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Explanation of Quasi-Regular Semigroups
Characterized in Terms of Neutrosophic Bipolar
Valued Fuzzy Ideals in Semigroups

Pannawit Khamrot, Aiyared lampan, Anothai Phukhaengsi, Thiti Gaketem

Abstract—Quasi-regular is a characteristic of semigroups
that results in the relationship conditions of various types of
ideals, and methods for finding this special type of semigroup
using various types of fuzzy sets have been studied. In this
research, we propose a discovery method of quasi-regular
semigroups using neutrosophic bipolar valued fuzzy ideals.

Index Terms—Neutrosophic sets, Bipolar fuzzy ideals, Neu-
trosophic bipolar-valued fuzzy ideals, Quasi-regular.

I. INTRODUCTION

HE FUNDAMENTAL concept of a fuzzy set was

first introduced by L. A. Zadeh in 1965 [1] with it is
solving of the problem of uncertain information. Later in
1986, K. T. Atanassov [2] gave idea can displaying both
the degree and non-degree of memberships, which helps
with ambiguity with the name as an intuitionistic fuzzy
set. In 1999, F. Smarandache [3] extended the concept of
fuzzy sets by representing truth-membership, indeterminacy-
membership, and falsity-membership of an object to a set
independently with name as Neutrosophic sets. These con-
cepts have been applied to various algebraic structures,
including fields, rings, vector spaces, groups, and semigroups
[41.[51,[6]1,[71.[81,[9],[10],[11]. In particular, fuzzy sets in
semigroups were introduced and studied by Kuroki [12] in
1979, who investigated fuzzy (left, right) ideals and fuzzy
bi-ideals in semigroups.

The decision-making difficulties dealt with it is solved by
bipolar fuzzy sets by W. Zhang [13] in 1994, which allows
for the representation of degrees of membership, degrees
of non-membership, and degrees of partial membership si-
multaneously, and is a helpful extension of classical, fuzzy,
and neutrosophic semigroups. Moreover, it has potential
applications in handling uncertainties and partial knowledge
in various fields. In 2021 T. Gaketem and P. Khamrot [14]
proved the concepts of bipolar fuzzy weakly interior ideals
of semigroups. We studied the relationship between bipolar
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fuzzy weakly interior ideals, bipolar fuzzy left (right) ideals,
and bipolar fuzzy weakly interior ideals. Furthermore, in
2022, T. Gaketem et al. [15] introduced the concept of bipolar
fuzzy implicative UP-filters in UP-algebras. Based on these
notions, bipolar fuzzy set theory and its applications were
developed [16],[17],[18], [19], [20].

Recently, in 2024 N. Deetaec and P. Khamrot [21] stud-
ied the concepts neutrosophic on bipolar-valued fuzzy sets
with positive and negative in ordered of truth-membership,
indeterminacy-membership, and falsity-membership. We
studied the basic properties of bipolar-valued fuzzy subsemi-
groups in semigroups.

This paper, we repeat the definitions of subsemigroups
and genres of fuzzy sets in division 2. The next, division
we presented methods for creating the neutrosophic bipolar-
valued fuzzy bi-ideals and neutrosophic bipolar-valued fuzzy
generalized bi-ideals, concinde and neutrosophic bipolar-
valued fuzzy ideals and neutrosophic bipolar-valued fuzzy
interior ideals, concinde by quasi-regular semigroups. In the
last part, we prove the characterization of weakly regular
semigroups in terms of neutrosophic bipolar-valued fuzzy
ideals.

II. PRELIMINARIES

In this clause, we reviews the types of subsemigroups, and
types of fuzzy sets.
Let ) # Q C R of a semigroup (SG). Then we called
1) A subsemigroup Q (SSG) of R if Q9 C 0.
2) A left ideal (LId) [right ideal (RId)] Q of R if QR C
QRO C Q.
3) An ideal (Id) 9 of an SG fR if it is an LID and a RID
of fR.
4) A generalized bi-ideal (GBId) Q of an SG R if QRN C
Q.
5) A bi-ideal (BId) Q of an SG R if Q is an SSG and Q
is a GIBd of ‘A.
6) An interior ideal (INId) Q of an SG R if Q is an SSG
and ROQR C Q.
7) A quasi-ideal (QId) Q of an SG R if RQNNR C N.
A fuzzy set (FS) @ of a non-empty set 3 is a function from
3 into the closed interval [0,1], i.e., ®: 3 — [0,1].

Definition 2.1. [2] An intuitionsic fuzzy set (IF set) 25 # ()

in set 3 is an object having the form

W := {(, (au (), pou()) | v € W},

where (g @ 3 — [0,1] is the grade of membership and
oo+ 3 — [0,1] is the grade of non-membership such that
0 < Gop(0) + oy () < 1 for all 3 € 3.
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Definition 2.2. [13] A bipolar fuzzy set (shortly, BF set) ®
on 3 is an object having the form

© = {(w, 2" (), 2" (w)) | w € 3},
where @+ : 3 — [0,1] and &~ : 3 — [-1,0].

