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Abstract—Aiming to enhance the consensus convergence

speed in multi-agent systems characterized by directed topology
while extending the applicability of consensus control
conditions. Consensus and group consensus of nonlinear
time-varying of the directed topology node algebraic
connectivity of the system with intervention is studied in this
paper and the convergence sufficient condition is given. The
distribution of system eigenvalues under these conditions is
analyzed using the Gerschgorin theorem. The correctness of the
proposed convergence condition is rigorously proven using
Lyapunov's first method. Finally, Simulation results validate
the proposed convergence conditions, and comparative
experiments demonstrate the effectiveness of intervention
control in improving the system's convergence speed.

Index Terms—multi-agent systems, consensus, stability,
intervention control, convergence speed

I. INTRODUCTION
N recent years, the coherent control of multi-agent systems
has emerged as a frontier and prominent topic of research.

Research findings on coherent control have been applied to
various fields, including formation control of autonomous
vehicle swarms, coordinated control of multi-robot systems,
and distributed sensor networks [1-7].
Olfati-Saber and Murray initially proposed a description of

the coherence problem for multi-agent systems [8-9]. A
consistency control algorithm is also provided to demonstrate
that when the topology is a directed strongly connected
equilibrium graph, the multi-agent system achieves average
consistency. It has been found that the rate of consistency
convergence in a multi-agent system is related to the
non-zero minimum eigenvalue of its Laplacian matrix and
that increasing this eigenvalue can improve the convergence
speed [8]. Further research has revealed that the non-zero
minimum eigenvalue of the Laplacian matrix can be
increased by altering the connectivity between nodes without
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changing the topology [10]. In the literature [12], the
topology of a multi-agent system is designed to allow
significant algebraic connectivity between nodes, thereby
increasing the convergence speed. In the literature [13],
topologies with greater connectivity were identified to
accelerate convergence by determining the optimal node
locations. An important metric for evaluating the
convergence performance of a multi-agent system is its
convergence speed [10-14].
Due to the instability of communication channels caused

by external environmental disturbances, the connectivity
between nodes in the directed topology changes over time.
To address this issue, it is necessary to investigate
consistency and enhance the convergence rate of multi-agent
systems with time-varying directed topologies [15-18].
This paper separately discusses the coherence and group

coherence of systems with directed, nonlinear, time-varying
topological connectivity and first-order integral interventions
in multi-agent systems. Additionally, it investigates the
convergence conditions for both types of coherence and
demonstrates, through experimental results, how intervention
actions can enhance the system’s convergence speed.

II. PROBLEM DESCRIPTION

A theoretical framework is first presented for a
time-varying directed topological multi-agent system under
intermediate connectivity. Let       , ,G t V E t A t be a

topology with time-varying connectivity, where
1 2 n{ , , , }V v v v  is the set of topological nodes and

{ ( , ) | , 1, 2, , }ij i jE e x x i j n    is the set of topological

edges. Let ( ) ( ( )) n n
ijA t a t   denote the time-varying

adjacency matrix of the multi-agent system, where the
vectors 0iia  . If the set ( , )i jv v E , then the node i is said
to be a neighbour node of node j , and the neighbours of
node i at time t are expressed using the set

( ) { | , 1, 2, , }i i ijN t x e E j n    . The degree matrix

1 2( ) { ( ), ( ), , ( )}nD t diag d t d t d t  of the topological map at
time t then has

1
( ) ( )

n

i ij
j

d t a t


 (1)
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Where 1,2, ,i n  . The Laplace moment of a multi-agent
system is ( ) ( ) ( )L t D t A t  .
Considering a system of n intelligences then there are

( ) ( )x t t


 (2)

Equation (2) 1( ) nx t  is the system state vector and the

vector 1( ) nt  is the consistency control protocol.
In this paper, the consistency of the system under

intervention is studied, and the system’s consistency control
protocol is expressed as:

( )
( ) ( )( ( ) ( )) ( )

i

i ij j i i
j N t

t a t x t x t u t


   (3)

Equation (3), ( )i t  is the consistency control protocol
of the i node of the system at the time t , ( )ix t  is the i
state variable of the system, and ( )iu t  is the rate of
control by intervention of the i node of the system.
Then the multi-agent system written in matrix form can be

expressed as：

( ) ( ) ( ) ( )x t L t x t u t  


(4)

Here, 1( ) nu t  represents the control vector of the
multi-agent system under intervention. If the connectivity
between the nodes of the topology is time-varying, the
elements of the Laplacian matrix also vary over time. The
topological connectivity of many real-world systems is often
influenced by external environmental factors, justifying the
above conditions.
For the intervention control rate ( )u t of a multi-agent

system to be practically meaningful, it is typically derived as
feedback from the state variable, leading to:

     u t Q t x t (5)

In equation (5),  Q t is the state feedback matrix for the
intervention control rate.
If the intervention control of the system follows the

relationship in equation (5), it indicates that the multi-agent
system evolves under external influence; if  Q t is a zero
matrix, then ( )u t is also a zero matrix, indicating that the
system evolves without external influence and evolves
towards full autonomy, i.e., a conventional coherent system.

