : dV1
dt = 0}. We

easily obtain N = {E1}. According to LaSalle’s invariance
principle [27], equilibrium E1 of system (2) is globally
asymptotically stable if R0 ≤ 1. This completes the proof.

3.2 Stability of equilibrium point E2

In this subsection, we will discuss the local and global
asymptotic stability of equilibrium point E2 for the cases of
τ1 ≥ 0 and τ2 = 0.

At equilibrium point E2, we can get the following char-
acteristic equation of the corresponding linearized system of
system (2)

[(s + c + η)(s + d + εe−(m+s)τ2) − ηεe−(m+s)τ2 ]×

[(s − r(1 − 2S2

K
) + a + A2)(s − B2e

−(m+s)τ1 + b + k)+

A2B2e
−(m+s)τ1 ] = 0,

(8)
where

A2 =
βI2(1 + λI2)

(1 + αS2 + λI2)2
, B2 =

βS2(1 + αS2)
(1 + αS2 + λI2)2

.
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First, we discuss the local asymptotic stability of equilibrium
point E2

Theorem 3.3 If τ1 ≥ 0, τ2 = 0 and R0 > 1, then
equilibrium point E2 is locally asymptotically stable.
Proof When τ2 = 0, the characteristic equation can be
written as

[(s + c + η)(s + d + ε) − ηε][(s − r(1 − 2S2

K
) + a + A2)×

(s − B2e
−(m+s)τ1 + b + k) + A2B2e

−(m+s)τ1 ] = 0.

First consider the equation: (s + c + η)(s + d + ε)− ηε = 0,
that is

s2 + (c + d + η + ε)s + cd + cε + ηd = 0. (9)

Since

s1+s2 = −(c+d+η+ε) < 0 and s1s2 = cd+cε+ηd > 0.

Then by the Routh-Hurwitz criterion, all roots of (9) have
negative real parts.
Next consider the equation:

(s − r(1 − 2S2

K
) + a + A2)(s − B2e

−(m+s)τ1 + b + k)

+ A2B2e
−(m+s)τ1 = 0.

By using
e−mτ1 = (b+k)(1+αS2+λI2)

βS2I2
,

(b + k)I2 = βe−mτ1S2I2
1+αS2+λI2

,

e−mτ2 = ηH2−dR2
εR2

.
Then, from the above formula we get

(s + b + k)[s − r(1 − 2S2

K
) + a + A2]

=
(1 + αS2)(b + k)e−sτ1

1 + αS2 + λI2
[s − r(1 − 2S2

K
) + a].

(10)

Assume that equation (10) has a non-negative real root s,
where s = α0 + iω0 with α0 ≥ 0, ω0 ≥ 0.

(α0 + iω0 + b + k)[α0 + iω0 − r(1 − 2S2

K
) + a + A2]

=
(1 + αS2)(b + k)e−(α0+iω0)τ1

1 + αS2 + λI2
[α0 + iω0 − r(1 − 2S2

K
)

+ a].
(11)

Since

|α0 + iω0 + b + k|2 = α2
0 + 2(b + k)(α0 + iω0) + (b + k)2

≥ (
(1 + αS2)(b + k)
1 + αS2 + λI2

)2,

and
α0 + iω0 + b + k ≥ (1 + αS2)(b + k)

1 + αS2 + λI2
,

then, we have

α0+iω0−r(1− 2S2

K
)+a+A2 ≥ α0+iω0−r(1− 2S2

K
)+a.

By analyzing the left and right hand side of (11), we can
see a contradiction. Consequently, it can be found that the
characteristic equation (10) has no roots with a nonnegative
real part. As a result, under the conditions τ1 ≥ 0, τ2 = 0
and R0 > 1, equilibrium point E2 of system (2) is locally
asymptotically stable. This completes the proof.
Theorem 3.4 If τ1 ≥ 0, τ2 = 0 and R0 > 1, then

equilibrium point E2 is globally asymptotically stable.
Proof It is clear that in order to prove that equilibrium
point E2 of system (2) is locally asymptotically stable, we
only need to prove that the following system is globally
asymptotically stable

dS(t)
dt

= rS(t)(1 − S(t)
K

) − aS(t) − βS(t)I(t)
1 + αS(t) + λI(t)

,

dI(t)
dt

=
βe−mτ1S(t − τ1)I(t − τ1)

1 + αS(t − τ1) + λI(t − τ1)
− (b + k)I(t).

Define a Lyapunov functional as follows.

V2 = (S(t)−S∗−S∗ ln
S(t)
S∗ )e−mτ1 +I(t)−I∗−I∗ ln

I(t)
I∗

.