Definition 2.3. [3] Let 3 # (). A neutrosophic sets (NS) 20
in 3 is the structure

W = {(3,Tan(3), Jaw (3), Saw(3)) : 3 € 3},

where oy : 3 — [0, 1] is a truth membership function, Joy :
3 — [0,1] is an indeterminate membership function, and
Sap : 3 — [0,1] is a false membership function.

Next, we shall introduce the fundamental operations that
can be carried out on neutrosophic bipolar-valued fuzzy sets
of the SG. For brevity, we will employ the abbreviated term
NSBEF instead of repeatedly using the full term “neutrosophic
bipolar-valued fuzzy set.”

Definition 2.4. [3] Let 3 # (). A neutrosophic bipolar-valued
fuzzy set (NSBF) 20 m 3is an object of the form

W = {5 Ty ) 2(3), B3 (3), Tan (0), T (3), T (3)) -
3 € U}, where Tm,jm,s 3 — [0,1] and Ty, Ty, Sy
3= [-1,0].

For simplicity, we use the symbol 20 = (20~,20") for
the NSBF
W = {(5, Ty (3), Ta (3), San (5): T () T (5 Faw (3)) -
3€3}

Definition 2.5. [21] An NSBF set 20 = (20~,20%") in an
SG ‘R is called an NSBF subsemigroup (NSBF SSG) if it
satisfies:

Th () > Th(3) A Th (),
BT

3 2 3 N )

(V3.2 € 8) | T55) < T (3) V T (2),
T 38) > T (3) A Tan (),

Tan (38) < Su(3) V Su(Q)

Example 2.6. Consider an SG & = {51,(52,63} with the
following Cayley table:

>[5 0 b
01|03 603 O3
02 | 03 03 §1
03 | 03 0o O3
Define an NSBF 20 = (20,20") in R as follows:
S| Ty Jp Sy Ty Oy Sy
(§1 03 05 06 -04 -06 -0.8
02102 03 08 —-06 -07 —-0.6
03 1 0.7 08 05 -02 -03 -0.9
Then 20 = (W, ") is an NSBF SSG of fR.

Definition 2.7. [21] An NSBF set 20 = (20~ ,20%) in an SG
R is called an NSBF right ideal (NSBF RID) if it satisfies:

Tap(3t) = Tip(s )(T+ (38) > Ty, ( )

(V3,t € R)

Definition 2.8. /21] An NSBF set 20 = (0~,207") in an
SG R is called an NSBF left ideal (NSBF LID) if it satisfies:

T (38) > TH() (Tan (38) > S* w(®),

o 5 §§+ <( >)<(:§i+ ey <( i)
> >3 ,
(eem) | i) T <><fn<3 USRS
Tan(58) > T (3) Oy (58) > T (8)).

So(38) < S (3) (S (38) < S (€))}

Definition 2.9. An NSBF set 20 = (20~,207) in an SG R
is called an NSBF ideal (NSBF Id) if it satisfies Definition
2.8 and 2.7.

Example 2.10. Consider an SG S = {201,055, 03} with the
following Cayley table:

V‘S1 52 53
0101 01 0y
0 | 61 61 by
53 51 51 53
Define an NSBF 20 = (20 ,20") in R as follows:
STy Oy B T oy B
0107 08 01 =02 -03 -09
02102 03 02 -06 -07 -0.7
03101 05 02 -0.7 —-05 -0.8

It is easy to verify that 20 = (20~,20") is an NSBF ID of
R. Every NSBF RID (resp. NSBF LID) is an NSBF SSG.
But the converse may not be true, as seen in the following
example.

Example 2.11. Consider an SG & = {51,32,53,24} with
the following Cayley table:

» 51 (52 53 54

01 | 01

Define an NSBF 20 = (20~ ,20") in R as follows:

6 |%h T T Tw Ty Sm
5,105 07 01 —-02 —-01 -0.3
5103 04 03 —-06 —07 —04
b1 05 05 0.2 —-04 —05 —04
5,102 02 05 —-06 —-08 —05

It is easy to verify that 20 = (20~ ,207") is an NSBFVSSG
of R, but it is not a left NSBF ideal of R, since Ty, (d403) =
T (02) = 0.3 < 0.5 = T,(d3).

Definition 2.12. [2]] Let R be an SG. An NSBF SSG 20 =
(03—, 07%) in R is an NSBF interior ideal (NSBF IN Id) in
R if the below assertions are valid:

Tin(x38) > T (3),
TR
Sy (¥5t) > Ty (3)
(Vr,5, £ € 6) Ig(g?) < Iz};(a),
T (£38) > T3 (3),
S (¥3t) < (3)

Remark 2.13. Every NSBF Ids of an SG ‘R is an NSBF In
Ids of R.
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Definition 2.14. [2]] Let NSBF 20 =
R and [i1, fi2, fis € [O 1] 51,52,63 €

-1

(T4 = {3 € |THG) > ),

(33)2 = {3 € &[34(3) < jiz},
) > fis}.