III. KEY FINDING
The mutual weights between nodes in the directed

topological multi-agent system are unequal and time-varying,
meaning the exchange of information between nodes is
asymmetric. Consequently, the adjacency matrix  A t and

the Laplacian matrix  L t of the system are no longer
symmetric and their eigenvalues are not necessarily real.

Therefore, the consistent convergence of the system can only
be determined by analyzing the distribution range of its
eigenvalues.

A. Coherence of Multi-intelligence Systems Without
Grouping
Theorem 1: For orderless multi-agent systems with

continuous time-varying strongly connected connectivity
topology (4). The intervention control rate is expressed as
shown in equation (5), and the state feedback matrix  Q t is

a diagonal array whose main diagonal element , ( )i Q t is also
continuously time-varying. For 1,2i n   , with elements

, ( ) 0i Q t  , the multi-agent system (4) converges
consistently to the following equilibrium state:

  0x   (6)

Where the 0 vector is a column vector of order n .
Proof: Based on the properties of the Laplacian matrix
 L t in a strongly connected directed topology, it follows

that 0 is an eigenvalue of it, given by the formula
( ) 1rank L n  . Since the matrix  L t is an asymmetric real

matrix whose eigenvalues are not necessarily real, and the
eigenvalues 1, 0L  , 2, 3, ,, ,L L n L   satisfy , ( )i L t  is

the eigenvalue of the Laplacian matrix  L t . The range of

eigenvalue distribution of the Laplace matrix  L t is
analyzed below utilizing Gerschgorin's disc theorem.

( ) ( )ii iz t R t  (7)

1,
( ) ( )

n

i ij
j j i

R t t
 

   (8)

Fig. 1. The thi Gaelic circle of a directed topological Laplacian matrix

Equation (7) describes the complex domain of the
thi Gaelic circle, where the radius of the thi Gaelic circle of
the matrix  L t is iR defined by equation (8). The center of

the Gaelic circle ii corresponds to the element located at the

thi row and thj column of the matrix  L t . Fig. 1

illustrates the matrix  L t of a strongly connected directed
topology along with its Gaelic circle. Since the eigenvalues
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of the matrix  L t are not necessarily real, their possible

locations ,i L , as depicted in Fig. 1, lie entirely on the
right-hand side of the complex plane. According to the disc
theorem, all eigenvalues of the matrix  L t are distributed
within the union of its n Gaelic circles.
The state feedback matrix  Q t is given by equation (9),

and the matrix  Q t is diagonal and , ,( ) 0, ( )i Q i Qt t  
by the conditions of the Theorem 1 question. Then we have:

   1, ,( ), , ( )Q n QQ t diag t t   (9)

From Theorem 1, the intervention control is a feedback of
the system state vector, so that equation (5) can be brought
into the multi-agent system equation (4) to obtain equation
(10).

( ) ( ( ) ( )) ( )x t L t Q t x t  


(10)

The coefficient matrix ( ) ( )L t Q t is expressed as equation
(11).

( ) ( )L t Q t 
11 1, 1

1 ,

Q n

n nn n Q





 
 
 
  

  


  
(11)

The thi Gaelic circle equation for the coefficient matrix
( ) ( )L t Q t is shown in equation (12).

,( ) ( ) ( )ii i Q iz t t R t     (12)

Where iR is the radius of the thi Geier circle of the
coefficient matrix, which is the same as the radius of the thi
Geier circle of the matrix  L t , as shown in equation (8).

The thi Gaelic circle of the coefficient matrix ( ) ( )L t Q t is
shown in Fig. 2. Since the matrix ( ) ( )L t Q t is also a real
asymmetric matrix, its eigenvalues ,i C are not necessarily

real, and the possible locations ,i C are given in Fig. 2, all on
the right-hand side of the complex plane. Under the
conditions of the question, there are , ( ) 0i Q t  , and all have

( ) 0ii t  in the strongly connected directed topology. From
the above conditions, then inequality (13) holds constantly.