Now, we calculate the derivative of V (t) along with the
solution of system (2).

dV2

dt
= e−mτ1 [rS(t)(1 − S(t)

K
) − βe−mτ1S(t)I(t)

1 + αS(t) + λI(t)

− a(S(t) − S∗) − rS∗(1 − S(t)
K

)+

βS∗I(t)
1 + αS(t) + λI(t)

] +
βe−mτ1S(t)I(t)

1 + αS(t) + λI(t)
−

(b + k)I(t) − βe−mτ1S(t)I∗

1 + αS(t) + λI(t)
+ (b + k)I∗

= (S∗ − S)(r − a)e−mτ1 − (S − S∗)
rS

K
e−mτ1

− (b + k)(I − I∗) − βe−mτ1

1 + αS + λI
(SI∗ − S∗I)

= (a − r)(S∗ − S) − rS

K
(S − S∗) − (b + k)(I − I∗)

− βe−mτ1

1 + αS + λI
(SI∗ − S∗I)

≤ (a − r)(S∗ − S)2 − r

K
(S − S∗)2 − (b + k)(I − I∗)

− βe−mτ1

1 + αS + λI
(SI∗ − S∗I)

= (a − r − r

K
)(S∗ − S)2e−mτ1 − (b + k)(I − I∗)

− βe−mτ1

1 + αS + λI
(SI∗ − S∗I)

= (a − r − r

K
)(S∗ − S)2e−mτ1 − (b + k)(I − I∗)

− βe−mτ1

1 + αS + λI
SI∗ +

βe−mτ1S∗I

1 + αS + λI

= (b + k)I[
a − r − r

K

b + k
(S − S∗)2e−mτ1 − 1 +

I∗

I

− βe−mτ1SI∗

I(b + k)(1 + αS + λI)
+

βe−mτ1S∗

(b + k)(1 + αS + λI)
]

≤ (b + k)I[
a − r − r

K

b + k
(S − S∗)2e−mτ1 − (1 + λI)

× (R0 − 1)
I∗

I
].

Obviously, if R0 > 1, then dV2
dt ≤ 0 for any (S(t), I(t)).

We have dV2
dt = 0 if and only if S = S∗, and I = I∗.

According to Lasalle’s invariance principle, E2 is globally
asymptotically stable.
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3.3. Hopf bifurcation analysis

From characteristic equation (8), we have

s4+e3s
3+e2s

2+e1s+e0+(h3s
3+h2s

2+h1s+h0)e−sτ1 = 0,
(12)

where
e3 = a + b + c + d + η + k + A2 − B2 − r(1 − 2S2

K
),

e2 =(c + η)d + a + b + k + A2 − r(1 − 2S2

K
)

+ (r(1 − 2S2

K
) + a)B2 + [a + b + k + A2 − B2

− r(1 − 2S2

K
)](c + d + η),

e1 =(c + η + d)[a + b + k + A2 − r(1 − 2S2

K
)

+ (r(1 − 2S2

K
) + a)B2] + [a + b + k + A2 − B2

− r(1 − 2S2

K
](c + η)d,

e0 =d(c + η)[a + b + k + A2 − r(1 − 2S2

K
) + (r(1−

2S2

K
) + a)B2],

h3 = εξ, ξ =
ηH2 − dR2

εR2
,

h2 = [a + b + c + k + A2 − B2 − r(1 − 2S2

K
)]εξ,

h1 =[a + b + k + A2 − r(1 − 2S2

K
) + (r(1 − 2S2

K
) + a)×

B2]εξ + [a + b + k + A2 − B2 − r(1 − 2S2

K
)]cεξ,

h0 =[a + b + k + A2 − r(1 − 2S2

K
) + (r(1 − 2S2

K
) + a)×

B2]cεξ,
where ek, hl ∈ R (k, l = 0, 1, 2, 3) are all real constants and∑3

0 h2
l 6= 0.

Next, from equation (12) with τ1 = 0, we have

s4+(e3+h3)s3+(e2+h2)s2+(e1+h1)s+e0+h0 = 0. (13)

Theorem 3.3 indicates that all roots of equation (13) have
negative real parts.

Clearly, when τ1 > 0, s = iω(ω > 0) is a root of the
equation (12), then we have

ω4 + ie3ω
3 − e2ω

2 + ie1ω + e0 + (−ih3ω
3 − h2ω

2

+ ih1ω + h0)(cos ωτ − i sinωτ) = 0.

From the above equation, we further obtain

ω4−e2ω
2+e0 = (h2ω

2−h0) cos ωτ1+(h3ω
3−h1ω) sin ωτ1,

−e3ω
3+e1ω = (h3ω

3−h1ω) cos ωτ1−(h2ω
2−h0) sin ωτ1.

(14)
Then it follows from (14)

ω8 + uω6 + vω4 + mω2 + g0 = 0, (15)

where

u = e2
3 − 2e2 − h2

3, m = e2
1 − 2e0e2 + 2h0h2 − h2

1,

v = e2
2 + 2e0 − 2h1e3 − h2

2 + 2h1h3, g0 = e2
0 − h2

0.

Let x = ω2, then from (15) we have

x4 + ux3 + vx2 + mx + g0 = 0. (16)

Suppose that

F (x) = x4 + ux3 + vx2 + mx + g0, (17)

then we have the following Lemma.
Lemma 3.1 If g0 < 0, then equation (16) has at least one
positive root.
Proof Clearly, F (0) = g0 < 0, and limx→∞ F (x) = ∞.
Hence, there exists a x0 ∈ (0,∞) so that F (x0) = 0. This
completes the proof.
In order to obtain the next lemma, we need to discuss the
following differential equation.