(QH_ 2) in an SG
,0], the sets

(Ba)"™ = {3 € G5 (3) > 113
The set W (i, iz, fi3) == {3 € 6|3 (3) > ju, Tg5(Q) <
fi2, §ay(3) > fiz} is called a positive (ji1, i [L ) level of
0 = (W ,W). Ir is evident that P;{T( f2, fiz) =
(Ta)™ 1 (355)% 1 (§)™, and

(Tan)™ = {3 € RITyp(5) < 01},

(3n)™ = {3 € NI (3) > 5o},

()™ = {5 € R (3) < 3}
The set Ny (01,02,03) := {3 € R|Tyu(3) < o1, Jgn(g) >
02,8y (3) < 03} is called a negative (01, 02, 03)-level of
W = (W, WH). It is evident that Nyy(d1,02,03) =

(Tap)™ 0 (Tgp)* 1 (Ba) ™.
The set C, (M17M27M3761562763) Pm+(ﬂ17ﬂ2aﬂs)
(517 627 63) is called the blpOIar (/’(‘17 /’LQa /j/?n 617 52a 63)
level of W = (W, W).

2.15. [21] For any non-empty subset
9 of set X, the characteristic NSBF  function
of Q in Y is defined to be a structure xq =

(o, 25, (), 3, (3), F5 5 (3), T (3): Txg (), B (3))
3 €3}, where

Definition

i;D:m%[Ovl];zHTIg(é)::{é ;2;3
ggma[o,l];wﬁﬂ(a):—{? Z;;g
%;D;Q]H[O,lkﬁ'_}%;g(ﬁ):_{é ZZ;ZE
s;g:%[—1,01;5%;909:{51 iﬁ?iéﬁ,
I U= [-1,005 = 0, (3) = {01 §§Z§
g;ﬁ;m%[—l,O];zHS;Q(z):{Ol gz;g

For simplicity, we use the symbol yq = (x&,xg) for
the characteristic NSBF (shortly, CNSBF) function yq =
{{, T, (0,35, (), §, (6), T, (0, 35, (6), B, (0)) v €
U}. The SG R can be considered a fuzzy subset of itself,
ie., xn(r) =(1,0,1,—-1,0,—1) for all v € R.

Definition 2.16. Ler 20 = (W, W ") and B =
be an NSBF in an SG S, Then

1) 20 = (W~ ,207") is called an NSBF in 8 = )

denoted by 20 C 9B = (WT C BT, C

B) if Tgp(r) < Ty(v), Tap(v) (0), Bap (v) <

Fh (1), Tap() > Tog(6), (1) < Ty () Bp(e) >

(B, B7)
(B, B),

> 4
<3

S (v), forallve &. If W T B and B T W, then we
say that 20 = *B.

2) The union of two NSBF 20 =
(B, BT) is defined as
W U B = (WhuBHW U BY) =
(o (T4 UTH) (0, (3 UTE)(0), (5 USH) (), (T

(Q~,20%) and B =

g%)(%, (Tqy UTg)(1), (Sop UTp)(v)) : v € v}, where

T ED,

(T UTH() = Th(0) v S50, (O UTH) =
T (6) A 35 (0), (Fdy U 5)(0) = () V T (5)
(T U T)() = Tag(0) A T (0), (T U T) () =
T (1) T (0), (T B3 )(6) By (0) A G (6). where
Vte S,

3) The intersection of two NSBF 20 = (20~ ,20") and
B = (B, B) is defined as
WNB = W NBHW nNB7) = {(r, (T4 N

THO), (3 N I3)0), (5 N5

(Sop 1 T)(0), (T 1 T ) (1), (B ) (0) 5 € € ),

where YVt € G,
(T NTR)() = Th(t) A THE), (T NI () =
o (¥) V J* (v), (Bay NF5)(x) =T (x) ATH(v)
<T N Ta)(®) = Ta®) V T (0)r (O N I)(6) =
s ()Aﬁ (t), (Bay NTg)(¥) = Ty (v) V Fa (1)
4) WoB = (Wt o B+, W~ 0B")
T4 Tt ifFy # ()
(S5oT) () = {(h,r\)/en{ w(®) AT} TR
0 ifFu = ®7
jJr ~+ iFu 0
(ijj%)(u) = {(h,t/)\eFu{ m(b) v Jw(t)} f #
0 ifFu = (D,
(b)) A B ifF, # 0
(30550 = {m,t\/em{ w ()" S} 87
0 lfFu = @7
and
o { A ATw(0)VTg(0)} IF A0
(TgpoTg)(u) =  (h.oek,
0 lfFu = (2)7
o { V. {3(0) ATy ()} ifFu#0
(TqnoTg)(u) = § (hoery
0 lfFu — @,
o { A (Bwd) V() IFE A0
(FpoFs)(u) = (hrer,
0 ifE, = 0.

where Vv € & and F,, = {(h,t) e & x & | u= ht}.