,( ) ( ) ( )i ii i QR t t t  (13)

Therefore, the thi eigenvalue of the ( ) ( )L t Q t matrix in
equation (10) has a negative real part. Repeating the above
steps will eventually show that all the eigenvalues of the
( ( ) ( ))L t Q t  matrix in equation (10) have negative real

parts. Repeating the above steps in the same way eventually
shows that all the eigenvalues of the ( ( ) ( ))L t Q t  matrix in

equation (10) have negative real parts. From Lyapunov's first
method of stability determination, it is clear that the system
(10) is asymptotically stable at its equilibrium point.

Fig. 2. The thi Gaelic circle of the directed topological coefficient matrix

Since all Gaelic circles of the ( ) ( )L t Q t matrix are to the
right of the complex plane, none of their eigenvalues are zero.
It is known that ( )rank L Q n  , then the matrix equation
of Eq. (14) has and has only zero solutions. Therefore, the
equilibrium state of the multi-agent system Eq. (10) is the
state origin.

( ( ) ( )) ( ) 0L t Q t x t  (14)

Finally, the multi-agent system described by equation (4)
exhibits consistent convergence, and its equilibrium state is
the origin. At this point, Theorem 1 is proven.
When no intervention control is applied, both the system

analyzed in Theorem 1 and the directed topologically
consistent system have identical state consistency. Under
intervention control, system consistency remains unaffected
by the time-varying nature of the algebraic connectivity of
the topological nodes. As long as the conditions of Theorem 1
are satisfied, the system states will consistently converge to
zero.
The Laplacian matrix is determined by the actual topology

and cannot be altered, thereby limiting the system’s
convergence speed. Then the state feedback matrix can be
artificially configured according to the actual situation, which
can play a role in accelerating the speed of coherent
convergence.
The results of Theorem 1 allow for a more generalized

application of the consistency conditions. Moreover, when
the state feedback matrix is not diagonal, the polar
configuration theorem can be employed to determine the
state feedback matrix based on system consistency and
performance requirements. When the topological
connectivity changes, the Laplacian matrix also changes, and
the aforementioned steps must be repeated to ensure system
consistency. No changes are required in Theorem 1 to ensure
system consistency, which enhances the robustness of the
system.

B. Multi-intelligence System Group Consistency
Group consistency is a key concept in multi-agent

formation control, where each group achieves a distinct
consistency convergence value. Therefore, it is necessary to
investigate the intervened group consistency of a multi-agent
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system with a time-varying topology with directed
connectivity. From Theorem 1, it is clear that the multi-agent
system state consistency converges to zero under its given
conditions, then the state variables of the original intervened
consistency system (4) and (5) are transformed by a
coordinate translation. Then the intervention control for the
thi state variable of the multi-agent system with group
consistency is expressed as:

* *

( )

*
,

( ) ( )( )

( )( ( ) )
i

i ij j i
j N t

i Q i i

u t a t x x

t x t x


  

 


      

(15)

Where *
ix equation (15) is the reference setting for the

thi state variable.
At this point, the matrix form for the control rate of the

system grouping consistency intervention is

*

1
( ) ( ) ( ) ( ( ) ( ))

m

i i
i

u t Q t x t L t Q t C S


    (16)

 T1 2, , ,i i i inC     (17)

Where m is the number of consistent groupings of the
multi-intelligence system in equation (16). iC is the thi
grouping vector of the grouping consistency system. When
the thj system state variable jx belongs to the thi grouping,

there is 1ij  , otherwise 0ij  . *
iS is the state reference

value of the thi grouping.
Theorem 2: For the th-ordern grouped multi-agent system

(4) with a continuous time-varying strongly connected
topology of connectivity, the intervention control rate has the
form expressed in equation (16) and the state feedback matrix
 Q t is a diagonal array whose main diagonal element

, ( )i Q t is also continuously time-varying. For 1,2i n   ,

with , ( ) 0i Q t  , the grouped multi-agent system (4)
converges consistently to the following equilibrium state:

  *

1

m

i i
i

x C S


  (18)

Proof: Substituting the group consistency intervention
control equation (16) into the multi-agent system equation (4)
results in equation (19).