From (17), we have

dF (x)
dx

= 4x3 + 3ux2 + 2vx + m = 4f(x),

where
f(x) = x3 +

3
4
ux2 +

1
2
vx +

1
4
m. (18)

Let

p =
v

2
− 3

16
u2, q =

1
32

u3 − 1
8
uv + m, ℘ =

q2

4
+

p3

27
.

Then from [24], we can obtain the following results on
the distribution of roots of equation (17).

if ℘ > 0, x∗
1 = −u

4
+ 3

√
−q

2
+

√
℘ + 3

√
−q

2
−√

℘,

if ℘ = 0, x∗
2 = max{−u

4
− 2 3

√
−q

2
, − u

4
+ 2 3

√
−q

2
},

if ℘ = 0, x∗
3 = max

{
− u

4
+ 2Re{δ},−u

4
+ 2Re{δε},

− u

4
+ 2Re{δε̄}

}
,

where δ is one of cube roots of the complex number − q
2+

√
℘

and ε = − 1
2 +

√
3

2 i. By making a similar argument as [27],
we obtain the following results.
Lemma 3.2 If g0 ≥ 0 , then equation (17) has no positive
root if one of the following conditions holds:

(i) ℘ > 0 and x∗
1 < 0 ;

(ii) ℘ = 0 and x∗
2 < 0 ;

(iii) ℘ < 0 and x∗
3 < 0 .

Lemma 3.3 If g0 ≥ 0, then equation (17) has at least one
positive root if one of the following conditions holds:

(i) ℘ > 0, x∗
1 > 0 and F (x∗

1) < 0;
(ii) ℘ = 0, x∗

2 > 0 and F (x∗
2) < 0 ;

(iii) ℘ < 0, x∗
3 > 0 and F (x∗

3) < 0 .
Proof (i) If ℘ > 0, we know that formula (18) has a unique
real root x1, that is, formula (17) also has a unique real root
x1. Since F (x) is differentiable, and limx→∞ F (x) = ∞, we
know that x1 is the unique stagnation point and minimum
point of F (x). This is obvious.

Now,we just need to prove it’s necessary. We assume that
x1 ≤ 0 or x1 > 0 has F (x1) > 0. If x1 ≤ 0, since F (0) =
g0 > 0 is the minimum of F (x), so F (x) has no positive
real zero. If x1 > 0, and F (x) > 0, since minx>0 {F (x)} =
F (x1) > 0, it follows that F (x) has no positive real root.
Next, the proof of case (ii) is similar to the previous case (i).

(iii) Without losing its generality, we suppose that the
equation (17) has n positive roots and n ∈ {1, 2, 3, 4},
denoted by x∗

k, k = 1, 2, · · ·n. Then the equation (15) has n
positive roots, denoted by ωk =

√
x∗

k, k = 1, 2, · · ·n.
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By equation (14) we have

sinωτ1 =
~1

~
, (19)

where
~1 =(ω4 − e2ω

2 + e0)
(
h3ω

3 − h1ω
)

+ (e3ω
3 − e1ω)(h2ω

2 − h0),

~ = (h3ω
3 − h1ω)2 + (h2ω

2 − h0)2.

When ω = ωk(k = 1, 2, · · · , n) , from (19) we have

τ
(j)
k =

1
ωk

arcsin(
~1

~
) +

2πj

ωk
,

where k = 1, 2, · · · , n, j = 0, 1, · · · . Thus, when τ =
τ

(j)
k , k = 1, 2, · · · , n, j = 0, 1, · · · ,±iωk is a pair of purely

imaginary roots of the equation (13). Clearly, for every k =
1, 2, · · · , n,

{
τ

(j)
k

}
is monotonically increasing for j =

0, 1, 2, · · · and
lim

j→+∞
τ

(j)
k = ∞.

Therefore, there is a k0 ∈ {1, 2, · · · , n} and j0 ∈ {0, 1,
2, · · · } such that

τ0 = τ
(j0)
k0

= min
{

τ
(j)
k : k = 1, 2, · · · , n, j = 0, 1, 2, · · ·

}
.

Thus, we can define

ω0 = ωk0 , x0 = x∗
k0

. (20)

Let s (τ1) = ρ(τ1) + iω(τ1) be a root of equation (12) and
satisfying

ρ(τ0) = 0, ω(τ0) = ω0.

It is easy to get the distribution of roots of equation (12).
Lemma 3.4 For equation (12), the following states are true:
(i)If g0 ≥ 0 , and one of the following conditions holds:

(a) ℘ > 0 and x∗
1 < 0 ;

(b) ℘ = 0 and x∗
2 < 0 ;

(c) ℘ < 0 and x∗
3 < 0 .