Theorem 2.17. Let ) # & of an SG &. Then K is an SSG
(LID, RID, INId) of & if and only if xa = (x&.xg) is an
NSBF SSG (NSBF LID, NSBF RID, NSBF IN Id) of G.

Theorem 2.18. Let R be an SG. Then the arbitrary intersec-
tion (resp., union) of NSBF SSGs (NSBF LIDs, NSBF RIDs,
NSBF IN Ids) in G is an NSBF SSG (NSBF LID, NSBF RID,
NSBF IN Id) of G.

III. MAIN RESULTS

In this clause, we give definitions of NSBF bi-ideal of an
SG and we prove the properties of NSBF bi-ideal and NSBF
generalized bi-ideal.

Definition 3.1. Let SR be an SG. An NSBF SSG 0 =
(~,20%) in R is an NSBF bi-ideal (NSBF B Id) in R

Volume 55, Issue 6, June 2025, Pages 1774-1781



TAENG International Journal of Applied Mathematics

if the below assertions are valid:

Ton (138) > Ty (1) A Ty (8),
JJE ((zcza?)) < Jg}((x))v 332 ((?)),
Sop (238) > Top (k) A Sy (€
(0:3:8 € O) | 570 658) < T (6) v Tan®
Jan (138) > Ty (x) A T (8)
Fon (138) < Fou(©) V T (B)

Example 3.2. Consider an SG S = {01, 32,03,04} with the
following Cayley table:

01 [ 01 0101 0y

6o | 01 6161 &y

b3 | 01 0101 0o

os |01 61 02 O3

Define an NSBF 20 = (20 ,20") in R as follows:

6 |%y % Fh Ty Ty Sw
5,106 01 05 —01 —-06 —0.1
b1 03 03 02 —04 —-03 —03
b3 104 02 01 —-03 —-04 —02
b4 01 04 01 —05 —-0.1 —-04

It is easy to verify that 20 = (20,207 ) is an NSBF B Id of
R, bgt it is not a left NSBF videal of R, since ‘Z;rﬂ(5453) =
T (02) = 0.3 < 0.4 = T3;(03).

Remark 3.3. Every NSBF Ids of an SG ‘R is an NSBF B
Ids of ‘R.

Definition 3.4. Let ‘R be an SG. An NSBF SG 2 =
(Q~,20%) in R is an NSBF generalized bi-ideal (NSBF
GB Id) in *R if the below assertions are valid:

T (138) > T () A Ty (8),

ﬁ% ((zczé)) < 3%((x))v 3:% ((?)),
Sop (13€) > Tap(x) A Ty (E
(E3 8 E R | 27 (158) < Tan(1) V T (8)
Ton (x38) > Tgp(x) A T (8)
Fon(138) < Fou () V T (B)

Remark 3.5. Every NSBF Bld of an SG R is an NSBF GB
Id of an SG fR.

In order to consider the converse of Rermak 3.3 and 3.5,
we need to strengthen the condition of G.

Definition 3.6. [22] A semigroup R called a quasi-regular
if every left ideal and right ideal of R are idempotent.

It is easy to prove that R left (right) quasi-regular if and
only if R € RRRR(R € RM|RARR), this implies that there
exist r,n € MR such that v = repe(v = trey).

Theorem 3.7. Let R be a quasi-regular semigroup. Then the
every NSBF IN Ids and the NSBF Ids coincide.

Proof:
Suppose that 20 = (207,207") is a NSBF IN Id of R
and let 3,9 € &. Since R is quasi-regular, there exists
t,n € M such that 3 = tznt. Thus, T4;(3n) = Ty (tinty) =

Tp®snty) > THG),  THGy) = Jg(gnty) =
Jap(D3(nty) < 33:() and Fyp(3n) = Fop(tanty) =
Sa(Wa(nty) > Fp(3). And T(m) = Typ(tanty) =
TwO3(nty) < Tp(G),  Tu(an) = Tgpltanty) =

Tu®s(nty) > Tp() and Fou(3m) = Fop(tanty) =
T (D3(nty) < Fopy(3). Hence 2 = (2~,207") is a NSBF
RId of . Similarly, we can show that 20 = (20—, 20%) is
a NSBF LId of fR. Thus, 20 = (20~,207") is a NSBF Id of
A. ]

Theorem 3.8. Let R be an SG. Then, for any §) # Q C &,
the given assertions are equivalent:

(1) 9 is a BId (GB Id, QId),
(2) xa = (x4, xg) is an NSBF B 1d (NSBF GB Id, NSBF
QId ).