*

1
( ) ( ( ) ( )) ( )

m

i i
i

x t L t Q t x t C S


 
    

 



(19)

The Laplacian matrix  L t and the state feedback matrix

 Q t of Theorem 2 have the same properties as  L t and

 Q t of Theorem 1. Therefore, the results of Theorem 1 for
the range of eigenvalue distributions of the matrix
( ( ) ( ))L t Q t  still apply here. It follows that all the

eigenvalues of the coefficient matrix ( ( ) ( ))L t Q t  of

equation (19) have negative real parts. Since the *
i iC S

term in equation (19) is a constant, it follows from
Lyapunov's first method of determining stability that the
system equation (19) is asymptotically stable at its
equilibrium point.
By Theorem 1, ( )rank L Q n  , then there are only

*
i iC S solutions to the matrix equation shown in equation

(20). Therefore, the equilibrium state of the multi-agent
system equation (19) is *

i iC S .

*

1
( ( ) ( )) ( ) 0

m

i i
i

L t Q t x t C S


 
   

 
 (20)

Finally, the multi-agent system shown in equation (4) has
group consistent convergence and its equilibrium state is

*
i iC S . At this point, Theorem 2 is proven.

Since the group consistent multi-agent system is derived
from the consistent system in Theorem 1 by a coordinate
translation transformation, the convergence condition of
Theorem 1 still applies, i.e. , ( ) 0i Q t  . The distinction lies in
the group consistency intervention control rate, expressed in
equation (16), with the group consistency convergence value
determined by *

iS .

When * 0iS  the group consistency of the system studied
in Theorem 2 coincides with that of Theorem 1, both
converge consistently to zero. Under intervention control, as
long as the directed topology is strongly connected and

, ( ) 0i Q t  , then the multi-agent system group consistency is
independent of the time-varying nature of the algebraic
connectivity of the topological nodes, the system states
eventually converge *

i iC S .
Theorem 2 analyzes the grouping consistency of an

intervened multi-agent system, where the intervention
control consists of state feedback values and reference
feedback values. The rate of grouping consistency
convergence is determined by both the Laplacian matrix and
the state feedback matrix of the system. Consequently, the
state feedback matrix can be artificially configured to
improve the grouping consistency convergence rate of the
multi-agent system.
Finally, when the state feedback matrix is not diagonal, the

state feedback matrix can also be determined by the pole
configuration theorem, but when the topological connectivity
changes, the Laplacian matrix also changes, and then the
above steps need to be repeated to ensure the group
consistency of the system. By applying Theorem 2, there are
no such problems.

IV. SIMULATION EXAMPLES

The validity of the theorem is further confirmed through
simulation experiments on a multi-agent system. Simulations
are performed on a non-linear, time-varying multi-agent
system with directed topological connectivity to validate
system consistency and group consistency convergence.
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Additionally, comparative experiments demonstrate the
efficacy of intervention control in enhancing the speed of
consistent convergence.

A. Multi-intelligence System Topology and Simulation
Parameters
The simulation experiment considers a system consisting

of five intelligences, the first of which is represented by a
node, where 1,2, ,5i   . The time-varying topology of the
directed connectivity is illustrated in Fig. 3, demonstrating
that the system has strong connectivity in the directed
topology. The simulation time is set to 1 s. The initial state of
the multi-agent system    T0 1,0.3,5,1.7, 5x t    .

Fig. 3. Time-varying topology diagram for directed connectivity

The grouping consistency system contains 3 groupings
with reference values *

1 2S  , *
2 1S  , *

3 1S   . The grouping
vectors are

 T1 1,0,1,0,0,0C  (21)

 T2 0,1,0,0,0,0C  (22)

 T3 0,0,0,0,1,1C  (23)

The time-varying adjacency matrix of the multi-agent
system for this topology is presented in equation (26).
To evaluate the effect of intervention control on improving

the convergence speed of system consistency, two state
feedback matrices, 1( )Q t and 2 ( )Q t , were selected and
simulated respectively. The diagonal elements of both 1( )Q t
and 2 ( )Q t matrices are greater than zero, thereby satisfying

the consistency convergence conditions proposed in Theorem
1 and 2.

  


2
1

3 2

2 3,5 3,

5 1,2cos 3, sin(2 ) 1

Q t diag t t

t t t t

  

        
(24)

  


2
2

3 2

12 18,30 18,

30 6,12cos 18,6 sin(2 ) 6

Q t diag t t

t t t t

  

         
(25)

The corresponding elements 1( )Q t shown in Eq. (24) are
all smaller than those 2 ( )Q t shown in Eq. (25), which
indicates that 2 ( )Q t yields a stronger control of intervention
than 1( )Q t .