(ii)If g0 < 0 or g0 ≥ 0, and one of the following conditions
is true:

(a) ℘ > 0, x∗
1 > 0 and F (x∗

1) < 0;
(b) ℘ = 0, x∗

2 > 0 and F (x∗
2) < 0 ;

(c) ℘ < 0, x∗
3 > 0 and F (x∗

3) < 0 .
Lemma 3.5 Suppose that xk = ω2

k and dxk

dx 6= 0. Then the
following conditions of transversality hold:

Re[
dxk(τ)

dτ
|τ=τj

k
] 6= 0,

and the sign Re[dxk(τ)
dτ |τ=τj

k
] is the same as that of dF (xk)

dx .
Proof Differentiating equation (12) with respect to τ1, we
get

(4s3 + 3e3s
2 + 2e2s + e1)

ds

dτ1
+ (3h3s

2 + 2h2s + h1)×

e−sτ1
ds

dτ1
+ (h3s

3 + h2s
2 + h1s + h0)(−s − τ1

ds

dτ1
)e−sτ1

= 0,

and

(
ds

dτ1
)−1 = − 4s3 + 3e3s

2 + 2e2s + e1

s(s4 + e3s3 + e2s2 + e1s + e0)

+
3h3s

2 + 2h2s + h1

s(h3s3 + h2s2 + h1s + h0)
− τ1

s
.

Therefore

sign
{

d Re(s(τ1))
dτ2

}∣∣∣
τ1=τ

(j)
k

= sign
{

Re
(

ds
dτ1

)−1
}∣∣∣∣

s=iω0

= sign{ 4ω6
0+ω4

0(3e2
3−6e2)+ω2

0(−4e3e1+4e0+2e2
2)+(e2

1−2e2e0)
ω2

0(e3ω2
0−e1)2

+(ω4
0−e2ω2

0+e0)2

+
−3h2

3ω4
0+ω2

0(4h1h3−2h2
2)+(−h2

1+2h2h0)
ω2

0(h3ω2
0−h1)2

+(h2ω2
0−h0)2 }.

From equation (15), we get

ω2
0

(
e3ω

2
0 − e1

)2 +
(
ω4

0 − e2ω
2
0 + e0

)2

= ω2
0

(
e3ω

2
0 − h1

)2 +
(
h2ω

2
0 − h0

)2
.

Therefore, we have

sign
{

d Re (s (τ1))
dτ1

}∣∣∣∣
τ2=τ

(j)
k

= sign

[
F ′ (xk)

(h3ω2
0 − h1)

2
ω2

0 + (h0 − h2ω2
0)2

]
.

Since xk > 0 , we obtain that d Re(s(τ1))
dτ1

∣∣∣
τ1=τ

(j)
k

and F ′ (xk)

have the same sign. Therefore, we finally have the following
result.
Theorem 3.5 Let τ0, ω0 and x0 be defined by (19). Then
we can draw the following conclusions:

(i) If equation (17) possesses no positive real roots, then
the equilibrium point E2 is locally asymptotically stable for
any τ1 ≥ 0.

(ii) If equation (17) possesses n positive real roots, then
equilibrium E2 is locally asymptotically stable for τ1 ∈
[0, τ0).

(iii) Assume x0 is a simple root of F (x) = 0 , then there
is a Hopf bifurcation for system (2) at the equilibrium E2 as
τ1 surpass the critical value τ0.
Proof According to equation (20), we can easily have con-
clusions of (i) and (ii); therefore, we only need to prove
conclusion (iii). Since x0 is a simple root of (17), we
know F (x0) 6= 0. If F ′ (x0) < 0, then the characteristic
equation (12) has at least a root with positive real part when
τ1 is slightly less than τ0. It will lead to a contradiction
with conclusion (ii) in Theorem 3.5. Therefore, we have
F ′ (x0) > 0. This implies the existence of a Hopf bifurcation
of model (2). This completes the proof.

IV. PERSISTENCE OF THE SYSTEM

Our interest of this section, is to establish the conditions
for the persistence of system (2) with initial condition (3),
by applying the method given in [25,26], we show the
persistence of system (2) for R0 > 1. This result shows
that the rumor eventually persistence for R0 > 1.

Theorem 4.1 If R0 > 1, system (2) is weakly persistent.
Proof According to Theorem 3.1, there is a positive orbit
(S(t), I(t),H(t), R(t)) of system (2) such that.

lim
t→∞

supS(t) =
K(r − a)

r
, lim

t→∞
sup I(t) = 0,

lim
t→∞

supH(t) = 0, lim
t→∞

supR(t) = 0.

There exists a sufficiently small quantity ð > 0, then

(r − a)βe−mτ1 >
(b + k)[r + α(K − ð)(r − a)]

K − ð
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Next, we can consider,

u̇1(t) =
βe−mτ1(K − ð)(r − a)u1

r + α(K − ð)(r − a) + rλu1
− (b + k)u1,

v̇1(t) = ku1 − (c + η)v1 + εe−mτ2z1,

ż1(t) = ηv1 − dz1 − εe−mτ2z1.

(21)

For a sufficiently large T > 0, when t > T , the equation can
then be formulated as:

İ(t) =
βe−mτ1(K − ð)(r − a)I

r + α(K − ð)(r − a) + rλI
− (b + k)I,

Ḣ(t) = kS − (c + η)I + εe−mτ2R,

Ṙ(t) = ηH − dR − εe−mτ2R.

Through E(0, 0, 0) and E∗(u∗, v∗, z∗), the equilibrium
points of equation (21) can be obtained

u∗
1 =

βe−mτ2(K − ð)(r − a)
rλ(b + k)

− r + α(K − ð)(r − a)
rλ

,

v∗1 =
k(d + εe−mτ2)

d(c + η) + cεe−mτ2
u∗

1,

z∗1 =
η

d + εe−mτ2
v∗1 .