Proof: (1=-2) Suppose that 9 is a Bld of R and
30,0 € 6. If 3,9y € 9, then ray € Q. Thus,
(n) = 0,87 ,@a) = FF (r) = Ff,(v) = 1 and

[SR]

s
X0

Ta tan) =T (1) = T, (n) = 0,7, (vay) = T3, (1) =
Ja () = 1,3, () =, (r) = Sy, (9) = 0. Hence,
o (ran) > T (1) ATY, (9),

33, (xan) <37 (1) v I3, (),

Fro (®an) > FE () AT, (0)

T, (an) < T (1) VI, (n)

I, (Xan) > 3 (x) AT, (0)

B (xan) < F, (1) V F, (n). Therefore, xa = (x4, x3)

is an NSBF SSG. By Definition 2.15, xq = (x4, xq) is an
NSBF B Id.

(2=>1) Assume that xo = (x4, xg) is an NSBF B Id.
Then xa = (x&.Xxg) is an NSBF SSG. Thus, 9 is an
SSG. Let 3,n € Q and a € &. Then TF_(3) = TL, () =
1,37,G) = 35,(0) = 0.55,G) = 51,00 = 1. By
assumptions, which imply ray € 9. Hence, by Definition
2.15, Q is a BId. [

Definition 3.9. Let R be an SG. An NSBF SG 0 =
(W, 7") in R is an NSBF quasi-ideal (NSBF QId) in
R if the below assertions are valid:

(Thon © Tan) () A (Tp 0 T, )(3) = Tan(3),

(T @ Tan)(3) V (Tay 0 374)(3) < Ty (3),

(v € 9) | Bron ©Fan)(@) A By 0 875 () > B 3)
o © Fa)(3) V (T 0 T, )(6) < Tap(3),

(s ©T0)(3) A Oy © 335)(3) = Tan 3),

(B ©Bap) (@) V By © 854 (3) < Tap(3)

Lemma 3.10. Every NSBF Qld of an SG R is a NSBF SSG
of ‘R.

Proof: Assume that 20 = (20~,20") is a NSBF QId
of R and 3,y € R. Then

(T, © Tan)(39) A (Tay © TEo ) (69)
VL0 ATh

Vo A{Tpm) ATy, (n)}

(m,n)eFy,

T (3) AT () AT () A TE, (0)
LA T AT AL

Tan(3) A T (),

T (39)

v

v
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=
B+
&
=
~—
I IA

A
oud
2
—~
Ll
S~—
<
=
<g+
S
<
<
B+
(=)
S~—
<
Sut
9]
~~
N

(8 © Ban) (30) A (Sfm ° §3,)(39)
V 8Os

()N
(i,j)EFsy

Vo {Sa(m) AT, ()}

(m,n)EF;y
S;,q(z)Asz( 2 ()A%’IQ(U)
1/\3317() S (3) A

+

Fan(39)

v

A,

and

Tan(30) (Tro © Tan)(a0) V (T

) .)/\F {Tn () V Ty
L)€ Gy

( /)\6 | Tap(m) vV T, ()}
Tr () V T (0) V T (3) V T,
—1VZT(n) VERG) V-1

T (3) V T (n),

0Ty
()}v

2)(Y)

I IA

(1)

[ITIVAN

=
g
=
2
v

(e ©3m)(59) A (B © 320 )(60)
V' G () A Smi)IA
(i,)EF5y
( yEF {3 (m) A, ()}
o (3) A 3 (0) A () A 3z (9)
0N Jgu(9) NI (3) AO
I (3) A Iy (1),
9) v
i) v

v

Tan(39)

[l IA

(o ©Ban)(3 (3&1} ° Jva)(3h)
A A8

S (0)}V
(i,j)EFsy

N {Syp(m) VT, )}

(mvn)eFZU

T (3) VBap(0) V Sqp(3) VSis(0)
—1VFqu(n) VEm@G) V-1

T (3) V Sy (0),

I IA

Thus, Ty (39) > Tay(3) A Tay(9), Jan(39) < Jam(a) v
T (0). Fa(a0) > 5 3) A T (0) and m39) < %(z) v
Ton(0):3qw(39) > I (3) A I (0)s ( D) < Fpld) Vv
San (0)-

Hence 20 = (20~,20%) is a NSBF SSG of fR. ]

Lemma 3.11. Every NSBF QId of an SG ‘R is a NSBF GB
Id of A.