B. Group-free Consistency Simulation Results and
Analysis
The results of the coherent state simulation for the

ungrouped multi-agent system are presented in Figs. 4 and 6.
The strong intervention control for the system depicted in Fig.
4 is obtained from the 1( )Q t feedback system state. The weak
intervention control for the system shown in Fig. 6 is
obtained by feeding back the system state 2 ( )Q t . Under the
above simulation conditions, the system has consistent
convergence and the state variables all converge to zero. This
further verifies the validity of the convergence condition
proposed in Theorem 1.
In addition, as can be seen from Fig. 4, the weakly

intervening multi-agent system has all the system state
variables converge to zero consistently at around 0.7s, while
as can be seen from Fig. 6 the strong intervening system has
the states converge to zero at around 0.4s. Therefore, the
strongly intervened system exhibits a faster consistent
convergence rate compared to the weakly intervened system.
The magnitude of the consistent convergence speed of the

multi-agent system can also be known from a comparison of
the system state speed plots in Figs. 5 and 7. The velocity of
each state of the strong intervention system shown in Fig. 7 is
greater than the corresponding state velocity of the weak
intervention system shown in Fig. 5.

 

3 2

2

2 3

4 2

2 2 3 2

0 0 3 5 0 0
2 5 0 0 0 0

0 2 3 0 0 5 1
0 3 4 0 0 0
0 sin 3 cos 1 3 5 7 0

t t
t t

A t t t
t t
t t t t t t

  
   
   
 

  
     

(26)

The Laplacian matrix of a multi-agent system is expressed as follows:

 

3 2 3 2

2 2

2 3 2 3

4 2 4 2

2 2 3 2 3 2

3 5 0 3 5 0 0
2 5 2 5 0 0 0

0 2 3 5 2 4 0 5 1
0 3 4 0 3 4 0
0 sin 3 cos 1 3 5 7 3 5 11

t t t t
t t t t

L t t t t t
t t t t
t t t t t t t t t

     
      
       
 

     
           

(27)
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The multi-agent coherent convergence speed can then be
improved by intervention control, and the stronger the
intervention control rate, the faster the coherent convergence
speed of the system. Therefore, while the multi-agent system
topology remains fixed, the system's consistency
convergence speed can be enhanced by configuring the state
feedback matrix.

Fig. 4. Weak intervention consistency state diagram

Fig. 5. Weak intervention consistency state velocity diagram

Fig. 6. Strong intervention consistency state diagram

Fig. 7. Velocity diagram of the strong intervention consistency state

C. Group Consistency Simulation Results and Analysis
The results of the grouped coherent state simulation of the

multi-agent system are presented in Figs. 8 and 10. In Fig. 8,
the strong intervention control is derived from the 1( )Q t
feedback system state.

In Fig. 10, the weak intervention control is derived from
the system 2 ( )Q t feedback. Under the proposed simulation
conditions, the multi-agent system exhibits group
consistency convergence, with the state variables converging
to their respective group reference values. This further
validates the correctness of the convergence condition stated
in Theorem 2.

Fig. 8. Weak intervention group consistency state diagram

Fig. 9. Weak intervention group consistency state velocity diagram

Fig. 10. Consistency state diagram for strong intervention groups

Fig. 11. Consistent state velocity diagram for strong intervention groups

In addition, it can be seen from Fig. 8 that the weak
intervention multi-agent system achieves group consistency
for the multi-agent system at around 0.5s, while it can be seen
from Fig. 10 that the strong intervention system achieves
group consistency at around 0.3s. Therefore, the convergence
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rate of group consistency is faster for the strong intervention
system.
The convergence speed of the multi-agent system's

grouping consistency can also be assessed by comparing the
system state speed graphs in Figs. 9 and 11. In the process of
system grouping consistency convergence, each state speed
of the strong intervention system shown in Fig. 11 is greater
than the corresponding state speed of the weak intervention
system shown in Fig. 9. Then the multi-agent grouping
consistency convergence speed can be improved by
intervention control, and the stronger the intervention control
rate, the faster the grouping consistency convergence speed.
Therefore, since the directed topology remains fixed, the
system's group consistency convergence speed can be
improved by adjusting the state feedback matrix.

V. CONCLUSION
To improve the consensus convergence speed of directed

topology of multi-agent systems and make the use conditions
of consensus control more general. Consensus and group
consensus of nonlinear time-varying of the directed topology
node algebraic connectivity of the system with intervention
are studied in this paper and the convergence sufficient
condition is given. Finally, simulation experiments verify the
correctness of the proposed convergence conditions, and the
effectiveness of the intervention control in enhancing the
convergence speed of system consistency and group
consistency is demonstrated through comparative
experimental results.
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