The variational matrix corresponding to equation (21) is
provided by the expression below:

Vð =

β∗ 0 0
k −(c + η) εe−mτ2

0 η −(d + εe−mτ2)

 ,

where β∗ = βe−mτ1 (K−ð)(r−a)[r+α(K−ð)(r−a)]
[r+α(K−ð)(r−a)+rλu∗

1 ]2 − (b + k).
It can be noticed from the variational matrix Vð that the

off-diagonal elements are all non-negative. According to the
stipulations of the Perron-Frobenius theorem, a non-negative
eigenvector z1(z1

1 ; z2
1 ; z3

1) pertains to the maximum root x̃1

of the variational matrix Vð. The characteristic polynomial
of Vð is expressed as:

s3 + s2(c + d + η + εe−mτ2 − β∗) + [(c + η)(d + εe−mτ2)
− (c + d + η + εe−mτ2)]s − (c + η)(d + εe−mτ2)β∗

− ηεe−mτ2 = 0.

The above polynomial is of degree three, so it has three roots.
According to Vieta’s formulas, we can obtain that

x̃1 · x̃2 · x̃3 = (c + η)(d + εe−mτ2)β∗ + ηεe−mτ2 > 0.

It can be analyzed that equation (21) has at least one positive
root, which is denoted as x̃1 > 0. Suppose that when t = T ,
z1(t) = (z1

1(t), z2
1(t), z3

1(t)) is the solution of equation (21)
towards (l1z1

1 , l2z
2
1 , l3z

3
1), where length li > 0, i = 1, 2, 3

satisfies the conditions, l1z
1
1 < I(t), l2z

2
1 < H(t), l3z

3
1 <

R(t).
Apparently, u1

v1

z1

 =

l1z
1
1efx1t

l2z
2
1efx1t

l3z
3
1efx1t

 .

u1(t), v1(t) and z1(t) are strictly increasing function of t
, also (u1(t), v1(t), z1(t)) → +∞ , as t → +∞ . Hence,
(I(t),H(t), R(t)) → +∞ for t → +∞, which oppose
the fact that limt→+∞ I(t) = 0, limt→+∞ H(t) = 0 and
limt→+∞ R(t) = 0. Therefore, no positive orbit for the sys-
tem (2) tends to (K(r−a)

r , 0, 0) as t → +∞. Consequently,
this shows that system (2) is weakly persistent. Hence, this
completes the proof.

V. OPTIMAL CONTROL

If the spread of rumors is not checked, it will have a seri-
ous impact on social order, public security, and national im-
age. For instance, during nuclear leaks in Japan, several Chi-
nese people believed that salt production would be affected;
consequently, they frantically bought and stored iodized salt,
leading to social panic and salt shortages. Therefore, to
reduce their spread, controlling rumors is essential. To this
end, we introduce two time-controlled variables, p1 and p2,
which represent cost controls to reduce the probability of
rumor spreading and the strength of avoiding or removing
posts through warnings and penalties, respectively.

The optimal control model is outlined as follows:

dS(t)
dt

= rS(t)(1 − S(t)
K

) − (1 − p1(t))βS(t)I(t)
1 + αS(t) + λI(t)

− aS(t),
dI(t)
dt

=
(1 − p1(t − τ1))βe−mτ1S(t − τ1)I(t − τ1)

1 + αS(t − τ1) + λI(t − τ1)
− (b + k + p2(t))I(t),

dH(t)
dt

= kI(t) − (c + η)H(t) + εe−mτ2R(t − τ2),

dR(t)
dt

= ηH(t) − dR(t) − εe−mτ2R(t − τ2),
(22)

with the initial conditions

S(θ) = φ1(θ) ≥ 0, I(θ) = φ2(θ) ≥ 0, H(θ) = φ3(θ) ≥ 0,

R(θ) = φ4(θ) ≥ 0, θ ∈ [−τ1, 0], φi(θ) > 0, (i = 1, 2, 3, 4).

First, we establish an optimal control problem. Let’s assign
a constant = as the final implementation time of the control
policy and define the control set M:

M = {p = (p1, p2)|pi(t) is Lebesgue measuralbe,
0 ≤ pi ≤ pmax

i , 0 ≤ t ≤ =, i = 1, 2}. (23)

Therefore, in order to minimize the total number of spreaders
and related costs, we have the following optimal control
function as follows.

Q(S, I,H,R, p1, p2) =
∫ =

0

[ψ1S(t) + ψ2I(t) + ψ3H(t)

+
W1

2
p2
1 +

W2

2
p2
2]dt,

(24)
where ψ1, ψ2, and ψ3 balance the susceptible individuals
and spreaders, while W1 and W2 are the weight parameters
associated with the control variables p1 and p2. By [27], to
find the optimal solution, we find the Hamiltonian of our
optimal control problem (22) as given by

J (S, I,H,R, p1, p2)

= ψ1S(t) + ψ2I(t) + ψ3H(t) +
W1

2
p2
1 +

W2

2
p2
2.