Proof: Assume that 20 = (20~,20") is a NSBF QId
of R and let r,p,v € R we get that

THGY) > (T, 0 Tan)(399) A (Thy 0 TE, ) (500)
LV s 000

Vo AT AT, ()}

(m n)er,‘,k,

T (30) A Tap(0) A Ty (3) AT, (o)
NS aE A
T&(z) A Ty (0),

v

v

(31, 0 33)(390) V (33 0I5, ) ()
AL O VIH6)V
(1,)EF; 90
ap(m) VI¥ (n)}

i,
35 (59) V3 (0) V 3 (5) V I, (90)
0V Jan(0) VIgsG) VO
Ja5(3) V Jan (0),

(8%, © Tan) (390) A (835 0 57, ) (39v)
Vo {810 A B ()3

(ivj)ngnn

Vo {San(m) A, ()}

(m,n)EF;y0
g;m (50) NS QU(U) A 5217(50) A S’IQ (U)
1A$m( ) A Bap(3) A

Jau(390)

[l IA

[ VA

Fau(3vv)

v

[

and
Ton(390)

[ IA

( _mof (31)0)\/372_17
AN AT OV

(i1j)€Fj!)U

0T, (3m0))

T ()}V
A S )
T, (39) V Tan (0) V T (5) V T, (90)
—1V Ty (0) V Ty (3) V —1

Ton(3) V Ty (9),

I IA

(Txeor © Jan) (399) A (Jgg © Ty, ) (3YD)
V860 Afs;g(j)}A
(i,))EFsy0

oM}

( )\éF {Jqp(m) A
T (59) A I (v) Am( ) A3z, (90)
0N Jgy(0) AJoy(3) AO

I (3) A Jgp (0),

(Bxor © Sau)(390) V (Sgp 0 I, ) (3y0)
G Ea®VEmY

A Bwm)VE, M}

(m,n)€Fy0

B (39) V T (0) V Ty (3) V Ty (00)
=1V (o) VEy(3) V-1

Sou(3) V Fou(v),

Thus, T%(anv) > (s ) A Tap(v),
3;17(9)’ 3917(30”) > g917() fjn
Top(3) V Tap(0), Jgp (300) > Ju(3) A J
Son (3) \/321]( )-

Jau (390)

v

v

S (30)

A

[ IA

Jap(300) < Jgu(3) v
(v) and Toy(3p) <
a(0), ap(anw) <

Hence, 20 = (20—, 20") is a NSBF GB Id of ‘R. |
Theorem 3.12. Every NSBF QId of an SG R is a NSBF Bld
of ‘R

Proof: By Lemma 3.10 and 3.11. [ |

IV. CHARACTERIZE QUASI-REGULAR SEMIGROUPS IN
TERMS OF GENERALIZED NEUTROSOPHIC
BIPOLAR-VALUED FUZZY IDEALS.

In this clause, we will characterize weakly regular in terms
of types NSBF Ids.
Lemma 4.1. Let Q and £ be non-empty subsets of an SG
R. Then the following statements are true

(1) (xa) A (xa) = (xane)-
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(2) (xa)o(xa) = (xae)-

The following definition and lemma will be used to prove

in Theorem 4.2

Lemma 4.2. [22] A semigroup R is a left quasi-regular if

and only if ££ = £, for every left ideal £ of *R.

Theorem 4.3. A semigroup R is a left quasi-regular if and

only if 20000 = 25, for every NSBF Lld 00 =

of ‘R.

Proof: Assume that 20 =

R. Then 20 = (W—,207) is

(W~,27)

(207,207") is a NSBF LId of
a NSBF SSG of fR. Let 3 € A.

If A, = (), then it is easy to verify that,

(Ton°Fan) (3) < Tap, (Jan°35n) (3)

Sap and (T 0 Toy)(3) >
(Fow 0 Faw)(3) = Sou-
If Ay # (), then

(Tap © Fan) (3)

> Jan: (Bapoan)(3) <
Tone Qay 0 Jw) @) < Japs

Vo AT () A Ty ()}

(n,n)EA;

Vo TS50} =T5H6).

(1,3)EAR

A TV Ip()}

(n,n)EF;

A {Zw3)} = T (3),

(n,3)EF;

Vo B VIg)}

(h,n)EF;

Vo {3} =Ty),

(‘375)er

(Sop © San)(3)

A ASw() VIm)}

(n,n)EF;

IN

N {Saw(3)} = T ),

(n,3)EF;

Thus, (Tgy 0 Fa)G) < Taps Fap 0 Ja) )

ap)(3) < Say and (Tyy o Ty
Jaus > (Fap © Sap) (3) > Sg}

> g Bago
w)(3) = Toy, Dy 0 Jqn) () <
Hence, 20020 C 20. On other

hand since ‘R is left quasi-regular, there exist €t € 93 such

that 3 = €3t3. Thus,

(Taw © Tap) (3) .
lj,ﬂ

V

{Ta () A Tgp(m)}
{Tap () A Tgp(m)}

€F,

V

(0:3)EF (e3)(13)

AVAY}

(9,n)

Tap (83) A Ty (13)
Ton(3) A T3 (3)

A 3

=T5:6),
() V I}
{35 (0) VI (n)}

E€F,

A

(1,3)EF(e3)(t3)

IAINA
Y

(Faw © Ta) (3) v

(U,H)EF;

{Saa(0) A Tgp(n)}
Vo {Sp) ASHm)}
(0:3)€F (e3)(15)

San(83) ATy (t3)
San(3) A Saw(3) = Tan 3),

ALY,

and
(Tqw © Tan) 3)

A

(9,n)eF;

{Tm(m) v Eu(n)}
{Tu(n) vV Ey(n)}

(9:3)EF(e5)(15)

Ton(83) V Tap(t3)

Ton(3) V T (3) = Typ(3):

{San (1) A Jgu(m)}
Vo B AJypm)}
(1,3)EF (e5)(15)

Jan (83) A Jan (13)
a0 (3) A I (3) =

A

(9,n)EF;

VAVAN

(I © Jqm)(3) V
(n.n)EF,

vV IV

Jau(3):
A {8 VIyu(n)}
(9:3)EF(e5)(15)

Ton (83) V Faqn(t3)
S (3) V Sqn(3) = Sap (3):

Hence, (T o To) () > ‘S;n, Fa 0 3)G) < Id By o
o) (3) > oy and (T 0 F0)(5) < Tyys (T © o) (3) >
Joms » (Som © Fay) 3) < Foy- Therefore 2 C 20520, Thus,
0] = W

Conversely, Let £ be a left ideal of SR. Then by Theorem
2.17, xe = (x£,x%) is a NSBF LId of fR. By supposition
and Lemma 4.1, we have

(S © San) (3)

ININ

1= (TF.,)6) = (T1,555.)6)
= T;Eg(a)

0 = (37,.)0) = (31,535,) ()
= 310,

1= (37,,)6) = (37,987.)6)
= 'S;Z:()a

and

-1 = (%,,)06) = (3,5%,)0)
= 3.0,

0 ((3x,2)(3) = (35:83%.)(3)
= J5.0)

-1 = (§y,.)06) = (35, 85.) ()
= F.0)

Thus 3 € £2. Hence £2 = &. By Lemma 4.2, we have R
is left quasi regular. [ |

Lemma 4.4. [22] A semigroup ‘R is a left quasi-regular
semigroup if and only if RN L C RE, for every ideal R and
left ideal £ of ‘R.

Theorem 4.5. A semigroup R is a left quasi-regular semi-
group if and only if 20 1B C B, for every NSBF Id
0 = (W, W) and every NSBF LId B = (B~ ,B") of
R.
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Proof: Assume that 20 = (20~ ,207") is a NSBF Id and
B = (B, BT) is a NSBF LId of R. Let 3 € R. Since &
is left quasi regular, there exist p, q € R such that 3 = p3q;3.
Thus,

FoTw)G) =V {Shm)ATEm)}
(n,n)€EF;

Voo {Teph) ATEm)}

(v, é)EFm)(qz)
Ton(P3) A Top (03)
b (3 )AT+( ) = (T N T3)()

A {350 vIEm)}
(9,n)EF;

A Bab) VIsm)}

(Uvﬁ)eF(pa)(qs)
e
() VInG) = QG NIn) (G);

V {850 ASEM)}

(9,n)EF;

Vo {8y ATsm)}

(9:3)EF(p5)(as)
Fan(P3) A s (a3)
o3 AF5() =

IV IV Il

—
[
B+
(¢]
o]
R+
~—
—~~
N

|

IAIA

(B o8)(3) =

AV

(Faw NSam) 3),

and

(T o Ty)@) = ( /)\F{Siu(U)VT%(n)}
n,n)eLl;
AN ATy VIgn)}
(U 6)€F(pa)(qz)
(pz)VT (q3)
T3 VEg(G) =
Jos = V. {3xm) A

(n,n)EF;

Js(n)}
= Vo S AJsi)}
(9:3)€F(p5)(as)
Jau(P3) A I (a3)
I AI5G) = Qp NIn)6),
A Bu) VEan)}
(n,n)EF;

A {Swl)VEsm)}

(9:3)€F (p3)(as)
Sau(P3) V T (a3)
Fow(3) VER() =

T5)G) >
3)()(5%
g T

IAIN

(Tow N T5)(3),

—
[
=g
O
[
3
~—
—~~
N
|

AV

(Bam 0 ) (3) =

IAIN

(Sow N Taw) (3),

(T N TH)()
F5)6) > FannSs)()
N %T%)6) Qa0 Jn)l) =
)( ) < (89y N S5 )(3) Therefore,

Hence, (T3,
(Jgnoda)(3) <
and (Toy

(Jan ﬂd%)(
QM B C WoB.