(25)

And an augmented Hamiltonian function U for the inequality
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constrained Hamiltonian containing the control problem

U(S, I,H,R, p1, p2,Υ1,Υ2,Υ3,Υ4, t)

= ψ1S(t) + ψ2I(t) + ψ3H(t) +
W1

2
p2
1 +

W2

2
p2
2

= J (S, I,H,R, p1, p2) + Υ1
dS(t)

dt
+ Υ2

dI(t)
dt

+ Υ3
dH(t)

dt
+ Υ4

dR(t)
dt

.

(26)

Lemma 4.1 There exists an optimal pair p∗ = (p∗1(t),
p∗2(t)) ∈ M which minimizes the objective functional
Q(S, I,H,R, p1, p2).
Theorem 5.1 Let (S∗, I∗,H∗R∗) be optimal state solution
associated with the optimal control variables p∗1(t) and p∗2(t).
Then, there must exist adjoint variables Υ1, Υ2, Υ3 and Υ4,
satisfying

dΥ1

dt
= −ψ1 − Υ1(t)(r −

2rS∗

K
− ς1) −<[0,=]e

−mτ1

× p2(t + τ1)ς1,
dΥ2

dt
= −ψ2 + Υ1(t)ς2 + Υ2(b + k + p2(t)) − Υ3k

−<[0,=]Υ2(t + τ1)e−mτ1ς2,

dΥ3

dt
= −ψ3 + (c + η)Υ3,

dΥ4

dt
= −Υ3εe

−mτ2 .

(27)
where

ς1 =
(1 − p1(t))βI∗(1 + λI∗)

(1 + αS∗ + λI∗)2
,

and
ς2 =

(1 − p1(t))βS∗(1 + αS∗)
(1 + αS∗ + λI∗)2

.

Therefore, under the boundary conditions Υi(=) = 0, (i =
1, 2, 3, 4), there exists an optimal control

p∗1 =max(min(
R[0,=]e

−mτ1Υ2(t + τ1) − Υ1

W1(1 + αS∗ + λI∗)
βS∗I∗,

pmax
1 ), 0), 0 ≤ t ≤ =,

p∗2 =max(min(
Υ2I

∗

W2
, pmax

2 ), 0), otherwise.

(28)
Proof We define the Hamiltonian function as follows:

U(t) = J (S, I,H,R, p1, p2) + Υ1
dS(t)

dt
+ Υ2

dI(t)
dt

+ Υ3
dH(t)

dt
+ Υ4

dR(t)
dt

= ψ1S(t) + ψ2I(t) + ψ3H(t) +
W1

2
p2
1 +

W2

2
p2
2

+ Υ1(rS(1 − S

K
) − aS − (1 − p1(t))βS(t)I(t)

1 + αS(t) + λI(t)
)

+ Υ2(
(1 − p1(t − τ1))βe−mτ1S(t − τ1)I(t − τ1)

1 + αS(t − τ1) + λI(t − τ1)
− (b + k + p2(t))I(t)) + Υ3(kI(t) − (c + η)H(t)
+ εe−mτ2R(t − τ2)).

(29)
Set (S∗, I∗,H∗, R∗) is with the optimal control variable p1

and p2 related system (22) the optimal state variables. As
per the Pontriagin maximum principle, the calculation of the
partial derivative of the Hamiltonian function for each state

yields adjoint variables Υ1, Υ2, Υ3, and Υ4 that satisfy the
following equations:

Υ1(t)
dt

= −∂U
∂S

− R[0,=−τ1]
U

∂S(t − τ1)
,Υ1(=) = 0,

Υ2(t)
dt

= −∂U
∂I

− R[0,=−τ1]
U

∂I(t − τ1)
,Υ2(=) = 0,

Υ3(t)
dt

= − ∂U
∂H

− R[0,=−τ1]
U

∂H(t − τ1)
,Υ3(=) = 0,

Υ3(t)
dt

= −∂U
∂R

− R[0,=−τ1]
U

∂R(t − τ1)
,Υ4(=) = 0.

From the optimality condition ∂U
∂pi

|S=S∗,I=I∗,H=H∗,R=R∗=
0, we obtain

∂U
∂p1

= W1p
∗
1 +

Υ1βS∗I∗

1 + αS∗ + λI∗
− Υ2(t + τ1)βS∗I∗

1 + αS∗ + λI∗

× R[0,=]e
−mτ1 = 0,

∂U
∂p2

= W2p
∗
2 − Υ2I

∗ = 0.

Thus, we obtain

p∗1 =
R[0,=]e

−mτ1Υ2(t + τ1) − Υ1

W1(1 + αS∗ + λI∗)
βS∗I∗, p∗2 =

Υ2I
∗

W2
.

Thus, by combining the properties of the control set (22),
we obtain equations (28) and (29).
Based on the above results, we can find the optimal control
pair and optimal state as follows:

dS(t)
dt

= rS(t)(1 − S(t)
K

) − (1 − p1(t))βS(t)I(t)
1 + αS(t) + λI(t)

− aS(t),
dI(t)
dt

=
(1 − p1(t − τ1))βe−mτ1S(t − τ1)I(t − τ1)

1 + αS(t − τ1) + λI(t − τ1)
− (b + k + p2(t))I(t),

dH(t)
dt

= kI(t) − (c + η)H(t) + εe−mτ2R(t − τ2),

dR(t)
dt

= ηH(t) − dR(t) − εe−mτ2R(t − τ2),

dΥ1(t)
dt

= −ψ1 − Υ1(t)(r −
2rS∗

K
− ς1) − p2(t + τ1)ς1

×<[0,=]e
−mτ1 ,

dΥ2(t)
dt

= −ψ2 + Υ1(t)ς2 + Υ2(b + k + p2(t)) − Υ3k

−<[0,=]Υ2(t + τ1)e−mτ1ς2,

dΥ3(t)
dt

= −ψ3 + (c + η)Υ3,

dΥ4(t)
dt

= −Υ3εe
−mτ2 .