(FgN
° Ty)(3)
) (Fan

(Toy

Conversely, let & and £ be a Id and a LId of &. Then

by Theorem 2.17, x5 = (X}, xz) and xe = (X&,Xxg) is a
NSBF Id and a NSBF LId of fR. By supposition and Lemma
4.1, we have

1 e (3) = (31, 0 TE)G)

(T+ NTe)6) = Xm(z)

Tee (3) = (33 0 F1.)(3)
(B2 M3)6) = 350 )

§ree(3) = (&1, 0 3&)(3)
(BT M81)G) =870 3),

mon e

1

nd

) — T = (T 0 T)0)

C (Ty, N5, )() ‘I;,m(zﬁ

0 = Jrae(d) =05, 0%5)06)

C (3% M3%)0G) —3Xm(za),
(

= = (8 © Ty )(3)
C (§xa M83e) @) = Brene 3):

Thus, 3 € RKL. Hence, R N £ C KL. Therefore, by Lemma
4.4, R is left quasi regular. ]

Lemma 4.6. [22] A semigroup & is a left quasi-regular
semigroup if and only if RN L C RE, for every ideal K and
bi-ideal 5 of ®.

Theorem 4.7. Let S be a semigroup. Then the following are
equivalent:
(1) R is a left quasi-regular semigroup,

(2) WM B C WoB, for every NSBF Id 2T = (W, W)
and every NSBF QId 8 = (B~ ,B7) of )R,
(3) W NB C W*B, for every NSBF 1d 1 = (AW~ ,207T)

and every NSBF Bld B = (B~,87") of R.

Proof: Assume that 20 = (20~ ,20") is a NSBF Id and
B = (B, B") is a NSBF QId of R. Let 3 € R. Since &
is left quasi regular, there exist p, q € R such that 3 = p3q3.
Thus,

(T © T (3)

Vo A{T50) ATh(n)}

(n,n)EF;
V {To () ATH(n)}
(9,3)€F(p5)(as)
T (P30) A T (3)
T (30) A THG)
Tw(3) AT (3) =
(D

A {3%MmV

(y,n)EF;
{33
(9,3)EF (p3)(a3)
Jau(39) V I5(3)
Jaw(30) VIHG)
I3 VISG) = Oy
V Bh)ASEn
) A

VIV IV

NT3)@):
(1)}
)V 35 (n)}

(Toy
J

—
[
B+
(e]
=
2+
~—
—~
N
|

INIAIA

J8)(3),
}

n)
S (n)}

(Fap ©85)(3)

(9,n)EF;

Vo {Su

(9:3)E€EF(p5)(as)

Fan (039) A 3% (3)
B (39) A 35 3)
Faw(3) AF5() =

VIV IV

(Fap N Tan) (3),

and

(Tom ©F55) ()

N AZaw() vV Ix)}

(n,n)EF;
A Ty VIg(n)}
(9:3)€EF(p3)(a5)
Ton(P39) V T3 (3)
T (39) V T (3)
Tw(3) VER(G) = (T N Ty) (),
(Jan ©J)(3) ( \)/ . S AJa(m)}
\),u € 3
Vo {Su)AJgn)}
(9:3)EF(p5)(as)
Jou(P39) A I (3)
Jan (39) A I (3)
Jw(G) A IHG) =

VAVANIVAN

VIV IV

QB N33)(3);
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(B 08p)(6) = ( /)\eF {Sap(n) VSx(n)}
n,n 3
= A Bal) Vs
(9:3)€E(p3)(a3)
< Bon(psa) Vs (3)
< Baw(39) vV 35()
< Sw(3) VEx() = S NSan) ),
Hence, (T o Tp)a) = (T N Ty)0)
(Jar03%)(3) < (BanNIx)(6) (TapoF)(3) = (FapMB)(3)
and (Tgy 0 T)(3) < (Fgy N Tp)(6) By ©In)() 2
oy N I%)6) (Say 03%)( ) = (8 N S5)(3) Therefore,
00 1B C Wo*B.
(2) = (3) This is obvious because every NSBF QId is a

NSBF BId of fA.

(3) = (1) Let 8 and £ be a Id and a BId of 9. Then
by Theorem 2.17, x5 = (x}, xz) and xe = (x&,x5) is a
NSBF Id and a NSBF QId of fR. By supposition and Lemma
4.1, we have

I = T ()= (T, %06
C (3, N%,)06) = Sim(z),

0 = 35.06) =@ oT)6)
C (3%, N3.)6) = ”Im(z)

1 = &Xkﬂ() (S )()
C (8,85 )() Fane (3);

and

-1 = T...06)= (T, 2T5.)0)
C (T M5)6) = T, ()

0 = 33, @) =05 0%)06)
C (T M35:)6) = Jxsne (3):

-1 Trne () = (B, 085.)03)

C (o M30)() = Ty )

Thus, 3 € RKL. Hence, R N £ C KL. Therefore, by Lemma
4.6, & is left quasi regular. ]

V. CONCLUSION

This paper has presented the concept of an NSBF B Id
and NSBF GB Id, NSBF IN Id and NSBF Ids that has
been discussed and shown to coincide with quasi regular.
Furthermore, we characterize qausi regular semigroups in
terms NSBF Id. Further, we extend to NSBF bi-interior
ideal, NSBF Qausi-bi-ideals, fuzzy A-ideals, and algebraic
systems. The study of NSBF set in semigroup theory opens
up a new area of research and paves the way for further
investigation in this field.
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