VI. NUMERICAL EXAMPLES

In this section, we will conduct numerical simulations to
validate the findings of the previous theoretical analysis. We
will provide a numerical representation of system (2) and
examine the effects of two time delays on the system to
support our analytical calculations.
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6.1 The Effect of the Parameter r

In system (2), we utilized the parameters presented in
Table 1 to examine how the parameter r influences rumor
diffusion.

Table 1: Description of all the system parameters

Parameter and Description Values
β : The spreading rate 1.4
ε : The questioning rate 0.33
r : The population growth rate −
K: The environmental population

capacity 15
a : The emigration rate of the ignorant 0.81
b : The migration rate of the spreader 0.203
c : The immigration rate of the skeptics 0.146
d : The emigration rate of the sober 0.124
k : The rate at which individuals move

from the spreading state to the
questioning state 0.62

η : The rate at which individuals move
from the questioning state to the

wakefulness state 0.8
τ1: The time delay for individuals to pass

from hearing the rumor to the spread
state 0.85

τ2: The time delay of the individual from
questioning the rumor to the waking
state 1.88

α: Constant 0.41
λ: Constant 0.15
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Figure 1. The path of I(t) under different r.

Where Figure 1 shows the stability of I(t) when r = 1.4,
2.4, 3.4 and 4.4.
Remark 1. Figure 1 indicates that the larger the r, the larger
the peak value of the spreader. The population growth rate
r does not impact the stability of the system.

6.2 The Effect of the Parameter τ1 and τ2

We now explore the effect of the two delays on the number
of spreaders. We consider the second set of parameters
β = 1.65, r = 2.4, a = 0.81, b = 0.203, c = 0.146, d =
0.124, k = 0.62, η = 0.8, α = 0.41, λ = 0.15.

First, we analyze the effect of time delay τ2 on the system.
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Figure 2. The effect of τ2 in system (2)
Where Figure 2(a), Figure 2(b) and Figure 2(c) show the sta-
ble planar phase diagram and the stable space phase diagram
of S(t), I(t) respectively when τ2 = 1.88, 5.88, 10.88.
Remark 2. Figure 2(a) and Figure 2(b) indicate that the
peak value of the spread spectrum rises in accordance with
the augmentation of the delay τ2. The time delay τ2 does not
impact the stability of the system.

Next, consider the impact of τ1 on the system.
First, we demonstrate that when τ1 = τ2 = 0, the

coexistence equilibrium E2 of system (2) achieves a stable
state without delay. The numerical results are presented in
Figure 3. Under the assumption that τ2 = 1.88, system
(2) allows the coexistence equilibrium E2 to reach a steady
state when τ1 = 0. Figures 4-6 present the corresponding
value results. Through calculations, it is determined that
τ0 = 0.748, indicating that a Hopf bifurcation occurs when
system (2) meets the crossing condition at this value. When
τ1 = 0.056 < τ0, system (2) becomes unstable at E2, as
shown in Figures 7-9. Conversely, when τ1 = 0.8 > τ0 is
selected, system (2) is locally asymptotically stable at E2,
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with the numerical results displayed in Figures 10-12. The
correctness of Theorem 3.5 is verified based on the stability
changes illustrated in Figures 4-12.
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Figure 3. The time histories and the phase trajectories
of system (2)

Finally, consider the phase diagram of system (2) with
a rumor equilibrium point under the parameters in Table
1. where τ1 = 0, τ2 = 1.88. Directly from calculation,
we get R0 = 8.1304 > 1.From Figure 4, we observe
that there is a rumor prevailing equilibrium point E2 ≈
(0.6388, 0.1525, 0.1312, 0.6091) is globally asymptotically
stable, which means the rumor will exist for a long tine.
Figures 4 through 6 illustrate the corresponding simulation.
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Figure 4. Waveform plots portraits of system (2)
when τ1 = 0, τ2 = 1.88.

Where Figure 4(a) shows the stable time series diagram of
S(t). Figure 4(b) shows the stable time series diagram of
I(t). Figure 4(c) shows the stable time series diagram of
H(t). Figure 4(d) shows the stable time series diagram of
R(t).
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Figure 5. The two-dimension phase trajectories of
system (2) when τ1 = 0, τ2 = 1.88.

Where Figure 5(a) shows stable planar phase diagram of
S(t) and I(t). Figure 5(b) shows stable planar phase diagram
of S(t) and H(t). Figure 5(c) shows stable planar phase
diagram of S(t) and R(t). Figure 5(d) shows stable planar

phase diagram of I(t) and R(t). Figure 5(e) shows stable
planar phase diagram of I(t) and R(t). Figure 5(f) shows
stable planar phase diagram of H(t) and R(t).
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Figure 6. The three-dimension phase trajectories of
system (2) when τ1 = 0, τ2 = 1.88.

Where Figure 6(a) shows stable space phase diagram of
S(t), I(t) and H(t). Figure 6(b) shows stable space phase
diagram of S(t), I(t) and R(t). Figure 6(c) shows stable
space phase diagram of I(t), H(t) and R(t).

In system (2), if we take τ1 = 0.056, τ2 = 1.88, then we
have R0 = 7.6876 > 1. Figures 7 through 9 illustrate the
corresponding simulation.
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Figure 7. Waveform plots and phase portraits of system
(2) when τ1 = 0.056 and τ2 = 1.88.

Where Figure 7(a) show unstable time series diagram of
S(t). Figure 7(b) shows unstable time series diagram of I(t).
Figure 7(c) shows unstable time series diagram of H(t).
Figure 7(d) shows unstable time series diagram of R(t).
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Figure 8. The two-dimension phase trajectories of
system (2) when τ1 = 0.056 and τ2 = 1.88.

Where Figure 8(a) shows unstable planar phase diagram
of S(t) and I(t). Figure 8(b) shows unstable planar phase
diagram of S(t) and H(t). Figure 8(c) shows unstable planar
phase diagram of S(t) and R(t). Figure 8(d) shows unstable
planar phase diagram of I(t) and H(t). Figure 8(e) shows
unstable planar phase diagram of I(t) and R(t). Figure 8(f)
shows unstable planar phase diagram of H(t) and R(t).
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Figure 9. The three-dimension phase trajectories of
system (2) when τ1 = 0.056 and τ2 = 1.88.

Where Figure 9(a) shows unstable space phase diagram of
S(t), I(t) and H(t). Figure 9(b) shows unstable space phase
diagram of S(t), I(t) and R(t). Figure 9(c) shows unstable
space phase diagram of I(t), H(t) and R(t).

In system (2), if we take τ1 = 0.8, τ2 = 1.88, then we have
R0 = 3.6532 > 1, E2 ≈ (2.082, 0.1403, 0.1202, 0.5502).
Figures 10 through 12 illustrate the corresponding simula-
tion.
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Figure 10. The time histories of system (2)
when τ1 = 0.8, τ2 = 1.88.

Where Figure 10(a) shows stable time series diagram of
S(t). Figure 10(b) shows stable time series diagram of I(t).
Figure 10(c) shows stable time series diagram of H(t).
Figure 10(d) shows stable time series diagram of R(t).
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Figure 11. The two-dimension phase trajectories of
system (2) when τ1 = 0.8, τ2 = 1.88.

Where Figure 11(a) show stable planar phase diagram of
S(t) and I(t). Figure 11(b) show stable planar phase diagram
of S(t) and H(t). Figure 11(c) shows stable planar phase
diagram of S(t) and R(t). Figure 11(d) shows stable planar
phase diagram of I(t) and R(t). Figure 11(e) shows stable
planar phase diagram of I(t) and R(t). Figure 11(f) shows
stable planar phase diagram of H(t) and R(t).
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Figure 12. The three-dimension phase trajectories of
system (2) when τ1 = 0.8, τ2 = 1.88.

Where Figure 12(a) shows stable space phase diagram of
S(t), I(t) and H(t). Figure 12(b) shows stable space phase
diagram of S(t), I(t) and R(t). Figure 12(c) shows stable
space phase diagram of I(t), H(t) and R(t).

From Figures 2-12, it is evident that τ1 has a significant
effect on the stability and existence of system branches.
However, τ2 has minimal influence on the system. Thus,
the numerical simulation suggests that to control the de-
velopment of rumors, it is more effective to regulate the
number of spreaders or delay in propagation time during the
rumor transmission process. In contrast, controlling the time
individuals spend on refuting rumors has a negligible impact
on the system, especially for those who are skeptical.

VI. CONCLUSIONS

In this study, we considered a delayed rumor propagation
model based on logistic growth and Beddington-DeAngelis
functional responses, that is, Model (2). The existence,
non-negativity, persistence, and boundedness of the model
solutions were proved. We set up conditions under which
a rumor equilibrium exists. By constructing the Lyapunov
function, the global stability of the rumourless equilibrium
and rumourless equilibrium are studied, and the local stability
and Hopf bifurcation caused by the time delay are analyzed.
Finally, the numerical simulation shows that the time delay
of τ1 is a sensitive factor affecting the system performance
and leads to Hopf bifurcation. The theoretical results and
model (2) in this study can be regarded as an extension and
supplement to the existing theoretical results and models.

In the time-delay model, two control strategies are intro-
duced to address the proliferation of misinformation. The
first involves removing posts from platforms that propagate
rumors, thereby eradicating rumor-related content and mini-
mizing the exposure of uninformed individuals to such misin-
formation. The second strategy entails educating individuals
with limited knowledge of popular science topics, enabling
them to differentiate between real information and rumors
more easily. This approach not only disseminates accurate
information but also empowers individuals to become critical
thinkers, potentially decreasing the spread of misinformation
in the system.
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